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ABSTRACT. We consider the conformal decomposition of Einstein’s constraint equa-
tions introduced by Lichnerowicz and York, on a closed manifold. We establish exis-
tence of non-CMC weak solutions using a combination of a priori estimates for the in-
dividual Hamiltonian and momentum constraints, barrier constructions and fixed-point
techniques for the Hamiltonian constraint, Riesz-Schauder theory for the momentum
constraint, together with a topological fixed-point argument for the coupled system.
Although we present general existence results for non-CMC weak solutions when the
rescaled background metric is in any of the three Yamabe classes, an important new
feature of the results we present for the positive Yamabe class is the absence of the
near-CMC assumption, if the freely specifiable part of the data given by the traceless-
transverse part of the rescaled extrinsic curvature and the matter fields are sufficiently
small, and if the energy density of matter is not identically zero. In this case, the mean
extrinsic curvature can be taken to be an arbitrary smooth function without restrictions
on the size of its spatial derivatives, so that it can be arbitrarily far from constant, giv-
ing what is apparently the first existence results for non-CMC solutions without the
near-CMC assumption. Using a coupled topological fixed-point argument that avoids
near-CMC conditions, we establish existence of coupled non-CMC weak solutions with
(positive) conformal factor φ ∈ W s,p, where p ∈ (1,∞) and s(p) ∈ (1+3/p,∞). In the
CMC case, the regularity can be reduced to p ∈ (1,∞) and s(p) ∈ (3/p,∞) ∩ [1,∞).
In the case of s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10],
and in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but
with a proof that goes through the same analysis framework that we use to obtain the
non-CMC results. The non-CMC results on closed manifolds here extend the 1996 non-
CMC result of Isenberg and Moncrief in three ways: (1) the near-CMC assumption is
removed in the case of the positive Yamabe class; (2) regularity is extended down to the
maximum allowed by the background metric and the matter; and (3) the result holds for
all three Yamabe classes. This last extension was also accomplished recently by Allen,
Clausen and Isenberg, although their result is restricted to the near-CMC case and to
smoother background metrics and data.
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1. INTRODUCTION

In this article, we give an analysis of the coupled Hamiltonian and momentum con-
straints in the Einstein equations on a 3-dimensional closed manifold. We consider the
equations with matter sources satisfying an energy condition implied by the dominant
energy condition in the 4-dimensional spacetime; the unknowns are a Riemannian three-
metric and a two-index symmetric tensor. The equations form an under-determined sys-
tem; therefore, we focus entirely on a standard reformulation used in both mathematical
and numerical general relativity, called the conformal method, introduced by Lichnerow-
icz and York [32, 49, 50]. The conformal method assumes that the unknown metric is
known up to a scalar field called a conformal factor, and also assumes that the trace and
a term proportional to the trace-free divergence-free part of the two-index symmetric
tensor is known, leaving as unknown a term proportional to the traceless symmetrized
derivative of a vector. Therefore, the new unknowns are a scalar and a vector field, trans-
forming the original under-determined system for a metric and a symmetric tensor into a
(potentially) well-posed elliptic system for a scalar and a vector field. See [5] for a recent
review article.
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The question of existence of solutions to the Lichnerowicz-York conformally rescaled
Einstein’s constraint equations, for an arbitrarily prescribed mean extrinsic curvature, has
remained an open problem for more than thirty years. The rescaled equations, which are a
coupled nonlinear elliptic system consisting of the scalar Hamiltonian constraint coupled
to the vector momentum constraint, have been studied almost exclusively in the setting
of constant mean extrinsic curvature, known as the CMC case. In the CMC case the
equations decouple, and it has long been known how to establish existence of solutions.
The case of CMC data on closed (compact without boundary) manifolds was completely
resolved by several authors over the last twenty years, with the last remaining sub-cases
resolved and all the CMC sub-cases on closed manifolds summarized by Isenberg in [25].
Over the last ten years, other CMC cases on different types of manifolds containing
various kinds of matter fields were studied and partially or completely resolved; see the
survey [5]. We take a moment to point out just some of the quite substantial number
of works in this area, including: the original work on the Lichnerowicz equation [32];
the development of the conformal method [49, 50, 51, 52]; the initial solution theory for
the Hamiltonian constraint [39, 40, 41]; the thin sandwich alternative to the conformal
method [4, 37]; the complete classification of CMC initial data [25] and the few known
non-CMC results [26, 28, 11]; various technical results on transverse-traceless tensors
and the conformal Killing operator [6, 8]; the more recent development of the conformal
thin sandwich formulation [53]; initial data for black holes [7, 9]; initial data for Kerr-
like black holes [13, 14]; initial data with trapped surface boundaries [15, 34]; rough
solution theory for CMC initial data [33, 35, 10]; and the gluing approach to generating
initial data [12]. A survey of many of these results appears in [5].

On the other hand, the question of existence of solutions to the Einstein constraint
equations for non-constant mean extrinsic curvature (the “non-CMC case”) has remained
largely unanswered, with progress made only in the case that the mean extrinsic curva-
ture is nearly constant (the “near-CMC case”), in the sense that the size of its spatial
derivatives is sufficiently small. The near-CMC condition leaves the constraint equations
coupled, but ensures the coupling is weak. In [26], Isenberg and Moncrief established the
first existence (and uniqueness) result in the near-CMC case, for background metric hav-
ing negative Ricci scalar. Their result was based on a fixed-point argument, together with
the use of iteration barriers (sub- and super-solutions) which were shown to be bounded
above and below by fixed positive constants, independent of the iteration. We note that
both the fixed-point argument and the global barrier construction in [26] rely critically
on the near-CMC assumption. All subsequent non-CMC existence results are based on
the framework in [26] and are thus limited to the near-CMC case (see the survey [5], the
non-existence results in [27], and also the newer existence results in [1] for non-negative
Yamabe classes).

This article presents (together with the brief overview in [22]) the first non-CMC ex-
istence results for the Einstein constraints that do not require the near-CMC assumption.
Two recent advances make this possible: A new topological fixed-point argument (estab-
lished here and in [21]) and a new global super-solution construction for the Hamilton-
ian constraint (established here and in [22]) that are both free of near-CMC conditions.
These two results allow us to establish existence of non-CMC solutions for conformal
background metrics in the positive Yamabe class, with the freely specifiable part of the
data given by the traceless-transverse part of the rescaled extrinsic curvature and the mat-
ter fields sufficiently small, and with the matter energy density not identically zero. Our
results here and in [21, 22] can be viewed as reducing the remaining open questions of
existence of non-CMC (weak and strong) solutions without near-CMC conditions to two
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more basic and clearly stated open problems: (1) Existence of near-CMC-free global
super-solutions for the Hamiltonian constraint equation when the background metric is
in the non-positive Yamabe classes and for large data; and (2) existence of near-CMC-
free global sub-solutions for the Hamiltonian constraint equation when the background
metric is in the positive Yamabe class in vacuum (without matter). We will make some
further comments about this later in the paper.

Our results in this article, which can be viewed as pushing forward the rough solu-
tions program that was initiated by Maxwell in [33, 35] (see also [10]), further extend
the known solution theory for the Einstein constraint equations on closed manifolds in
several directions:

(i) Far-from-CMC Weak Solutions: We establish the first existence results (Theo-
rem 3.1) for the coupled Einstein constraints in the non-CMC setting without the
near-CMC condition. In particular, if the rescaled background metric is in the pos-
itive Yamabe class, if the freely specifiable part of the data given by the traceless-
transverse part of the rescaled extrinsic curvature and the matter fields are suffi-
ciently small, and if the energy density of matter is not identically zero, then we
show existence of non-CMC solutions with mean extrinsic curvature arbitrarily
far from constant. Two advances in the analysis of the Einstein constraint equa-
tions make this result possible: A topological fixed-point argument (Theorems 3.4
and 3.5) based on compactness arguments rather than k-contractions that is free
of near-CMC conditions, and constructions of global barriers for the Hamiltonian
constraint that are similarly free of the near-CMC condition (Lemmas 5.2, 5.3, 5.4,
5.8, and 5.9).

(ii) Near-CMC Weak Solutions: We establish existence results (Theorem 3.2) for non-
CMC solutions to the coupled constraints under the near-CMC condition in the
setting of weaker (rougher) solutions spaces and for more general physical scenar-
ios than appeared previously in [26, 1]. In particular, we establish existence of weak
solutions to the coupled Hamiltonian and momentum constraints on closed mani-
folds for all three Yamabe classes, with (positive) conformal factor in φ ∈ W s,p

where p ∈ (1,∞) and s(p) ∈ (1 + 3/p,∞). These results are based on combining
barriers, a priori estimates, and other results for the individual constraints together
with a new type of topological fixed-point argument (Theorems 3.4 and 3.5), and
are established in the presence of a weak background metric and data meeting very
low regularity requirements.

(iii) CMC Weak Solutions: In the CMC case, we establish existence (Theorem 3.3) of
weak solutions to the un-coupled Hamiltonian and momentum constraints on closed
manifolds for all three Yamabe classes, with (positive) conformal factor φ ∈ W s,p

where p ∈ (1,∞) and s(p) ∈ (3/p,∞)∩ [1,∞). In the case of s = 2, we reproduce
the CMC existence results of Choquet-Bruhat [10], and in the case p = 2, we
reproduce the CMC existence results of Maxwell [33], but with a different proof;
our CMC proof goes through the same analysis framework that we use to obtain the
non-CMC results (Theorems 3.4 and 3.5). Again, these results established in the
presence of a weak background metric and with data meeting very low regularity
requirements.

(iv) Barrier Constructions: We give constructions (Lemmas 5.4 and 5.8) of weak global
sub- and super-solutions (barriers) for the Hamiltonian constraint equation which
are free of the near-CMC condition. The constructions require the assumption that
the freely specifiable part of the data given by the traceless-transverse part of the
rescaled extrinsic curvature and the matter fields are sufficiently small (required for
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the super-solution construction in Lemma 5.4) and if the energy density of matter
is not identically zero (required for the sub-solution in construction Lemma 5.8,
although we note this can be relaxed using the technique in [1]). While near-CMC-
free sub-solutions are common in the literature, our near-CMC-free super-solution
constructions appear to be the first such results of this type.

(v) Supporting Technical Tools: We assemble a number of new supporting technical
results in the body of the paper and in several appendices, including: topological
fixed-point arguments designed for the Einstein constraints; construction and prop-
erties of general Sobolev classes W s,p and elliptic operators on closed manifolds
with weak metrics; the development of a very weak solution theory for the momen-
tum constraint; a priori L∞-estimates for weak W 1,2-solutions to the Hamiltonian
constraint; Yamabe classification of non-smooth metrics in general Sobolev classes
W s,p; and an analysis of the connection between conformal rescaling and the near-
CMC condition.

The results in this paper imply that the weakest differentiable solutions of the Einstein
constraint equations we have found correspond to CMC and non-CMC hypersurfaces
with physical spatial metric hab satisfying

hab ∈ W s,p(M), p ∈ (1,∞), s(p) ∈ (1 + 3
p
,∞). (1.1)

The curvature of such metrics can be computed in a distributional sense, following [17].
In the CMC case, the regularity can be reduced to

hab ∈ W s,p(M), p ∈ (1,∞), s(p) ∈ (3
p
,∞) ∩ [1,∞). (1.2)

In the case s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10], and
in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but with a
different proof; our CMC proof goes through the same analysis framework that we use
to obtain the non-CMC results (Theorems 3.4 and 3.5). In this paper we do not include
uniqueness statements on CMC solutions, or necessary and sufficient conditions for the
existence of CMC solutions; however, we expect that the techniques used in the above
mentioned works can be adapted to this setting without difficulty.

There are several related motivations for establishing the extensions outlined above.
First, as outlined in [5], new results for the non-CMC case, beyond the case analyzed
in [26, 1], are of great interest in both mathematical and numerical relativity. Non-
CMC results that are free of the near-CMC assumption are of particular interest, since
the existence of solutions in this case has been an open question for more than thirty
years. Second, there is currently substantial research activity in rough solutions to the
Einstein evolution equations, which rest on rough/weak solution results for the initial
data [30]. Third, the approximation theory for Petrov-Galerkin-type methods (including
finite element, wavelet, spectral, and other methods) for the constraints and similar sys-
tems previously developed in [20] establishes convergence of numerical solutions in very
general physical situations, but rests on assumptions about the solution theory; the results
in the present paper and in [21], help to complete this approximation theory framework.
Similarly, very recent results on convergence of adaptive methods for the constraints
in [23, 24] rest in large part on the collection of results here and in [20, 21].

An extended outline of the paper is as follows.
In §2, we summarize the conformal decomposition of Einstein’s constraint equations

introduced by Lichnerowicz and York, on a closed manifold. We describe the classical
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strong formulation of the resulting coupled elliptic system, and then define weak formu-
lations of the constraint equations that will allow us to develop solution theories for the
constraints in the spaces with the weakest possible regularity.

After setting up the basic notation, we give an overview of our main results in §3,
summarized in three existence theorems (Theorems 3.1, 3.2, and 3.3) for weak far-from-
CMC, near-CMC, and CMC solutions to the coupled constraints, extending the known
solution theory in several distinct ways as described above. We outline the two recent
advances in the analysis of the Einstein constraint equations that make these results
possible. The first advance is an abstract coupled topological fixed-point result (The-
orems 3.4 and 3.5), the proof of which is based directly on compactness rather than on
k-contractions. This gives an analysis framework for weak solutions to the constraint
equations that is fundamentally free of the near-CMC assumption; the near-CMC as-
sumption then only potentially arises in the construction of global barriers as part of the
overall fixed-point argument. A result of this type also makes possible the new non-CMC
results for the case of compact manifolds with boundary appearing in [21]. The second
new advance is the construction of global super-solutions for the Hamiltonian constraint
that are also free of the near-CMC condition; we give an overview of the main ideas in
the constructions, which are then derived rigorously in §5.

