Publications

Refereed Journal Articles by Research Area:
  • Analytic and Numerical Bifurcation Analysis [50, 80, 84, 87, 91, 93, 97]
Color key used for article numbers:
  • green = accepted or published.
  • magenta = submitted and in review.
  • black = preprint or report.

Refereed Journal Articles by Number and Year:



Year No. Authors, Title. Journal where Appearing, Other Information.



A99 A. Behzadan, M. Holst, and P. Rangamani, On Local Existence of Solutions to Reaction-Diffusion systems on Layered Domains. Preprint.
A97 M. Holst, H. Hu, J. Lu, J. Marzuola, D. Song, and J. Weare, Symmetry Breaking in Density Functional Theory due to Dirac Exchange for a Hydrogen Molecule. Submitted for publication.
PDF  | arXiv:math-ph/1902.03497 ]
A93 M. Holst, D. Maxwell, and R. Mazzeo, Conformal Fields and the Structure of the Space of Solutions of the Einstein Constraint Equations. Submitted for publication.
PDF  | arXiv:gr-qc/1711.01042 ]
A91 J. Dilts, M. Holst, T. Kozareva, and D. Maxwell, Numerical Bifurcation Analysis of the Conformal Method. Submitted for publication.
PDF  | arXiv:gr-qc/1710.03201 ]
A87 M. Holst and C. Meier, Non-Uniqueness of Solutions to the Conformal Formulation. Submitted for publication.
PDF  | arXiv:gr-qc/1210.2156 ]
A84 P. Rangamani, A. Behzadan, and M. Holst, Local sensitivity analysis of the "membrane shape equation" derived from the Helfrich energy. Accepted for publication in Mathematics and Mechanics of Solids.
PDF  | Journal  | arXiv:math.NA/2005.12550 ]
A80 L.M. Stolerman, M. Getz, S.G. Llewellyn Smith, M. Holst, and P. Rangamani, Stability Analysis of a Bulk-Surface Reaction Model for Membrane-Protein Clustering. Accepted for publication in Bull. Math. Biol.
PDF  | Journal  | arXiv:math.AP/1908.05214 ]
A50 M. Holst and V. Kungurtsev, Numerical Bifurcation Analysis of Conformal Formulations of the Einstein Constraints. Phys. Rev. D. 84 (2011), No. 12, pp. 124038(1)-124038(8) (8 pp).
PDF  | Journal  | arXiv:math.NA/1107.0262 ]
A35 M. Holst, G. Nagy, and G. Tsogtgerel, Rough Solutions of the Einstein Constraints on closed manifolds without near-CMC conditions. Comm. Math. Phys., Vol. 288 (June 2009), No. 2, pp. 547-613.
PDF  | Journal  | arXiv:gr-qc/0712.0798 ]