In §4 we then develop the necessary results for the individual constraint equations
in order to complete an existence argument for the coupled system based on the ab-
stract fixed-point argument in Theorems 3.4 and 3.5. In particular, in §4.1, we first de-
velop some basic technical results for the momentum constraint operator under weak
assumptions on the problem data, including existence of weak solutions to the momen-
tum constraint, given the conformal factor as data. In §4.2, we assume the existence of
barriers (weak sub- and super-solutions) to the Hamiltonian constraint equation forming
a nonempty positive bounded interval, and then derive several properties of the Hamil-
tonian constraint that are needed in the analysis of the coupled system. The results are
established under weak assumptions on the problem data, and for any Yamabe class.

Using order relations on appropriate Banach spaces, we then derive several such com-
patible weak global sub- and super-solutions in §5, based both on constants and on more
complex non-constant constructions. While the sub-solutions are similar to those found
previously in the literature, some of the super-solutions are new. In particular, we give
two super-solution constructions that do not require the near-CMC condition. The first is
constant, and requires that the scalar curvature be strictly globally positive. The second
is based on a scaled solution to a Yamabe-type problem, and is valid for any background
metric in the positive Yamabe class.

In §6, we establish the main results by giving the proofs of Theorems 3.1, 3.2, and 3.3.
In particular, using the topological fixed-point argument in Theorem 3.5, we combine
the global barrier constructions in §5 with the individual constraint results in §4 to es-
tablish existence of weak non-CMC solutions. We summarize our results in §7. For
ease of exposition, various supporting technical results are given in several appendices
as follows: Appendix §A.1 – topological fixed-point arguments; Appendix §A.2 – or-
dered Banach spaces; Appendix §A.3 – monotone increasing maps; Appendix §A.4 –
construction of fractional order Sobolev spaces of sections of vector bundles over closed
manifolds; Appendix §A.5 – a priori estimates for elliptic operators; Appendix §A.6
– maximum principles on closed manifolds; Appendix §A.7 – Yamabe classification of
weak metrics; Appendix §A.8 – conformal covariance of the Hamiltonian constraint; and
Appendix §A.9 – conformal rescaling and the near-CMC condition.
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2. PRELIMINARY MATERIAL

2.1. Notation and conventions. Let M be an n-dimensional smooth closed manifold.
We denote by π : E →M (or simply E →M, or just E) a smooth vector bundle over
M, where the manifold M is called the base space, E is called the total space, and π is
the bundle projection such that for any x ∈M, Ex = π−1(x) is the fiber over x, which is
a vector space of (fiber) dimension mx. If all fibers Ex have dimension mx = m, we say
the fiber dimension of E is m. The manifold M itself can be considered as the vector
bundle E = M×{0} with fiber dimension m = 0. A section of the trivial vector bundle
E = M×R with fiber dimension m = 1 is simply a scalar function onM. Our primary
interest is the case where

E = T r
sM = TM⊗ . . .⊗ TM︸ ︷︷ ︸

r times

⊗T ∗M⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

,

the (r, s)-tensor bundle with contravariant order r and covariant order s, giving fiber
dimension m = n(r + s), where TM is the tangent bundle, and T ∗M is the co-tangent
bundle of M. A Ck section of π (or of E) is a Ck map γ : M → E such that for each
x ∈ M, π(γ(x)) = x. These Ck sections form real Banach spaces Ck(E) which arise
naturally in the global linear analysis of partial differential equations on manifolds.

Let hab ∈ C∞(T 0
2M) be a smooth Riemannian metric on M, (where by convention

Latin indices denote abstract indices as e.g. in [48]), meaning that it is a symmetric, posi-
tive definite, covariant, smooth two-index tensor field on M. The combination (M, hab)
is referred to as a (smooth) Riemannian manifold; we will relax the smoothness require-
ment on hab below. For each x ∈ M, the metric hab(x) defines a positive definite
inner product on the tangent space TxM at x. Denote by hab the inverse of hab, that is,
hach

bc = δa
b, where δab : TxM → TxM is the identity map. We use the convention

that repeated indices, one upper-index and one sub-index, denote contraction. Indices on
tensors will be raised and lowered with hab and hab, respectively. For example, given the
tensor uab

c we denote uabc = haa1hbb1 u
a1b1

c, and uabc = hcc1 uab
c1; notice that the order

of the indices is important in the case that the tensor uabc or uabc is not symmetric. We
say that a tensor is of type m iff it can be transformed into a tensor ua1···am by lowering
appropriate indices (its vector bundle then has fiber dimension mn).

We now give a brief overview of Lp and Sobolev spaces of sections of vector bundles
over closed manifolds in order to introduce the notation used throughout the paper. An
overview of the construction of fractional order Sobolev spaces of sections of vector
bundles can be found in Appendix A.4, based on Besov spaces and partitions of unity.
The case of the sections of the trivial bundle of scalars can also be found in [19], and the
case of tensors can also be found in [42]. Let∇a be the Levi-Civita connection associated
with the metric hab, that is, the unique torsion-free connection satisfying ∇ahbc = 0. Let
Rabc

d be the Riemann tensor of the connection ∇a, where the sign convention used in
this article is (∇a∇b − ∇b∇a)vc = Rabc

dvd. Denote by Rab := Racb
c the Ricci tensor

and by R := Rabh
ab the Ricci scalar curvature of this connection.

Integration onM can be defined with the volume form associated with the metric hab.
Given an arbitrary tensor ua1···ar

b1···bs of type m = r+s, we define a real-valued function
measuring its magnitude at any point x ∈M as

|u| := (ua1···bsua1···bs)
1/2. (2.1)
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A norm of an arbitrary tensor field ua1···ar
b1···bs on M can then be defined for any 1 6

p <∞ and for p = ∞ respectively using (2.1) as follows,

‖u‖p :=

(∫
M
|u|p dx

)1/p

, ‖u‖∞ := ess sup
x∈M

|u|. (2.2)

One way to construct the Lebesgue spaces Lp(T r
sM) of sections of the (r, s)-tensor

bundle, for 1 6 p 6 ∞, is through the completion of C∞(T r
sM) with respect to the

Lp-norm (2.2). The Lp spaces are Banach spaces, and the case p = 2 is a Hilbert space
with the inner product and norm given by

(u, v) :=

∫
M
ua1···amv

a1···am dx, ‖u‖ :=
√

(u, u) = ‖u‖2. (2.3)

Denote covariant derivatives of tensor fields as ∇kua1···am := ∇b1 · · ·∇bk
ua1···am , where

k denotes the total number of derivatives represented by the tensor indices (b1, . . . , bk).
Another norm on C∞(T r

sM) is given for any non-negative integer k and for any 1 6
p 6 ∞ as follows,

‖u‖k,p :=
k∑

l=0

‖∇lu‖p. (2.4)

The Sobolev spacesW k,p(T r
sM) of sections of the (r, s)-tensor bundle can be defined as

the completion of C∞(T r
sM) with respect to the W k,p-norm (2.4). The Sobolev spaces

W k,p are Banach spaces, and the case p = 2 is a Hilbert space. We have Lp = W 0,p and
‖s‖p = ‖s‖0,p. See Appendix A.4 for a more careful construction that includes real order
Sobolev spaces of sections of vector bundles.

Let C∞
+ be the set of nonnegative smooth (scalar) functions onM. Then we can define

order cone
W s,p

+ :=
{
φ ∈ W s,p : 〈φ, ϕ〉 > 0 ∀ϕ ∈ C∞

+

}
, (2.5)

with respect to which the Sobolev spaces W s,p = W s,p(M) are ordered Banach spaces.
Here 〈·, ·〉 is the unique extension of L2-inner product to a bilinear formW s,p⊗W−s,p′ →
R, with 1

p′
+ 1

p
= 1. The order relation is then φ > ψ iff φ − ψ ∈ W s,p

+ . We note that
this order cone is normal only for s = 0. See Appendix A.2, where we review the main
properties of ordered Banach spaces.

2.2. The Einstein constraint equations. We give a quick overview of the Einstein con-
straint equations in general relativity, and then define weak formulations that are funda-
mental to both solution theory and the development of approximation theory. Analogous
material for the case of compact manifolds with boundary can be found in [21].

Let (M, gµν) be a 4-dimensional spacetime, that is, M is a 4-dimensional, smooth
manifold, and gµν is a smooth, Lorentzian metric on M with signature (−,+,+,+). Let
∇µ be the Levi-Civita connection associated with the metric gµν . The Einstein equation
is

Gµν = κTµν ,

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, Tµν is the stress-energy tensor, and

κ = 8πG/c4, with G the gravitation constant and c the speed of light. The Ricci tensor
is Rµν = Rµσν

σ and R = Rµνg
µν is the Ricci scalar, where gµν is the inverse of gµν , that

is gµσg
σν = δµ

ν . The Riemann tensor is defined by Rµνσ
ρwρ =

(
∇µ∇ν − ∇ν∇µ

)
wσ,

where wµ is any 1-form on M . The stress energy tensor Tµν is assumed to be symmetric
and to satisfy the condition ∇µT

µν = 0 and the dominant energy condition, that is,
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the vector −T µνvν is timelike and future-directed, where vµ is any timelike and future-
directed vector field. In this section Greek indices µ, ν, σ, ρ denote abstract spacetime
indices, that is, tensorial character on the 4-dimensional manifold M . They are raised
and lowered with gµν and gµν , respectively. Latin indices a, b, c, d will denote tensorial
character on a 3-dimensional manifold.

The map t : M → R is a time function iff the function t is differentiable and the vector
field −∇µt is a timelike, future-directed vector field on M . Introduce the hypersurface
M := {x ∈ M : t(x) = 0}, and denote by nµ the unit 1-form orthogonal to M. By
definition ofM the form nµ can be expressed as nµ = −α∇µt, where α, called the lapse
function, is the positive function such that nµnν g

µν = −1. Let ĥµν and k̂µν be the first
and second fundamental forms of M, that is,

ĥµν := gµν − nµnν , k̂µν := −ĥµ
σ∇σnν .

The Einstein constraint equations on M are given by(
Gµν − κTµν

)
nν = 0.

A well known calculation allows us to express these equations involving tensors on M
as equations involving intrinsic tensors on M. The result is the following equations,

3R̂ + k̂2 − k̂abk̂
ab − 2κρ̂ = 0, (2.6)

D̂ak̂ − D̂bk̂
ab + κ̂a = 0, (2.7)

where tensors ĥab, k̂ab, ̂a and ρ̂ on a 3-dimensional manifold are the pull-backs on M
of the tensors ĥµν , k̂µν , ̂µ and ρ̂ on the 4-dimensional manifold M . We have introduced
the energy density ρ̂ := nµnµT

µν and the momentum current density ̂µ := −ĥµνnσT
νσ.

We have denoted by D̂a the Levi-Civita connection associated to ĥab, so (M, ĥab) is a
3-dimensional Riemannian manifold, with ĥab having signature (+,+,+), and we use
the notation ĥab for the inverse of the metric ĥab. Indices have been raised and lowered
with ĥab and ĥab, respectively. We have also denoted by 3R̂ the Ricci scalar curvature of
the metric ĥab. Finally, recall that the constraint Eqs. (2.6)-(2.7) are indeed equations on
ĥab and k̂ab due to the matter fields satisfying the energy condition −ρ̂2 + ̂a̂

a 6 0 (with
strict inequality holding at points on M where ρ̂ 6= 0; see [48]), which is implied by the
dominant energy condition on the stress-energy tensor T µν in spacetime.

2.3. Conformal transverse traceless decomposition. Let φ denote a positive scalar
field on M, and decompose the extrinsic curvature tensor k̂ab = l̂ab + 1

3
ĥabτ̂ , where

τ̂ := k̂abĥ
ab is the trace and then l̂ab is the traceless part of the extrinsic curvature tensor.

Then, introduce the following conformal re-scaling:

ĥab =: φ4 hab, l̂ab =: φ−10 lab, τ̂ =: τ,

̂a =: φ−10 ja, ρ̂ =: φ−8 ρ.
(2.8)

We have introduced the Riemannian metric hab on the 3-dimensional manifoldM, which
determines the Levi-Civita connection Da, and so we have that Dahbc = 0. We have also
introduced the symmetric, traceless tensor lab, and the non-physical matter sources ja

and ρ. The different powers of the conformal re-scaling above are carefully chosen so
that the constraint Eqs. (2.6)-(2.7) transform into the following equations

−8∆φ+ 3Rφ+ 2
3
τ 2φ5 − labl

abφ−7 − 2κρφ−3 = 0, (2.9)

−Dbl
ab + 2

3
φ6Daτ + κja = 0, (2.10)
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where in equation above, and from now on, indices of unhatted fields are raised and
lowered with hab and hab respectively. We have also introduced the Laplace-Beltrami
operator with respect to the metric hab, acting on smooth scalar fields; it is defined as
follows

∆φ := habDaDbφ. (2.11)
Eqs. (2.9)-(2.10) can be obtained by a straightforward albeit long computation. In order
to perform this calculation it is useful to recall that both D̂a and Da are connections
on the manifold M, and so they differ on a tensor field Cab

c, which can be computed
explicitly in terms of φ, and has the form

Cab
c = 4δ(a

cDb) ln(φ)− 2habh
cdDd ln(φ).

We remark that the power of four on the re-scaling of the metric ĥab together with M
being 3-dimensional imply that 3R̂ = φ−5(3Rφ− 8∆φ), or in other words, that φ satisfies
the Yamabe-type problem:

− 8∆φ+ 3Rφ− 3R̂φ5 = 0, φ > 0, (2.12)

where 3R̂ represents the scalar curvature corresponding to the physical metric ĥab =
φ4hab. Note that for any other power in the re-scaling, terms proportional to the quan-
tity hab(Daφ)(Dbφ)/φ2 appear in the transformation. The set of all metrics on a closed
manifold can be classified into the three disjoint Yamabe classes Y+(M), Y0(M), and
Y−(M), corresponding to whether one can conformally transform the metric into a met-
ric with strictly positive, zero, or strictly negative scalar curvature, respectively, cf. [31]
(See also Appendix A.7). We note that the Yamabe problem is to determine, for a given
metric hab, whether there exists a conformal transformation φ solving (2.12) such that
3R̂ = const. Arguments similar to those above for φ force the power negative ten on the
re-scaling of the tensor l̂ab and ̂a, so terms proportional to (Daφ)/φ cancel out in (2.10).
Finally, the ratio between the conformal re-scaling powers of ρ̂ and ̂a is chosen such
that the inequality −ρ2 + habj

ajb 6 0 implies the inequality −ρ̂2 + ĥab̂
a̂b 6 0. For a

complete discussion of all possible choices of re-scaling powers, see Appendix A.9.
There is one more step to convert the original constraint equation (2.6)-(2.7) into a

determined elliptic system of equations. This step is the following: Decompose the
symmetric, traceless tensor lab into a divergence-free part σab, and the symmetrized and
traceless gradient of a vector, that is, lab =: σab + (Lw)ab, where Daσ

ab = 0 and we
have introduced the conformal Killing operator L acting on smooth vector fields and
defined as follows

(Lw)ab := Dawb +Dbwa − 2
3
(Dcw

c)hab. (2.13)
Therefore, the constraint Eqs. (2.6)-(2.7) are transformed by the conformal re-scaling
into the following equations

−8∆φ+ 3Rφ+ 2
3
τ 2φ5 − [σab + (Lw)ab][σ

ab + (Lw)ab]φ−7 − 2κρφ−3 = 0, (2.14)

−Db(Lw)ab + 2
3
φ6Daτ + κja = 0. (2.15)

In the next section we interpret these equations above as partial differential equations for
the scalar field φ and the vector field wa, while the rest of the fields are considered as
given fields. Given a solution φ and wa of Eqs. (2.14)-(2.15), the physical metric ĥab and
extrinsic curvature k̂ab of the hypersurface M are given by

ĥab = φ4hab, k̂ab = φ−10[σab + (Lw)ab] + 1
3
φ−4τhab,

while the matter fields are given by Eq (2.8).
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From this point forward, for simplicity we will denote the Levi-Civita connection of
the metric hab on the 3-dimensional manifold M as ∇a rather than Da, and the Ricci
scalar of hab will be denoted by R instead of 3R. Let (M, h) be a 3-dimensional Rie-
mannian manifold, where M is a smooth, compact manifold without boundary, and
h ∈ C∞(T 0

2M) is a positive definite metric. With the shorthands C∞ = C∞(M× R)
and C∞ = C∞(TM), let L : C∞ → C∞ and IL : C∞ → C∞ be the operators with
actions on φ ∈ C∞ and w ∈ C∞ given by

Lφ := −∆φ, (2.16)

(ILw)a := −∇b(Lw)ab, (2.17)

where ∆ denotes the Laplace-Beltrami operator defined in (2.11), and where L denotes
the conformal Killing operator defined in (2.13). We will also use the index-free notation
ILw and Lw.

The freely specifiable functions of the problem are a scalar function τ , interpreted
as the trace of the physical extrinsic curvature; a symmetric, traceless, and divergence-
free, contravariant, two index tensor σ; the non-physical energy density ρ and the non-
physical momentum current density vector j subject to the requirement −ρ2 + j · j 6 0.
The term non-physical refers here to a conformal rescaled field, while physical refers
to a conformally non-rescaled term. The requirement on ρ and j mentioned above and
the particular conformal rescaling used in the semi-decoupled decomposition imply that
the same inequality is satisfied by the physical energy and momentum current densities.
This is a necessary condition (although not sufficient) in order that the matter sources
in spacetime satisfy the dominant energy condition. The definition of various energy
conditions can be found in [48, page 219]. Introduce the non-linear operators F : C∞ ×
C∞ → C∞ and IF : C∞ → C∞ given by

F (φ,w) = aτφ
5 + aRφ− aρφ

−3 − awφ
−7, and IF (φ) = bτ φ

6 + bj,

where the coefficient functions are defined as follows
aτ := 1

12
τ 2, aR := 1

8
R, aρ := κ

4
ρ,

aw := 1
8
(σ + Lw)ab(σ + Lw)ab, baτ := 2

3
∇aτ, baj := κja.

(2.18)

Notice that the scalar coefficients aτ , aw, and aρ are non-negative, while there is no sign
restriction on aR.

With these notations, the classical formulation (or the strong formulation) of the cou-
pled Einstein constraint equations reads as: Given the freely specifiable smooth functions
τ , σ, ρ, and j inM, find a scalar field φ and a vector field w inM solution of the system

Lφ+ F (φ,w) = 0 and ILw + IF (φ) = 0 in M. (2.19)

2.4. Formulation in Sobolev spaces. We now outline a formulation of the Einstein con-
straint equations that involves the weakest regularity of the equation coefficients such
that the equation itself is well-defined. So in particular, the operators L and IL are no
longer differential operators sending smooth sections to smooth sections. We shall em-
ploy Sobolev spaces to quantify smoothness, cf. Appendix A.4.

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, com-
pact manifold without boundary, and with p ∈ (3

2
,∞) and s ∈ (3

p
,∞) ∩ [1, 2], h ∈

W s,p(T 0
2M) is a positive definite metric. Note that the restriction s 6 2 is only apparent,

sinceW t,p ↪→ W 2,p for any t > 2. In the formulation of the constraint equations we need
to distinguish the cases s > 2 and s 6 2 at least notation-wise, and we choose to present
in this subsection the case s 6 2 because this is the case that is considered in the core
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existence theory; the higher regularity is obtained by a standard bootstrapping technique.
The general case is discussed in Sections 4 and 6. Let us define r = r(s, p) = 3p

3+(2−s)p
,

so that the continuous embedding Lr ↪→ W s−2,p holds. Introduce the operators

AL : W s,p → W s−2,p, and AIL : W 1,2r → W −1,2r,

as the unique extensions of the operators L and IL in Eqs. (2.16) and (2.17), respectively,
cf. Lemma A.24 in Appendix A.5. The boldface letters denote spaces of sections of the
tangent bundle TM, e.g., W 1,2r = W 1,2r(TM).

Fix the source functions

τ ∈ L2r, ρ ∈ W s−2,p
+ , σ ∈ L2r, j ∈ W −1,2r, (2.20)

where σ is symmetric, traceless and divergence-free in weak sense, the latter meaning
that 〈σ,Lω〉 = 0 for all ω ∈ W 1,(2r)′ . Here 1

(2r)′
+ 1

2r
= 1, and 〈·, ·〉 denotes the extension

of the L2-inner product to W −1,2r⊗W 1,(2r)′ . We say that the matter fields ρ and j satisfy
the energy condition iff there exist sequences {ρn} ⊂ C∞ and {j n} ⊂ C∞, respectively
converging to ρ and j in the appropriate topology, such that

ρ2
n − j n · j n > 0.

Given any function τ ∈ L2r we have bτ ≡ 2
3
∇τ ∈ W −1,2r. The assumptions τ ∈ L2r

and σ ∈ L2r imply that for every w ∈ W 1,2r the functions aτ and aw belong to Lr. For
example, to see that aw ∈ Lr, we proceed as

‖aw‖r = ‖σ + Lw‖2r 6 2
(
‖σ‖2

2r + ‖Lw‖2
2r

)
6 2

(
‖σ‖2

2r + c2L‖w‖2
1,2r

)
,

where we used the boundedness ‖Lw‖2r 6 cL‖w‖1,2r. The assumption on the back-
ground metric implies that aR ∈ W s−2,p.

Given any two functions u, v ∈ L∞, and t > 0 and q ∈ [1,∞], define the interval

[u, v]t,q := {φ ∈ W t,q : u 6 φ 6 v} ⊂ W t,q,

see Lemma 3.6 on page 20. We equip [u, v]t,q with the subspace topology of W t,q. We
will write [u, v]q for [u, v]0,q, and [u, v] for [u, v]∞. Now, assuming that φ−, φ+ ∈ W s,p

and 0 < φ− 6 φ+ <∞, we introduce the non-linear operators

f : [φ−, φ+]s,p ×W 1,2r → W s−2,p, and f : [φ−, φ+]s,p → W −1,2r,

by
f(φ,w) = aτφ

5 + aRφ− aρφ
−3 − awφ

−7, and f (φ) = bτφ
6 + bj,

where the pointwise multiplication by an element of W s,p defines a bounded linear map
in W s−2,p and in W −1,2r, cf. Corollary A.20(a) in Appendix A.4.

Now, we can formulate the Einstein constraint equations in terms of the above defined
operators: Find elements φ ∈ [φ−, φ+]s,p and w ∈ W 1,2r solutions of

ALφ+ f(φ,w) = 0, (2.21)
AILw + f (φ) = 0. (2.22)

In the following, often we treat the two equations separately. The Hamiltonian con-
straint equation is the following: Given a function w ∈ W 1,2r, find an element φ ∈
[φ−, φ+]s,p solution of

ALφ+ f(φ,w) = 0. (2.23)

When the Hamiltonian constraint equation is under consideration, the function w is re-
ferred to as the source. To indicate the dependence of the solution φ on the source w,
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sometimes we write φ = φw. Let us define the momentum constraint equation: Given
φ ∈ W s,p with φ > 0, find an element w ∈ W 1,2r solution of

AILw + f (φ) = 0. (2.24)

When the momentum constraint equation is under consideration, the function φ is re-
ferred to as the source. To indicate the dependence of the solution w on the source φ,
sometimes we write w = wφ.

3. OVERVIEW OF THE MAIN RESULTS

In this section, we state our three main theorems (Theorems 3.1, 3.2, and 3.3 below) on
the existence of far-from-CMC, near-CMC, and CMC solutions to the Einstein constraint
equations, and give an outline of the overall structure of the argument that we build in
the paper. The proofs of the main results appear in §6 toward the end of the paper, after
we develop a number of supporting results in the body of the paper. After we give an
overview of the basic abstract structure of the coupled nonlinear constraint problem, we
prove two abstract topological fixed-point theorems (Theorems 3.4 and 3.5) that are the
basis for our analysis of the coupled system; these arguments are also the basis for our
results in [21] on existence of non-CMC solutions to the Einstein constraints on compact
manifolds with boundary. After proving these abstract results, we give an overview of
the technical results that must be established in the remainder of the paper in order to use
the abstract results.

Before stating the main theorems, let us make precise what we mean by near-CMC
condition in this article. We say that the extrinsic mean curvature τ satisfies the near-
CMC condition when the following inequality is satisfied

‖∇τ‖z < Γ inf
M
|τ |, (3.1)

where the constant Γ =
√

3
2C

if ρ, σ2 ∈ L∞, and Γ =
√

3
2C

( min uv
max uv

)6 otherwise, with the
constant C > 0 as in Corollary 4.2 and the continuous functions u, v > 0 are as defined
in (5.14) or in (5.15) on page 33. Here C depends only on the Riemannian manifold
(M, hab), and not mentioning (M, hab), u and v depend only on ρ, σ2, and τ . It is
important to note that we always have 0 < min uv

max uv
6 1, so that in any case the condition

(3.1) is at least as strong as the same condition with Γ taken to be equal to
√

3
2C

. The
condition depends on the value of z, and that will be inserted through the context.

Recall that the three Yamabe classes Y+(M), Y−(M) and Y0(M) are defined after
Eq. (2.12). See Appendix A.7 for more details.

3.1. Theorem 3.1: Far-CMC weak solutions. Here is the first of our three main re-
sults. This result does not involve the near-CMC condition, which is one of the main
contributions of this paper. The result is developed in the presence of a weak background
metric hab ∈ W s,p, for p ∈ (1,∞) and s ∈ (1 + 3

p
,∞), with the weakest possible

assumptions on the data that allows for avoiding the near-CMC condition.

Theorem 3.1. (Far-CMC W s,p solutions, p ∈ (1,∞), s ∈ (1 + 3
p
,∞)) Let (M, hab)

be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p admit no conformal
Killing field and be in Y+(M), where p ∈ (1,∞) and s ∈ (1 + 3

p
,∞) are given. Select

q and e to satisfy:
• 1

q
∈ (0, 1) ∩ (0, s−1

3
) ∩ [3−p

3p
, 3+p

3p
],

• e ∈ (1 + 3
q
,∞) ∩ [s− 1, s] ∩ [3

q
+ s− 3

p
− 1, 3

q
+ s− 3

p
].

Assume that the data satisfies:
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• τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z otherwise, with z = 3q
3+max{0,2−e}q ,

• σ ∈ W e−1,q, with ‖σ2‖∞ sufficiently small,
• ρ ∈ W s−2,p

+ ∩ L∞ \ {0}, with ‖ρ‖∞ sufficiently small,
• j ∈ W e−2,q, with ‖j‖e−2,q sufficiently small.

Then there exist φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein constraint
equations.

Proof. The proof will be given in §6. �

FIGURE 1. Range of e and q in Theorems 3.1 and 3.2, with d = s− 3
p
> 1.

Remark. The above result avoids the near-CMC condition (3.1); however, one should be
aware of the various smallness conditions involved in the above theorem. More precisely,
the mean curvature τ can be chosen to be an arbitrary function from a suitable function
space, and afterwards, one has to choose σ, ρ, and j satisfying smallness conditions that
depend on the chosen τ . Nevertheless, the novelty of this result is that τ can be specified
freely, whereas the condition (3.1) is not satisfied for arbitrary τ .

3.2. Theorem 3.2: Near-CMC weak solutions. Here is the second of our three main
results; this result requires the near-CMC condition, but still extends the known near-
CMC results to situations with weaker assumptions on metric and on the data. In partic-
ular, the result is developed in the presence of a weak background metric hab ∈ W s,p, for
p ∈ (1,∞) and s ∈ (1 + 3

p
,∞), and with the weakest possible assumptions on the data.

Theorem 3.2. (Near-CMC W s,p solutions, p ∈ (1,∞), s ∈ (1 + 3
p
,∞)) Let (M, hab)

be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p admit no conformal
Killing field, where p ∈ (1,∞) and s ∈ (1+ 3

p
,∞) are given. Select q, e and z to satisfy:

• 1
q
∈ (0, 1) ∩ (0, s−1

3
) ∩ [3−p

3p
, 3+p

3p
],



ROUGH SOLUTIONS OF THE EINSTEIN CONSTRAINTS ON CLOSED MANIFOLDS 15

• e ∈ (1 + 3
q
,∞) ∩ [s− 1, s] ∩ [3

q
+ s− 3

p
− 1, 3

q
+ s− 3

p
].

• z = 3q
3+max{0,2−e}q .

Assume that τ satisfies the near-CMC condition (3.1) with z as above, and that the data
satisfies:

• τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z if e 6 2,
• σ ∈ W e−1,q,
• ρ ∈ W s−2,p

+ ,
• j ∈ W e−2,q.

In addition, let one of the following sets of conditions hold:
(a) hab is in Y−(M); the metric hab is conformally equivalent to a metric with scalar

curvature (−τ 2);
(b) hab is in Y0(M) or in Y+(M); either ρ 6≡ 0 and τ 6≡ 0 or τ ∈ L∞ and infM σ2

is sufficiently large.
Then there exist φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein constraint
equations.

Proof. The proof will be given in §6. �

3.3. Theorem 3.3: CMC weak solutions. Here is the last of our three main results;
it covers specifically the CMC case, and allows for lower regularity of the background
metric than the non-CMC case. In particular, the result is developed with a weak back-
ground metric hab ∈ W s,p, for p ∈ (1,∞) and s ∈ (3

p
,∞)∩ [1,∞). In the case of s = 2,

we reproduce the CMC existence results of Choquet-Bruhat [10], and in the case p = 2,
we reproduce the CMC existence results of Maxwell [33], but with a different proof; our
CMC proof goes through the same analysis framework that we use to obtain the non-
CMC results (Theorems 3.4 and 3.5). In the following theorem we do not include the
trivial case hab ∈ Y0 and τ = σ = ρ = 0.

Theorem 3.3. (CMC W s,p solutions, p ∈ (1,∞), s ∈ (3
p
,∞) ∩ [1,∞)) Let (M, hab)

be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p admit no conformal
Killing field, where p ∈ (1,∞) and s ∈ (3

p
,∞) ∩ [1,∞) are given. With d := s − 3

p
,

select q and e to satisfy:
• 1

q
∈ (0, 1) ∩ [3−p

3p
, 3+p

3p
] ∩ [1−d

3
, 3+sp

6p
),

• e ∈ [1,∞) ∩ [s− 1, s] ∩ [3
q

+ d− 1, 3
q

+ d] ∩ (3
q

+ d
2
,∞).

Assume τ = const (CMC) and that the data satisfies:
• σ ∈ W e−1,q,
• ρ ∈ W s−2,p

+ ,
• j ∈ W e−2,q.

In addition, let one of the following sets of conditions hold:
(a) hab is in Y−(M); τ 6= 0;
(b) hab is in Y+(M); ρ 6= 0 or σ 6= 0;
(c) hab is in Y0(M); τ 6= 0; ρ 6= 0 or σ 6= 0;
(d) hab is in Y0(M); τ = ρ = σ = 0; j = 0.

Then there exist φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein constraint
equations.

Proof. The proof will be given in §6. �
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FIGURE 2. Range of e and q in Theorem 3.3. Recall that d = s− 3
p
> 0.

3.4. A coupled topological fixed-point argument. In Theorems 3.4 and 3.5 below (see
also [21]) we give some abstract fixed-point results which form the basic framework for
our analysis of the coupled constraints. These topological fixed-point theorems will be
the main tool by which we shall establish Theorems 3.1, 3.2, and 3.3 above. They have
the important feature that the required properties of the abstract fixed-point operators S
and T appearing in Theorems 3.4 and 3.5 below can be established in the case of the
Einstein constraints without using the near-CMC condition; this is not the case for fixed-
point arguments for the constraints based on k-contractions (cf. [26, 1]) which require
near-CMC conditions. The bulk of the paper then involves establishing the required
properties of S and T without using the near-CMC condition, and finding suitable global
barriers φ− and φ+ for defining the required set U that are similarly free of the near-CMC
condition (when possible).

We now set up the basic abstract framework we will use. Let X , Y , X, and Y be
Banach spaces, and let X∗, Y ∗, X∗, and Y∗ be their corresponding dual spaces, respec-
tively. Let f : X × Y → X∗ and f : X → Y∗ be (generally nonlinear) operators, let
AIL : Y → Y∗ be a linear invertible operator, and let AL : X → X∗ be a linear invertible
operator satisfying the maximum principle, meaning that ALu 6 ALv ⇒ u 6 v. The
order structures on X and X (and hence on X∗ and X∗) for interpreting the maximum
principle will be inherited from ordered Banach spaces Z and Z (see Appendices A.2,
A.3, and A.6, and also cf. [54]) through the compact embeddings X ↪→ Z and X ↪→ Z,
which will also make available compactness arguments.

The coupled Hamiltonian and momentum constraints can be viewed abstractly as cou-
pled operator equations of the form:

ALφ+ f(φ,w) = 0, (3.2)
AILw + f (φ) = 0, (3.3)
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or equivalently as the coupled fixed-point equations

φ = T (φ,w), (3.4)
w = S(φ), (3.5)

for appropriately defined fixed-point maps T : X × Y → X and S : X → Y . The
obvious choice for S is the Picard map for (3.3)

S(φ) = −A−1
IL f (φ), (3.6)

which also happens to be the solution map for (3.3). On the other hand, there are a
number of distinct possibilities for T , ranging from the solution map for (3.2), to the
Picard map for (3.2), which inverts only the linear part of the operator in (3.2):

T (φ,w) = −A−1
L f(φ,w). (3.7)

Assume now that T is as in (3.7), and (for fixed w ∈ Y ) that φ− and φ+ are sub- and
super-solutions of the semi-linear operator equation (3.2) in the sense that

ALφ− + f(φ−, w) 6 0, ALφ+ + f(φ+, w) > 0.

The assumptions on AL imply (see Lemma A.14 in Appendix A.3) that for fixed w ∈ Y ,
φ− and φ+ are also sub- and super-solutions of the equivalent fixed-point equation:

φ− 6 T (φ−, w), φ+ > T (φ+, w).

For developing results on fixed-point iterations in ordered Banach spaces, it is convenient
to work with maps which are monotone increasing in φ, for fixed w ∈ Y :

φ1 6 φ2 =⇒ T (φ1, w) 6 T (φ2, w).

The map T that arises as the Picard map for a semi-linear problem will generally not be
monotone increasing; however, if there exists a continuous linear monotone increasing
map J : X → X∗, then one can always introduce a positive shift s into the operator
equation

As
Lφ+ f s(φ,w) = 0,

with As
L = AL + sJ and f s(φ,w) = f(φ,w) − sJφ. Since s > 0 the shifted operator

As
L retains the maximum principle property of AL, and if s is chosen sufficiently large

then f s is monotone decreasing in φ. Under the additional condition on J and s that As
L

is invertible (see also [21]), the shifted Picard map

T s(φ,w) = −(As
L)−1f s(φ,w)

is now monotone increasing in φ.
We now give two abstract existence results for systems of the form (3.4)–(3.5).

Theorem 3.4. (Coupled Fixed-Point Principle A) Let X and Y be Banach spaces, and
let Z be a Banach space with compact embedding X ↪→ Z. Let U ⊂ Z be a non-empty,
convex, closed, bounded subset, and let

S : U → R(S) ⊂ Y, T : U ×R(S) → U ∩X,

be continuous maps. Then there exist φ ∈ U ∩X and w ∈ R(S) such that

φ = T (φ,w) and w = S(φ).
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Proof. The proof will be through a standard variation of the Schauder Fixed-Point The-
orem, reviewed as Theorem A.3 in Appendix A.1. The proof is divided into several
steps.

Step 1: Construction of a non-empty, convex, closed, bounded subset U ⊂ Z. By as-
sumption we have that U ⊂ Z is non-empty, convex (involving the vector space structure
of Z), closed (involving the topology on Z), and bounded (involving the metric given by
the norm on Z).

Step 2: Continuity of a mapping G : U ⊂ Z → U ∩ X ⊂ X . Define the composite
operator

G := T ◦ S : U ⊂ Z → U ∩X ⊂ X.

The mapping G is continuous, since it is a composition of the continuous operators S :
U ⊂ Z → R(S) ⊂ Y and T : U ⊂ Z ×R(S) → U ∩X ⊂ X .

Step 3: Compactness of a mapping F : U ⊂ Z → U ⊂ Z. The compact embedding
assumption X ↪→ Z implies that the canonical injection operator i : X → Z is compact.
Since the composition of compact and continuous operators is compact, we have the
composition F := i ◦G : U ⊂ Z → U ⊂ Z is compact.

Step 4: Invoking the Schauder Theorem. Therefore, by a standard variant of the
Schauder Theorem (see Theorem A.3 in Appendix A.1), there exists a fixed-point φ ∈ U
such that φ = F (φ) = T (φ, S(φ)). Since R(T ) = U ∩X , in fact φ ∈ U ∩X . We now
take w = S(φ) ⊂ R(S) and we have the result. �

The assumption in Theorem 3.4 that the mapping T is invariant on the non-empty,
closed, convex, bounded subset U can be established using a priori estimates if T is
the solution mapping, but if there are multiple fixed-points then continuity of T will not
hold. Fixed-point theory for set-valued maps could still potentially be used (cf. [54]).
On the other hand, if T is chosen to be the Picard map, then it is typically easier to
establish continuity of T even with multiple fixed-points, but more difficult to establish
the invariance property without additional conditions on T . In our setting, we wish to
allow for non-uniqueness in the Hamiltonian constraint (for example see [21] for possi-
ble non-uniqueness in the case of compact manifolds with boundary), so will generally
focus on the Picard map for the Hamiltonian constraint in our fixed-point framework for
the coupled constraints. The following special case of Theorem 3.4 gives some simple
sufficient conditions on T to establish the invariance using barriers in an ordered Banach
space (for a review of ordered Banach spaces, see Appendix A.2 or [54]).

Theorem 3.5. (Coupled Fixed-Point Principle B) Let X and Y be Banach spaces,
and let Z be a real ordered Banach space having the compact embedding X ↪→ Z.
Let [φ−, φ+] ⊂ Z be a nonempty interval which is closed in the topology of Z, and set
U = [φ−, φ+]∩BM ⊂ Z where BM is the closed ball of finite radius M > 0 in Z about
the origin. Assume U is nonempty, and let the maps

S : U → R(S) ⊂ Y, T : U ×R(S) → U ∩X,
be continuous maps. Then there exist φ ∈ U ∩X and w ∈ R(S) such that

φ = T (φ,w) and w = S(φ).

Proof. By choosing the set U to be the non-empty intersection of the interval [φ−, φ+]
with a bounded set in Z, we have U bounded in Z. We also have that U is convex
with respect to the vector space structure of Z, since it is the intersection of two convex
sets [φ−, φ+] and BM . Since U is the intersection of the interval [φ−, φ+], which by
assumption is closed in the topology of Z, with the closed ballBM in Z, U is also closed.
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In summary, we have that U is non-empty as a subset of Z, closed in the topology of Z,
convex with respect to the vector space structure of Z, and bounded with respect to the
metric (via normed) space structure of Z. Therefore, the assumptions of Theorem 3.4
hold and the result then follows. �

We make some final remarks about Theorems 3.4 and 3.5. If the ordered Banach space
Z in Theorem 3.5 had a normal order cone, then the closed interval [φ−, φ+] would
automatically be bounded in the norm of Z (see Lemma A.7 in Appendix A.2 or [54]
for this result). The interval by itself is also non-empty and closed by assumption, and
trivially convex (see Appendix A.2), so that Theorem 3.5 would follow immediately
from Theorem 3.4 by simply taking U = [φ−, φ+]. Second, the closed ball BM in
Theorem 3.5 can be replaced with any non-empty, convex, closed, and bounded subset
of Z having non-trivial intersection with the interval [φ−, φ+]. Third, in the case that T
in Theorem 3.5 arises as the Picard map (3.7) of the semi-linear problem (3.2), we can
always ensure that T is invariant on U in Theorem 3.5 by: (1) obtaining sub- and super-
solutions to the semi-linear operator equation and using these for φ− and φ+, since these
will also be sub- and super-solutions for the fixed-point equation involving the Picard
map; (2) introducing a shift into the nonlinearity to ensure T is monotone increasing;
and (3) obtaining a priori norm bounds on Picard iterates. As noted earlier, (1) and (2)
will ensure

φ− 6 T (φ−, w) 6 T (φ,w) 6 T (φ+, w) 6 φ+, (3.8)
for all φ ∈ [φ−, φ+], and w ∈ R(S), whereas (3) ensures that

‖T (φ,w)‖X 6 M, ∀φ ∈ [φ−, φ+], ∀w ∈ R(S), (3.9)

which together ensure T : U ×R(S) → U ∩X , where U = [φ−, φ+]∩BM ⊂ Z. Again,
if Z has a normal order cone structure, then ensuring (3.8) holds will automatically guar-
antee that (3.9) also holds, so it is not necessary to establish (3.9) separately in the case
of a normal order cone.

Finally, note that Theorem 3.5 also allows one to choose the solution map (or any other
fixed-point map) for T together with a priori order cone and norm estimates to ensure
the conditions (3.8) and (3.9) hold (as long as continuity for T can be shown). Even if
a priori order-cone estimates cannot be shown to hold directly for this choice of T , as
long as the map can be “bracketed” in the interval [φ−, φ+] by two auxiliary monotone
increasing maps, then it can be shown that (3.8) holds. This allows one to use the Picard
map even if it is not monotone increasing, without having to introduce the shift into the
Picard map.

The overall argument we use to prove the non-CMC results in Theorems 3.1, 3.2,
and 3.3 using Theorems 3.4 and 3.5 involves the following steps:
Step 1: The choice of function spaces. We will choose the spaces for use of Theorem 3.5

as follows:
• X = W s,p, with p ∈ (1,∞), and s(p) ∈ (1 + 3

p
,∞). In the CMC case in

Theorem 3.3, we can lower s to s(p) ∈ (3
p
,∞) ∩ [1,∞).

• Y = W e,q, with e and q as given in the theorem statements.
• Z = W s̃,p, s̃ ∈ (3

p
, s), so that X = W s,p ↪→ W s̃,p = Z is compact.

• U = [φ−, φ+]s̃,p ∩ BM ⊂ W s̃,p = Z, with φ− and φ+ global barriers (sub-
and super-solutions, respectively) for the Hamiltonian constraint equation
which satisfy the compatibility condition: 0 < φ− 6 φ+ <∞.

Step 2: Construction of the mapping S. Assuming the existence of “global” weak sub-
and super-solutions φ− and φ+, and assuming the fixed function φ ∈ U =
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[φ−, φ+]s̃,p ∩ BM ⊂ W s̃,p = Z is taken as data in the momentum constraint,
we establish continuity and related properties of the momentum constraint solu-
tion map S : U → R(S) ⊂ W e,q = Y . (§4.1)

Step 3: Construction of the mapping T . Again existence of “global” weak sub- and
super-solutions φ− and φ+, with fixed w ∈ R(S) ⊂ W e,q = Y taken as
data in the Hamiltonian constraint, we establish continuity and related prop-
erties of the Picard map T : U × R(S) → U ∩ W s,p. Invariance of T on
U = [φ−, φ+]s̃,p ∩ BM ⊂ W s̃,p is established using a combination of a priori
order cone bounds and norm bounds. (§4.2)

Step 4: Barrier construction. Global weak sub- and super-solutions φ− and φ+ for the
Hamiltonian constraint are explicitly constructed to build a nonempty, convex,
closed, and bounded subset U = [φ−, φ+]s̃,p ∩ BM ⊂ W s̃,p, which is a strictly
positive interval. These include variations of known barrier constructions which
require the near-CMC condition, and also some new barrier constructions which
are free of the near-CMC condition. (§5) Note: This is the only place in the
argument where near-CMC conditions may potentially arise.

Step 5: Application of fixed-point theorem. The global barriers and continuity properties
are used together with the abstract topological fixed-point result (Theorem 3.5)
to establish existence of solutions φ ∈ U ∩W s,p and w ∈ W e,q to the coupled
system: w = S(φ), φ = T (φ,w). (§6)

Step 6: Bootstrap. The above application of a fixed-point theorem is actually performed
for some low regularity spaces, i.e., for s 6 2 and e 6 2 , and a bootstrap
argument is then given to extend the results to the range of s and p given in the
statement of the Theorem. (§6)

The ordered Banach space Z plays a central role in Theorem 3.5. We will use Z =
W t,q, t > 0, 1 6 q 6 ∞, with order cone defined as in (2.5). Given such an order cone,
one can define the closed interval

[φ−, φ+]t,q = {φ ∈ W t,q : φ− 6 φ 6 φ+} ⊂ W t,q,

which as noted earlier is denoted more simply as [φ−, φ+]q when t = 0, and as simply
[φ−, φ+] when t = 0, q = ∞. When t = 0, theW t,q order cone is normal for 1 6 q 6 ∞,
meaning that closed intervals [φ−, φ+]q ⊂ Lq = W 0,q are automatically bounded in the
metric given by the norm on Lq.

If we consider the interval U = [φ−, φ+]t,q ⊂ W t,q = Z defined using this order
structure, it will be critically important to establish that U is convex (with respect to the
vector space structure of Z), closed (in the topology of Z), and (when possible) bounded
(in the metric given by the norm on Z). It will also be important that U be nonempty as
a subset of Z; this will involve choosing compatible φ− and φ+. Regarding convexity,
closure, and boundedness, we have the following lemma.

Lemma 3.6. (Order cone intervals in W t,q) For t > 0, 1 6 q 6 ∞, the set

U = [φ−, φ+]t,q = {φ ∈ W t,q : φ− 6 φ 6 φ+} ⊂ W t,q

is convex with respect to the vector space structure of W t,q and closed in the topology of
W t,q. For t = 0, 1 6 q 6 ∞, the set U is also bounded with respect to the metric space
structure of Lq = W 0,q.

Proof. That U is convex for t > 0, 1 6 q 6 ∞, follows from the fact that any interval
built using order cones is convex. That U is closed in the case of t = 0, 1 6 q 6 ∞
follows from the fact that norm convergence in Lq for 1 6 q 6 ∞ implies pointwise
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subsequential convergence almost everywhere (see Theorem 3.12 in [44]). That U is
bounded when t = 0, 1 6 q 6 ∞ follows from the fact that the order cone Lq

+ is normal
(see Appendix A.2).

What remains is to show that U is closed in the case of t > 0, 1 6 q 6 ∞. The
argument is as follows. Let {uk}∞k=1 be a Cauchy sequence in U ⊂ W t,q ⊂ Lq, with
t > 0, 1 6 q 6 ∞. From completeness of W t,q there exists limk→∞ uk = u ∈ W t,q.
From the continuous embedding W t,q ↪→ Lq for t > 0, we have that

‖uk − ul‖q 6 C‖uk − ul‖t,q

so that uk is also Cauchy in Lq. Moreover, the continuous embedding also implies that
u is also the limit of uk as a sequence in Lq. Since [φ−, φ+]0,q is closed in Lq, we have
u ∈ [φ−, φ+]0,q, and so u ∈ U = [φ−, φ+]t,q = [φ−, φ+]0,q ∩W t,q. �

Remark. We indicate now how the far-CMC result outlined in [22] can be recovered us-
ing Theorem 3.4 above. The framework is constructed by taking X = W 2,p, Y = W 2,p,
and Z = L∞, with p > 3, giving the compact embedding W 2,p ↪→ L∞. The coefficients
are assumed to satisfy τ ∈ W 1,p and σ2, ja, ρ ∈ Lp as well as the assumptions for the
construction of a near-CMC-free global super-solution (presented in [22] as Theorem 1,
analogous to Lemma 5.4 in this paper), and for the construction of a near-CMC-free
global sub-solution (presented in [22] as Theorem 2, analogous to Lemma 5.8 in this
paper). One then takes U = [φ−, φ+] ⊂ Z = L∞, where the compatible 0 < φ− 6 φ+

are these near-CMC-free barriers. Since Z = L∞ is an ordered Banach space with nor-
mal order cone, we have (by Lemma 3.6 in this paper) that U is non-empty, convex,
closed and bounded as a subset of Z. The invariance of the Picard mapping on the in-
terval [φ−, φ+] is proven using a monotone shift (cf. Lemma 4.5 in this paper) and a
barrier argument (cf. Lemma 4.6 in this paper). The main result in [22] (stated in [22] as
Theorem 4), now follows from Theorem 3.4 in this paper (stated in [22] as Lemma 1).

4. WEAK SOLUTION RESULTS FOR THE INDIVIDUAL CONSTRAINTS

4.1. The momentum constraint and the solution map S. In this section we fix a par-
ticular scalar function φ ∈ W s,p with sp > 3, and consider separately the momentum
constraint equation (2.24) to be solved for the vector valued function w. The result is a
linear elliptic system of equations for this variable w = wφ. For convenience, we refor-
mulate the problem here in a self-contained manner. Note that the problem (4.2) below
is identical to (2.24) provided the functions bτ and bj are defined accordingly. Our goal
is not only to develop some existence results for the momentum constraint, but also to
derive the estimates for the momentum constraint solution map S that we will need later
in our analysis of the coupled system. We note that a complete weak solution theory for
the momentum constraint on compact manifolds with boundary, using both variational
methods and Riesz-Schauder Theory, is developed in [21].

Let (M, h) be a 3-dimensional Riemannian manifold, whereM is a smooth, compact
manifold without boundary, and with p ∈ (1,∞) and s ∈ (3

p
,∞), h ∈ W s,p is a positive

definite metric. With

q ∈ (1,∞), and e ∈ (2− s, s] ∩ (−s+ 3
p
− 1 + 3

q
, s− 3

p
+ 3

q
],

introduce the bounded linear operator

AIL : W e,q → W e−2,q,

as the unique extension of the operator IL in (2.17), cf. Lemmata A.24 and A.25 in
Appendix A.5. Fix the source terms bτ , bj ∈ W e−2,q. Fix a function φ ∈ W s,p, and



22 M. HOLST, G. NAGY, AND G. TSOGTGEREL

define
f φ ∈ W s−2,q, f φ := bτφ

6 + bj. (4.1)
We used the subscript φ in f φ to emphasize that φ is not a variable (but the “source”) of
the problem. Note that the above conditions on q and e are sufficient for the pointwise
multiplication by an element of W s,p to be a bounded map in W e−2,q, cf. Corollary
A.20(a) in Appendix A.4.

The momentum constraint equation is the following: find an element w ∈ W e,q solu-
tion of

AILw + f φ = 0. (4.2)
We sketch here a proof of existence of weak solutions of the momentum constraint

equation (4.2).

Theorem 4.1. (Momentum constraint) Let e and q be as above. Then there exists a
solution w ∈ W e,q to the momentum constraint equation (4.2) if and only if f φ(v) = 0

for all v ∈ W 2−e,q′ satisfying A∗ILv = 0. The solution is unique if and only if the kernel
of A∗IL is trivial. Moreover, if a solution exists at all in W e,q, for any given closed linear
space K ⊆ W e,q such that W e,q = kerAIL ⊕ K, there is a unique solution satisfying
w ∈ K, and for this solution, we have

‖w‖e,q 6 C ‖f φ‖e−2,q, (4.3)

with some constant C > 0 not depending on w.

Proof. By Lemma A.28 in Appendix A.5, the operator AIL is semi-Fredholm, and more-
over since AIL is formally self-adjoint, it is Fredholm. The formal self-adjointness also
implies that when the metric is smooth, index of AIL is zero independent of e and q. Now
we can approximate the metric h by smooth metrics so that AIL is sufficiently close to a
Fredholm operator with index zero. Since the set of Fredholm operators with constant
index is open, we conclude that the index of AIL is zero, and the theorem follows. �

In the later sections we need to bound the coefficient aw in the Hamiltonian constraint
equation, which can be obtained by using the following observation.

Corollary 4.2. Let p ∈ (1,∞) and s ∈ (1 + 3
p
,∞). In addition, let q ∈ (3,∞) and

e ∈ (1, s] ∩ (1 + 3
q
, s− 3

p
+ 3

q
] ∩ (1, 2], and with z = 3q

3+(2−e)q
, let bτ ∈ Lz. Assume that

the momentum constraint equation has a solution w ∈ W e,q. Then, we have

‖Lw‖∞ 6 C ‖φ‖6
∞‖bτ‖z + C ‖bj‖e−2,q, (4.4)

with C > 0 not depending on w. Moreover, if the solution is unique, the norm ‖w‖e,q can
be bounded by the same expression.

Proof. Since the kernel of AIL is finite dimensional, we can write W e,q = kerAIL ⊕ K
with a closed linear space K ⊆ W e,q. We have the splitting w = w0 + w1 such that
w0 ∈ kerAIL = kerL and w1 ∈ K, implying that

‖Lw‖∞ = ‖Lw1‖∞ 6 c ‖w1‖1,∞ 6 c′ ‖w1‖e,q,

the latter inequality by W e,q ↪→ W 1,∞. We note that demanding W e,q ↪→ W 1,∞ gives us
the lower bound e > 1 + 3

q
, and this in turn implies s > 1 + 3

p
if the range of e is to be

nonempty. To complete the proof, we note that w1 is also a solution of the momentum
constraint, and taking into account Lz ↪→ W e−2,q, we apply Theorem 4.1 to bound the
norm ‖w1‖e,q. Note that the latter embedding requires e 6 2, and combining this with
e > 1 + 3

q
, we need q > 3. �
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We now establish some properties of the momentum constraint solution map S that
we will need later for our analysis of the coupled system. Suppose that the conditions for
Theorem 4.1 hold, so that the momentum constraint is uniquely solvable. Then for any
fixed φ+ ∈ W s,p with φ+ > 0, there exists a mapping

S : [0, φ+] ∩W s,p → W e,q (4.5)

that sends the source φ to the corresponding solution w of the momentum constraint
equation. Since the momentum constraint is linear, it follows easily that S is Lipschitz
continuous as stated in the following lemma.

Lemma 4.3. (Properties of the map S) In addition to the conditions imposed in the
beginning of this section, let s > 1. Let e ∈ [1, 3] and 1

q
∈ ( e−1

2
δ, 1 − 3−e

2
δ), where

δ = max{0, 1
p
− s−1

3
}. Assume that the momentum constraint (4.2) is uniquely solvable

in W e,q. With some φ+ ∈ W s,p satisfying φ+ > 0, let w1 and w2 be the solutions to the
momentum constraint with the source functions φ1 and φ2 from the set [0, φ+] ∩W s,p,
respectively. Then,

‖w1 − w2‖e,q 6 C ‖φ+‖5
∞‖bτ‖e−2,q ‖φ1 − φ2‖s,p. (4.6)

Proof. The functions φ1 and φ2 pointwise satisfy the following inequalities

φn
2 − φn

1 =
(n−1∑

j=0

φj
2φ

n−1−j
1

)
(φ2 − φ1) 6 n (φ+)n−1 |φ2 − φ1|,

−
[
φ−n

2 − φ−n
1

]
=
φn

2 − φn
1

(φ2φ1)n
6 n

(φ+)n−1

(φ−)2n
|φ2 − φ1|,

(4.7)

for any integer n > 0. Since the equation (4.2) is linear, applying Theorem 4.1 with the
right hand side f := f φ1

− f φ2
, and by using Lemma A.21 in Appendix, we obtain

‖w1 − w2‖e,q 6 ‖bτ‖e−2,q ‖φ6
1 − φ6

2‖s,p 6 6‖φ+‖5
∞‖bτ‖e−2,q ‖φ1 − φ2‖s,p.

�

4.2. The Hamiltonian constraint and the Picard map T . In this section we fix a par-
ticular function aw in an appropriate space and we then separately look for weak solu-
tions of the Hamiltonian constraint equation (2.23). For convenience, we reformulate
the problem here in a self-contained manner. Note that the problem (4.9) below is iden-
tical to (2.23), provided the functionals aτ and aρ are defined accordingly. Our goal
here is primarily to establish some properties and derive some estimates for a Hamilton-
ian constraint fixed-point map T that we will need later in our analysis of the coupled
system, and also for the analysis of the Hamiltonian constraint alone in the CMC set-
ting. We remark that a complete weak solution theory for the Hamiltonian constraint on
compact manifolds with boundary, using both variational methods and fixed-point argu-
ments based on monotone increasing maps, combined with sub- and super-solutions, is
developed in [21].

Let (M, h) be a 3-dimensional Riemannian manifold, whereM is a smooth, compact
manifold without boundary, and with p ∈ (1,∞) and s ∈ (3

p
,∞) ∩ [1,∞), h ∈ W s,p is

a positive definite metric. Introduce the operator

AL : W s,p → W s−2,p,

as the unique extension of the Laplace-Beltrami operator L = −∆, cf. Lemma A.24 in
Appendix A.5. Fix the source functions

aτ , aρ, aw ∈ W s−2,p
+ , and aR = 1

8
R ∈ W s−2,p,
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where R is the scalar curvature of the metric h. (By Corollary A.20(b) in Appendix A.4,
we know hab ∈ W s,p implies R ∈ W s−2,p.) Given any two functions φ−, φ+ ∈ W s,p

with 0 < φ− 6 φ+, introduce the nonlinear operator

fw : [φ−, φ+]s,p → W s−2,p, fw(φ) = aτφ
5 + aRφ− aρφ

−3 − awφ
−7, (4.8)

where the pointwise multiplication by an element of W s,p defines a bounded linear map
in W s−2,p since s − 2 > −s and 2(s − 3

p
) > 0 > 2 − 3, cf. Corollary A.20(a) in

Appendix A.4. In case the coupled system is under consideration, the dependence of fw
on w is hidden in the fact that the coefficient aw depends on w, cf. (2.18). For generality,
in the following we will view that the operator fw depends on aw.

We now formulate the Hamiltonian constraint equation as follows: find an element
φ ∈ [φ−, φ+]s,p solution of

ALφ+ fw(φ) = 0. (4.9)
To establish existence results for weak solutions to the Hamiltonian constraint equation
using fixed-point arguments, we will rely on the existence of generalized (weak) sub-
and super-solutions (sometimes called barriers) which will be derived later in §5. Let us
recall the definition of sub- and super-solutions in the following, in a slightly generalized
form that will be necessary in our study of the coupled system.

A function φ− ∈ (0,∞) ∩W s,p is called a sub-solution of (2.23) iff the function φ−
satisfies the inequality

ALφ− + fw(φ−) 6 0, (4.10)
for some aw ∈ W s−2,p. A function φ+ ∈ (0,∞) ∩W s,p is called a super-solution of
(2.23) iff the function φ+ satisfies the inequality

ALφ+ + fw(φ+) > 0, (4.11)

for some aw ∈ W s−2,p. We say a pair of sub- and super-solutions is compatible if they
satisfy

0 < φ− 6 φ+ <∞, (4.12)
so that the interval [φ−, φ+] ∩W s,p is both nonempty and bounded.

We now turn to the construction of the fixed-point mapping T : U × R(S) → X
for the Hamiltonian constraint and its properties. There are a number of possibilities for
defining T ; the requirements are (1) that every fixed-point of T must be a solution to the
Hamiltonian constraint; (2) T must be a continuous map from its domain to its range;
and (3) T must be invariant on a non-empty, convex, closed, bounded subset U of an
ordered Banach space Z, with X ↪→ Z compact. It will be sufficient to define T using a
variation of the Picard iteration as follows. Due to the presence of the non-trivial kernel
of the operator AL, which is a consequence of working with a closed manifold, we must
introduce a shift into the Hamiltonian constraint equation in order to construct T with
the required properties.

Lemma 4.4. (Properties of the map T ) In the above described setting, assume that
p ∈ (3

2
,∞) and s ∈ (3

p
,∞) ∩ [1, 3]. With a0 ∈ W s−2,p

+ satisfying a0 6= 0, and ψ ∈ W s,p
+ ,

let as = a0 + awψ ∈ W s−2,p. Fix the functions φ−, φ+ ∈ W s,p such that 0 < φ− 6 φ+,
and define the shifted operators

As
L : W s,p → W s−2,p, As

Lφ := ALφ+ asφ, (4.13)

f s
w : [φ−, φ+]s,p → W s−2,p, f s

w(φ) := fw(φ)− asφ. (4.14)

Let, for φ ∈ [φ−, φ+]s,p and aw ∈ W s−2,p,

T s(φ, aw) := −(As
L)−1f s

w(φ). (4.15)
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Then, the map T s : [φ−, φ+]s,p × W s−2,p → W s,p is continuous in both arguments.
Moreover, there exist s̃ ∈ (3

p
, s) and a constant C such that

‖T (φ, aw)‖s,p 6 C (1 + ‖aw‖s−2,p) ‖φ‖s̃,p, (4.16)

for all φ ∈ [φ−, φ+]s,p and aw ∈ W s−2,p.

Proof. In this proof, we denote by C a generic constant that may have different values at
its different occurrences. By applying Lemma A.21 from Appendix, for any s̃ ∈ (3

p
, s],

s− 2 ∈ [−1, 1] and 1
p
∈ ( s−1

2
δ, 1− 3−s

2
δ) with δ = 1

p
− s̃−1

3
, we have

‖f s
w(φ)‖s−2,p 6 C

(
‖aτ‖s−2,p ‖φ4

+‖∞ + ‖aρ‖s−2,p ‖φ−4
− ‖∞

+‖aw‖s−2,p (‖φ−8
− ‖∞ + ‖ψ‖s̃,p) + ‖aR + a0‖s−2,p

)
‖φ‖s̃,p.

Let us verify if 1
p

is indeed in the prescribed range. First, we have δ = 1
3
+ 1

p
− s̃

3
< 1

3
since

s̃
3
− 1

p
> 0, and taking into account s > 1, we infer 1− 3−s

2
δ > 1− 3−1

2
1
3

= 2
3
. This shows

1
p
< 1− 3−s

2
δ for p > 3

2
, which is not sharp, but will be sufficient for our analysis. For the

other bound, we need 1
p
< s−1

2
δ = s−1

2p
− (s−1)(s̃−1)

6
, or in other words, (s−1)(s̃−1)

6
> s−3

2p
.

Since s ∈ [1, 3], it is possible to choose s̃ ∈ (3
p
, s] satisfying this inequality.

To finalize the proof of (4.16), we note that by Lemma A.30 in Appendix A.6, the
operator As

L is invertible, since the function as is positive, and that by Corollary A.26
also in that appendix, the inverse (As

L)−1 : W s−2,p → W s,p is bounded.
The continuity of the mapping f s

w : [φ−, φ+]s,p → W s−2,p for any aw ∈ W s−2,p is
obtained similarly, and the continuity of aw 7→ fw(φ) for fixed φ ∈ [φ−, φ+]s,p is obvious.
Being the composition of continuous maps, (φ, aw) 7→ T s

w(φ) is also continuous. �

The following lemma shows that by choosing the shift sufficiently large, we can make
the map T s monotone increasing. This result is important for ensuring that the Picard
map T for the Hamiltonian constraint is invariant on the interval [φ−, φ+] defined by
sub- and super-solutions. There is an obstruction that the scalar curvature should be con-
tinuous, which will be handled in general case by conformally transforming the metric
to a metric with continuous scalar curvature and using the conformal covariance of the
Hamiltonian constraint, cf. Section 6.1.

Lemma 4.5. (Monotone increasing property of T ) In addition to the conditions of
Lemma 4.4, let aR be continuous and define the shift function as by

as = max{1, aR}+ 3
φ2

+

φ6
−
aρ + 5φ4

+aτ + 7
φ6

+

φ14
−
aw.

Then, for any fixed aw ∈ W s−2,p, the map φ 7→ T s(φ, aw) : [φ−, φ+]s,p → W s,p is
monotone increasing.

Proof. The shifted operatorAs
L satisfies the maximum principle, hence the inverse (As

L)−1 :
W s−2,p → W s,p is monotone increasing.

Now we will show that the operator f s
w is monotone decreasing. Given any two func-

tions φ2, φ1 ∈ [φ−, φ+]s,p with φ2 > φ1, we have

f s
w(φ2)− f s

w(φ1) = fw(φ2)− fw(φ1)− as[φ2 − φ1]

= aτ

[
φ5

2 − φ5
1

]
+ aR[φ2 − φ1]− as[φ2 − φ1]− aρ

[
φ−3

2 − φ−3
1

]
− aw

[
φ−7

2 − φ−7
1

]
.

The inequalities (4.7), the condition 0 < φ1 6 φ2, and the choice of as imply

f s
w(φ2)− f s

w(φ1) 6 0,
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which establishes that f s
w is monotone decreasing.

Both the operator (As
L)−1 and the map −f s

w are monotone increasing, therefore the
operator T s(·, aw) is also monotone increasing. �

Lemma 4.6. (Barriers for T and the Hamiltonian constraint) Let the conditions of
Lemma 4.5 hold, with φ− and φ+ sub- and super-solutions of the Hamiltonian constraint
equation (4.9), respectively. Then, we have T s(φ+, aw) 6 φ+ and T s(φ−, aw) > φ−.

Proof. We have

φ+ − T s(φ+, aw) = (As
L)−1

[
As

Lφ+ + f s
w(φ+)

]
,

which is nonnegative since φ+ is a super-solution and (As
L)−1 is linear and monotone

increasing. The proof of the other inequality is completely analogous. �

Since we are no longer using normal order cones, our non-empty, convex, closed in-
terval [φ−, φ+]s,p is not necessarily bounded as a subset of W s,p. Therefore, we also need
a priori bounds in the norm on W s,p to ensure the Picard iterates stay inside the intersec-
tion of the interval with the closed ball BM in W s,p of radius M , centered at the origin.
We first establish a lemma to this effect that will be useful for both the non-CMC and
CMC cases.

Lemma 4.7. (Invariance of T on the ball BM ) Let the conditions of Lemma 4.4 hold,
and let aw ∈ W s−2,p. Then, for any s̃ ∈ (3

p
, s] and for some t ∈ (3

p
, s̃) there exists a

closed ball BM ⊂ W s̃,p of radius M = O
(
[1 + ‖aw‖s−2,p]

s̃/(s̃−t)
)
, such that

φ ∈ [φ−, φ+]s̃,p ∩BM ⇒ T s(φ, aw) ∈ BM .

Proof. From Lemma 4.4, there exist t ∈ (3
p
, s̃) and K > 0 such that

‖T s(φ, aw)‖s̃,p 6 K(1 + ‖aw‖s−2,p)‖φ‖t,p, ∀φ ∈ [φ−, φ+]s̃,p.

For any ε > 0, the norm ‖φ‖t,p can be bounded by the interpolation estimate

‖φ‖t,p 6 ε‖φ‖s̃,p + Cε−t/(s̃−t)‖φ‖p,

where C is a constant independent of ε. Since φ is bounded from above by φ+, ‖φ‖p is
bounded uniformly, and now demanding that φ ∈ BM , we get

‖T s(φ, aw)‖s̃,p 6 K[1 + ‖aw‖s−2,p]
(
Mε+ Cε−t/(s̃−t)

)
, (4.17)

with possibly different constant C. Choosing ε such that 2εK[1 + ‖aw‖s−2,p] = 1 and
setting M = 2KC[1 + ‖aw‖s−2,p]ε

−t/(s̃−t), we can ensure that the right hand side of
(4.17) is bounded by M . �

5. BARRIERS FOR THE HAMILTONIAN CONSTRAINT

The results developed in §4.2 for a particular fixed-point map T for analyzing the
Hamiltonian constraint equation and the coupled system rely on the existence of gener-
alized (weak) sub- and super-solutions, or barriers. There, the Hamiltonian constraint
was studied in isolation from the momentum constraint, and these generalized barriers
only needed to satisfy the conditions given at the beginning of §4.2 for a given fixed
function w appearing as a source term in the nonlinearity of the Hamiltonian constraint.
Therefore, these types of barriers are sometimes referred to as local barriers, in that the
coupling to the momentum constraint is ignored. In order to establish existence results
for the coupled system in the non-CMC case, it will be critical that the sub- and super-
solutions satisfy one additional property that now reflects the coupling, giving rise to the
term global barriers. It will be useful now to define this global property precisely.
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Definition 5.1. A sub-solution φ− is called global iff it is a sub-solution of (2.23) for all
vector fields wφ solution of (2.24) with source function φ ∈ [φ−,∞) ∩W s,p. A super-
solution φ+ is called global iff it is a super-solution of (2.23) for all vector fields wφ

solution of (2.24) with source function φ ∈ (0, φ+] ∩W s,p. A pair φ− 6 φ+ of sub- and
super-solutions is called an admissible pair if φ− and φ+ are sub- and super-solutions
of (2.23) for all vector fields wφ of (2.24) with source function φ ∈ [φ−, φ+] ∩W s,p.

It is obvious that if φ− and φ+ are respectively global sub- and super-solutions, then
the pair φ−, φ+ is admissible in the sense above, provided they satisfy the compatibility
condition (4.12).

Below we give a number of (local and global) sub- and super-solution constructions
for closed manifolds; analogous constructions for compact manifolds with boundary are
given in [21]. These constructions are based on generalizing known constant sub- and
super-solution constructions given previously in the literature for closed manifolds. On
one hand, the generalized global sub-solution constructions appearing here and in [21]
do not require the near-CMC condition, inheriting this property from the known sub-
solutions from literature on which they are based. However, on the other hand, all
previously known global super-solutions for the Hamiltonian constraint equation have
required the near-CMC condition.

Here and in [22, 21], one of our primary interests is in developing existence results
for weak (and strong) non-CMC solutions to the coupled system which are free of the
near-CMC assumption. This assumption had appeared in two distinct places in all prior
literature on this problem [26, 1]; the first assumption appears in the construction of a
fixed-point argument based on strict k-contractions, and the second assumption appears
in the construction of global super-solutions. Here and in [22, 21], an alternative fixed-
point framework based on compactness arguments rather than k-contractions is used to
remove the first of these near-CMC assumptions. In this section, we give some new
constructions of global super-solutions that are free of the near-CMC assumption, along
with some compatible sub-solutions. These sub- and super-solution constructions are
needed (without their global property) for the existence result for the Hamiltonian con-
straint (Theorem 3.3), and they are also needed (now with their global property) for the
general fixed-point result for the coupled system (Theorem 3.5), leading to our two main
non-CMC results (Theorems 3.1 and Theorem 3.2). The super-solutions in Lemmata
5.2(b) and 5.4 appear to be the first such near-CMC-free constructions, and provide the
second key piece of the puzzle we need in order to establish non-CMC results through
Theorem 3.5 without the near-CMC condition.

Throughout this section, we will assume that the background metric h belongs toW s,p

with p ∈ (1,∞) and s ∈ (3
p
,∞)∩ (1, 2]. Recall that r = 3p

3+(2−s)p
, so that the continuous

embedding Lr ↪→ W s−2,p holds. Given a symmetric two-index tensor σ ∈ L2r and a
vector field w ∈ W 1,2r, introduce the functions aσ = 1

8
σ2 ∈ Lr and aLw = 1

8
(Lw)2 ∈ Lr.

Note that under these conditions aw belongs to Lr ↪→ W s−2,2, and that if aσ, aLw ∈ L∞

we have the pointwise estimate

a∧w 6 2a∧σ + 2a∧Lw.

Here and in what follows, given any scalar function u ∈ L∞, we use the notation

u∧ := ess supu, u∨ := ess infu.

In some places we will assume that when the vector field w ∈ W 1,2r is given by the
solution of the momentum constraint equation (2.24) (or (4.2)) with the source term
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φ ∈ W s,p,
a∧Lw 6 k(φ) := k1 ‖φ‖12

∞ + k2, (5.1)
with some positive constants k1 and k2. We can verify this assumption e.g. when the
conditions of Corollary 4.2 are satisfied, since from Corollary 4.2 we would get

a∧Lw = ‖Lw‖2
∞ 6 C2

(
‖φ‖6

∞‖bτ‖z + ‖bj‖e−2,q

)2
,

giving the bound (5.1) with the constants

k1 = 2C2‖bτ‖2
z, and k2 = 2C2‖bj‖2

e−2,q. (5.2)

5.1. Constant barriers. Now we will present some global sub- and super-solutions for
the Hamiltonian constraint equation (2.23) which are constant functions. The proofs
essentially follow the arguments in [21] for the case of compact manifolds with boundary.

Lemma 5.2. (Global super-solution) Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p. Assume that the estimate (5.1) holds for the
solution of the momentum constraint equation, and assume that aρ, aσ ∈ L∞ and that
aR is uniformly bounded from below. With the parameter ε > 0 to be chosen later, define
the rational polynomial

qε(χ) = (a∨τ − K1ε)χ
5 + a∨R χ− a∧ρ χ

−3 − K2εχ
−7,

where K1ε := (1 + 1
ε
)k1 and K2ε := (1 + ε)a∧σ + (1 + 1

ε
)k2. We distinguish the following

two cases:
(a) In case k1 < a∨τ , choose ε >

k1

a∨τ − k1

. If qε has a root, let φ+ = φ1(a
∨
τ −

K1ε, a
∨
R, a

∧
ρ , K2ε) be the largest positive root of q, and if q has no positive roots, let φ+ = 1.

Now, the constant φ+ is a global super-solution of the Hamiltonian constraint equation
(2.23).

(b) In case k1 > a∨τ , choose ε > 0. In addition, assume that a∨R > 0 and that both a∧ρ
and K2ε are sufficiently small, such that q has two positive roots. Then, the largest root
φ+ = φ2(a

∨
τ − K1ε, a

∨
R, a

∧
ρ , K2ε) of q is a super-solution of the Hamiltonian constraint

equation (2.23).

Proof. We look for a super-solution among the constant functions. Let χ be any positive
constant. Then we have

f(χ,w) = aτχ
5 + aRχ− aρχ

−3 − awχ
−7 > a∨τ χ

5 + a∨Rχ− a∧ρχ
−3 − a∧wχ

−7.

Given any ε > 0, the inequality 2|σab(Lw)ab| 6 εσ2 + 1
ε
(Lw)2 implies that

8aw = σ2 + (Lw)2 + 2σab(Lw)ab 6 (1 + ε)σ2 + (1 + 1
ε
) (Lw)2,

hence, taking into account (5.1), for any w ∈ W 1,2r that is a solution of the momentum
constraint equation (2.24) with any source term φ ∈ (0, χ], the constant a∧w must fulfill
the inequality

a∧w 6 (1 + ε)a∧σ + (1 + 1
ε
)a∧Lw 6 K1ε‖φ‖12

∞ + K2ε. (5.3)
Thus, for any constant χ > 0 and all φ ∈ (0, χ], it holds that

f(χ,wφ) > a∨τ χ
5 + a∨Rχ− a∧ρχ

−3 −
(
K1ε ‖φ‖12

∞ + K2ε

)
χ−7

> Bεχ
5 + a∨Rχ− a∧ρχ

−3 − K2εχ
−7,

where Bε := a∨τ − K1ε. Introduce the rational polynomial on χ given by

qε(χ) := Bεχ
5 + a∨Rχ− a∧ρχ

−3 − K2εχ
−7. (5.4)



ROUGH SOLUTIONS OF THE EINSTEIN CONSTRAINTS ON CLOSED MANIFOLDS 29

We calculate the first and second derivative of qε as

q′ε(χ) = 5Bεχ
4 + a∨R + 3a∧ρχ

−4 + 7K2εχ
−8,

q′′ε (χ) = 20Bεχ
3 − 12a∧ρχ

−5 − 56K2εχ
−9.

(5.5)

Consider the case (a). In this case, because of the choice ε > k1

a∨τ −k1
, we have Bε > 0,

and so qε(χ) > 0 for sufficiently large χ, and qε is increasing. The function qε has no
positive root only if a∧ρ = K2ε = 0. So if qε has no positive root, qε(χ) > 0 for all χ > 0.
If qε has at least one positive root, denoting by φ1 the largest positive root, q(χ) > 0 for
all χ > φ1. Recalling now that any constant χ satisfies ALχ = 0, we conclude that

ALχ+ f(χ,wφ) > 0 ∀χ > φ1, ∀φ ∈ (0, χ],

implying that φ+ is a global super-solution of the Hamiltonian constraint (2.21).
For the case (b), since Bε < 0 and a∧ρ and K2ε are nonnegative, the first derivative

q′ε(χ) is strictly decreasing for χ > 0, and since q′ε(φ) > 0 for sufficiently small χ > 0
and q′ε(χ) < 0 for sufficiently large χ > 0, the derivative q′ε has a unique positive root,
at which the polynomial qε attains its maximum over (0,∞). This maximum is positive
if both a∧ρ and K2ε are sufficiently small, and hence the polynomial qε has two positive
roots φ1 6 φ2. Similarly to the above we conclude that

ALχ+ f(χ,wφ) > 0 ∀χ ∈ [φ1, φ2], ∀φ ∈ (0, χ],

implying that φ+ is a global super-solution of the Hamiltonian constraint (2.21). �

Case (a) of the above lemma has the condition k1 < a∨τ , which is the near-CMC
condition. This condition seems to be present in all non-CMC results to date. The above
condition also requires that the extrinsic mean curvature τ is nowhere zero. Noting that
there are solutions even for τ ≡ 0 in some cases (cf. [25]), the condition inf τ > 0
appears as a rather strong restriction. We see that case (b) of the above lemma removes
this restriction, in exchange for the smallness conditions on ρ, j, and σ. We also need the
scalar curvature to be strictly positive, which condition is relaxed in the next subsection
to allow any metric in the positive Yamabe class.

In the following lemma, we list some constant sub-solutions. They impose consider-
able restrictions on the allowable data, which is the main reason to consider non-constant
sub-solutions in the next subsection.

Lemma 5.3. (Global sub-solution) Let (M, h) be a 3-dimensional, smooth, closed Rie-
mannian manifold with metric h ∈ W s,p. Assume that aτ ∈ L∞ and that aR is uniformly
bounded from above. We distinguish the following three cases.

(a) If a∧R < 0, then the unique positive root of the polynomial

q(χ) = a∧τ χ
4 + a∧R,

is a global sub-solution of (2.23).
(b) If a∨ρ > 0, then the unique positive root of the polynomial

qρ(χ) = a∧τ χ
8 + max{1, a∧R}χ4 − a∨ρ ,

is a global sub-solution of (2.23).
(c) Let φ+ > 0 be a global super-solution of the Hamiltonian constraint. Let a∨σ >

k(φ+), where k is as in (5.1). Then, with some ε ∈ (k(φ+)/a∨σ , 1), the unique positive
root φ+ of the polynomial

qσ(χ) = a∧τ χ
12 + max{1, a∧R}χ8 − Kε,

where Kε := (1− ε)a∨σ −
(

1
ε
− 1

)
k(φ+), is a global sub-solution of (2.23).
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Proof. For the proof of (a,b), see e.g. [21]. We give a proof of (c) here.
Let χ > 0 be any constant function, and let w ∈ W 1,2r. Then we have

f(χ,w) = aτχ
5 + aRχ− aρχ

−3 − awχ
−7 6 a∧τ χ

5 + a∧Rχ− a∨wχ
−7

6 a∧τ χ
5 + Cχ− a∨wχ

−7,
(5.6)

where we have used that aρ is nonnegative, and introduced the constantC = max{1, a∧R}.
Given any ε > 0, the inequality 2|σab(Lw)ab| 6 εσ2 + 1

ε
(Lw)2 implies that

8aw = σ2 + (Lw)2 + 2σab(Lw)ab > (1− ε)σ2 − (1
ε
− 1) (Lw)2,

hence, taking into account (5.1), for any w ∈ W 1,2r that is a solution of the momentum
constraint equation (2.24) with any source term φ ∈ (0, φ+], the constant a∨w must fulfill
the inequality

a∨w > (1− ε)a∨σ − (1
ε
− 1)a∧Lw > (1− ε)a∨σ − (1

ε
− 1)k(φ+) =: Kε.

We use the above estimate in (5.6) to get, for any w ∈ W 1,2r that is a solution of the
momentum constraint equation (2.24) with any source term φ ∈ (0, φ+]

f(χ,w) 6 a∧τ χ
5 + Cχ− Kεχ

−7.

Because of the choice k(φ+)/a∨σ < ε < 1, we have Kε > 0. So with the unique positive
root χ∗ of

qσ(χ) := a∧τ χ
5 + C χ− Kε χ

−7,

we have qσ(χ) 6 0 for any constant χ ∈ (0, χ∗], establishing the proof. �

5.2. Non-constant barriers. All global super-solutions found to date appear to require
the near-CMC condition; Lemma 5.2(b) avoids the near-CMC condition, but it requires
the scalar curvature to be strictly positive. The following lemma extends this result to
arbitrary metrics in the positive Yamabe class Y+(M).

Lemma 5.4. (Global super-solution h ∈ Y+) Let (M, h) be a 3-dimensional, smooth,
closed Riemannian manifold with metric h ∈ W s,p in Y+(M). Assume there exist con-
tinuous positive functions u,Λ ∈ W s,p that together satisfy:

−∆u+ 1
8
Ru = Λ > 0, u > 0. (5.7)

Let 0 < k3 := u∧/u∨ < ∞, which is a trivially satisfied Harnack-type inequality.
Assume that the estimate (5.1) is satisfied for the solution of the momentum constraint
equation for two positive constants k1 and k2, and assume that aρ, aσ ∈ L∞. If the
constants a∧ρ , a∧σ , and k2 are sufficiently small, then

φ+ = βu, β =

[
Λ∨

2k1k
12
3 (u∧)5

]1/4

> 0, (5.8)

is a positive global super-solution to the Hamiltonian constraint equation.

Proof. Taking φ = βu with a constant β > 0 in (5.7), gives

−∆φ+ aRφ = β(−∆u+ 1
8
Ru) = βΛ. (5.9)

Then for any ϕ ∈ C∞
+ , by using (5.3) with K1 := 2k1 and K2 := 2a∧σ + 2k2, we infer

〈ALφ+ f(φ,w), ϕ〉 = 〈∇φ,∇ϕ〉+ 〈aRφ+ aτφ
5 − aρφ

−3 − awφ
−7, ϕ〉

> 〈βΛ + a∨τ φ
5 − [K1(φ

∧)12 + K2]φ
−7 − a∧ρφ

−3, ϕ〉
> 〈βΛ + [a∨τ − K1k

12
3 ]φ5 − K2φ

−7 − a∧ρφ
−3, ϕ〉

> 〈βG(β, K2, aρ), ϕ〉
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where

G(β, K2, aρ) := Λ∨ − K1k
12
3 β

4(u∧)5 − K2β
−8(u∧)−7 − a∧ρβ

−4(u∧)−3,

and where we have used the fact that φ∧/φ∨ = u∧/u∨ = k3. Therefore, to ensure φ is a
super-solution we must now pick arguments ensuring G(β, K2, aρ) > 0. We first pick β
as in (5.8) giving

1
2
Λ∨ = Λ∨ − K1k

12
3 (u∧)5β4 > 0.

For this fixed β, we then pick K2 and a∨ρ , each sufficiently small, so that
1
2
Λ∨ − K2β

−8(u∧)−7 − a∧ρβ
−4(u∧)−3 > 0.

The result then follows. �

Remark. We now make some remarks about the existence of a pair of positive functions
(u,Λ) which satisfy the hypotheses of Lemma 5.4. Let the background metric hab ∈
W s,p be in the positive Yamabe class. Then in Theorem A.31 in Appendix A.7, for the
sub-critical range 1 6 q < 5 we establish the existence of a positive u ∈ W s,p and a
constant µq > 0 satisfying

−8∆u+Ru = µqu
q.

So the pair (u, 1
8
µqu

q) readily satisfies (5.7). In a sense the simplest construction of
the near-CMC-free global super-solution in Lemma 5.4 arises by taking q = 1; one is
then simply using the first eigenfunction of the conformal Laplacian to build the global
super-solution.

Alternatively, one can consider a solution to the Yamabe problem

−8∆u+Ru = u5, u > 0,

which exists for sufficiently smooth metrics in the positive Yamabe class, cf. [31]. This
approach is taken for simplicity in [22].

In any case, note that the function u > 0 that satisfies (5.7) is the conformal factor
which transforms hab into a metric with scalar curvature Ru = 8Λu−5 > 0.

We remark that without the near-CMC condition, the only potentially strictly positive
term appearing in the nonlinearity of the Hamiltonian constraint is the term involving the
scalar curvatureR. Therefore, global super-solution constructions based on the approach
in Lemma 5.4 are restricted to data in Y+(M). We extend this observation in the next
lemma, which essentially says that in a nonpositive Yamabe class, there is no way to
build a positive global super-solution without the near-CMC condition as long as we use
a global estimate of type (5.1).

Lemma 5.5. (Near-CMC condition and aw bounds) Let (M, h) be a 3-dimensional,
smooth, closed Riemannian manifold with metric h ∈ W s,p in a nonpositive Yamabe
class, and let aτ be continuous. Let φ+ ∈ W s,p with φ+ > 0 be a global super-solution
to the Hamiltonian constraint equation. We assume that any vector field w ∈ W 1,2r that
is a solution of the momentum constraint equation with a source φ 6 φ+ satisfies the
estimate

aw 6 K1‖φ+‖12
∞ + K2, (5.10)

with some positive constants K1 and K2. Moreover, we assume that this estimate is sharp
in the sense that for any x ∈ M there exist an open neighborhood U 3 x and a vector
field w ∈ W 1,2r a solution of the momentum constraint equation with a source φ 6 φ+,
such that

aw = K1‖φ+‖12
∞ + K2 in U. (5.11)

Then, we have K1 6 supM aτ .
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Proof. Since the metric is in a nonpositive Yamabe class, there exists ϕ̃ ∈ W 2−s,p′

+ such
that 〈∇φ+,∇ϕ̃〉 + 〈aRφ+, ϕ̃〉 6 0. The collection of all neighborhoods in (5.11) will
form an open cover of M, and let {Ui} be one of its finite subcovers. Let {µi} be a
partition of unity subordinate to {Ui}. Then, by writing ϕ̃ =

∑
i µiϕ̃, we can expand

the expression 〈∇φ+,∇ϕ̃〉 + 〈aRφ+, ϕ̃〉 into a finite sum, which has at least one non-
positive term. Without loss of generality, let us assume 〈∇φ+,∇ϕ〉 + 〈aRφ+, ϕ〉 6 0
with ϕ = µiϕ̃. With w ∈ W 1,2r being a vector field that satisfies (5.11) with respect to
U := Ui, we have

0 6 〈∇φ+,∇ϕ〉+ 〈aRφ+ + aτφ
5
+ − awφ

−7
+ − aρφ

−3
+ , ϕ〉

6 〈aτφ
5
+ − awφ

−7
+ − aρφ

−3
+ , ϕ〉

= 〈aτφ
5
+ − [K1(φ

∧
+)12 + K2]φ

−7
+ − aρφ

−3
+ , ϕ〉

6 ([aτ − K1(φ
∧
+/φ+)12]φ5

+, ϕ).

Using partitions of unity we can make the support of ϕ arbitrarily small, from which we
conclude that aτ > K1(φ

∧
+/φ+)12 > K1 at some x ∈M. �

All of the subsequent barrier constructions below are more or less known. A number
of the more technically sophisticated construction techniques we employ below were
pioneered by Maxwell in [33]. For completeness, we first construct local super-solutions
and then global super-solutions for the near-CMC case.

Lemma 5.6. (Local super-solution) Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p. Let aτ , aρ, aw ∈ W s−2,p

+ , and let one of the
following conditions hold:

(a) The metric h is in a non-negative Yamabe class, aτ 6= 0, and aρ + aw 6= 0.
(b) The metric h is in the positive Yamabe class, and aρ + aw 6= 0.
(c) The metric h is conformally equivalent to a metric with scalar curvature −aτ 6=

0, thus in particular the metric is in the negative Yamabe class.

Then, there is a positive (local) super-solution φ+ ∈ W s,p of the Hamiltonian constraint
equation (2.23).

Proof. First we prove (a) and (b). Let u ∈ W s,p be a (weak) solution to

−∆u+ 1
8
Ru = λu, u > 0,

with a constant λ > 0, which exists by Theorem A.31 in Appendix A.7, and let v ∈ W s,p

be the solution to

〈u2∇v,∇ϕ〉+ 〈λu2v + aτv, ϕ〉 = 〈aρ + aw, ϕ〉, ∀ϕ ∈ C∞. (5.12)

Since aτ , aρ, aw ∈ W s−2,p
+ with sp > 3, we have v ∈ W s,p ↪→ L∞, and since λu2+aτ 6= 0

and aρ+aw 6= 0, Lemma A.29 (maximum principle) in Appendix A.6 implies that v > 0.
Let us define φ = βuv ∈ W s,p for a constant β > 0. Then for any ϕ ∈ C∞

+ we have

〈ALφ+ f(φ,w), uϕ〉 = 〈∇φ,∇(uϕ)〉+ 〈aτφ
5 + aRφ− aρφ

−3 − awφ
−7, uϕ〉

= β〈u2∇v,∇ϕ〉+ 〈βλu2v + aτuφ
5 − aρuφ

−3 − awuφ
−7, ϕ〉

= 〈aτ [β
5u6v5 − βv], ϕ〉+ 〈aρ[β − β−3u−2v−3], ϕ〉+ 〈aw[β − β−7u−6v−7], ϕ〉,
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where the second line is obtained by

〈ALφ+ aRφ, uϕ〉 = β〈∇(uv),∇(uϕ)〉+ β
8
〈Ruv, uϕ〉

= β〈∇u,∇(uvϕ)〉+ β
8
〈Ru, uvϕ〉+ β〈u∇v, u∇ϕ〉

= β〈λu, uvϕ〉+ β〈u2∇v,∇ϕ〉,
(5.13)

and the third line is from (5.12). Now, choosing β > 0 sufficiently large, so that β4u6v5−
v > 0, 1−β−4u−2v−3 > 0 and 1−β−8u−6v−7 > 0, we ensure that φ is a super-solution.

Now, let us consider (c). Let u > 0 be the conformal factor which transforms h into a
metric with scalar curvature λ = −8aτ , i.e., let u ∈ W s,p be a weak solution to

−∆u+ 1
8
Ru+ aτu

5 = 0, u > 0.

If aρ = aw = 0, the Hamiltonian constraint equation reduces to the above equation
and we can take u as a super-solution (it is even a solution). So we can assume in the
following that aρ + aw 6= 0. Let v ∈ W s,p be the solution to

〈u2∇v,∇ϕ〉+ 〈aτv, ϕ〉 = 〈aρ + aw, ϕ〉, ∀ϕ ∈ C∞.

Defining φ = βuv ∈ W s,p for a constant β > 0, the rest of the proof proceeds superfi-
cially in the same way as the above case. �

Lemma 5.7. (Near-CMC global super-solution) Let (M, h) be a 3-dimensional, smooth,
closed Riemannian manifold with metric h ∈ W s,p. Let aτ , aρ ∈ W s−2,p

+ and aσ ∈ L∞+ ,
and let one of the following conditions hold:

(a) The metric h is in a non-negative Yamabe class, aτ 6= 0, and aρ + aσ 6= 0. Let
u ∈ W s,p and v ∈ W s,p be the solutions to

−∆u+ 1
8
Ru = λu,

−∇(u2∇v) + (λu2 + aτ )v = aρ + aσ.
(5.14)

with a constant λ > 0.
(b) The metric h is conformally equivalent to a metric with scalar curvature −aτ 6=

0, thus in particular the metric is in the negative Yamabe class. Let u ∈ W s,p and
v ∈ W s,p be the solutions to

−∆u+ 1
8
Ru+ aτu

5 = 0,

−∇(u2∇v) + aτv = aρ + aσ.
(5.15)

Assume that the estimate (5.1) holds for the momentum constraint equation, and let k1 <
a∨τ ( min uv

max uv
)12. Then, for any sufficiently large constant β > 0, φ+ = βuv is a global

super-solution of the Hamiltonian constraint equation (2.23).

Proof. We give a proof of (a). The proof of (b) is similar. Proceeding as in the proof of
the preceding lemma, for any ϕ ∈ C∞

+ we have

〈ALφ+ f(φ,w), uϕ〉 = 〈∇φ,∇(uϕ)〉+ 〈aτφ
5 + aRφ− aρφ

−3 − awφ
−7, uϕ〉

= β〈u2∇v,∇ϕ〉+ 〈βλu2v + aτuφ
5 − aρuφ

−3 − awuφ
−7, ϕ〉

> β〈u2∇v,∇ϕ〉+ 〈βλu2v + aτuφ
5 − aρuφ

−3 − 2[aσ + aLw]uφ−7, ϕ〉
= 〈aρ[β − β−3u−2v−3], ϕ〉+ 〈aσ[β − 2β−7u−6v−7], ϕ〉

+ 〈aτ [β
5u6v5 − βv]− 2aLwuφ

−7, ϕ〉.
Then, choosing β sufficiently large, and by using (5.1), with θ = uv we infer

ALφ+ f(φ,w) > [a∨τ (θ∨)5 − 2k1(θ
∧)12(θ∨)−7]β5 − p(β),
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where p(β) = aτ (v
∧/u∨)β + 2k2(θ

∨)−7β−7. Now, if we have k1 < 1
2
a∨τ (θ∨/θ∧)12,

then choosing β large enough, we ensure that φ is a super-solution. If we proceeded
as in the proof of Lemma 5.2, we could remove the factor 1

2
from the condition k1 <

1
2
a∨τ (θ∨/θ∧)12; however, we omit it for clarity. �

We now also give some examples of non-constant global sub-solutions φ− which are
compatible with φ+ above in the sense that 0 < φ− 6 φ+. Such a pair of compatible
sub- and super-solutions are needed to establish existence of solutions to the individual
Hamiltonian constraint (Theorem 3.3), and are also needed again to establish existence
of solutions to the coupled system (Theorems 3.1 and 3.2).

Lemma 5.8. (Global sub-solution h 6∈ Y−, ρ 6≡ 0) Let (M, h) be a 3-dimensional,
smooth, closed Riemannian manifold with metric h ∈ W s,p in a non-negative Yamabe
class. Let aρ, aτ ∈ W s−2,p

+ \{0}. Then, there exists a positive scalar φ− ∈ W s,p such that
for any constant β ∈ (0, 1], βφ− is a global sub-solution of the Hamiltonian constraint
equation.

Proof. Let u ∈ W s,p be a (weak) solution to

−∆u+ 1
8
Ru = λu, u > 0,

with a constant λ > 0, which exists by Theorem A.31 in Appendix A.7, and let v ∈ W s,p

be the solution to

〈u2∇v,∇ϕ〉+ 〈λu2v + aτv, ϕ〉 = 〈aρ, ϕ〉, ∀ϕ ∈ C∞. (5.16)

Since aρ, aτ ∈ W s−2,p
+ with sp > 3, we have v ∈ W s,p ↪→ L∞, and Lemma A.29

(maximum principle) in Appendix A.6 implies that v > 0. Let us define φ = βuv ∈ W s,p

for a constant β > 0. Then for any ϕ ∈ C∞
+ we have

〈ALφ+ f(φ,w), uϕ〉 6 〈ALφ, uϕ〉+ 〈aτφ
5 + aRφ− aρφ

−3, uϕ〉
= β〈u2∇v,∇ϕ〉+ 〈βλu2v + aτu

6(βv)5 − aρu
−2(βv)−3, ϕ〉

= β〈aρ[1− u−2v−3β−4], ϕ〉+ β〈aτ [u
6v5β4 − 1], ϕ〉,

where the second line is obtained by (5.13), and the third line is from (5.16). Now,
choosing β > 0 sufficiently small, so that 1 − u−2v−3β−4 6 0 and (βv)4 − 1 6 0, we
ensure that φ is a sub-solution. �

The following lemma extends Lemma 5.3(a) to all reasonable metrics in the negative
Yamabe class.

Lemma 5.9. (Global sub-solution h ∈ Y−) Let (M, h) be a 3-dimensional, smooth,
closed Riemannian manifold with metric h ∈ W s,p in Y−(M). In addition, let aτ ∈
W s−2,p, and let the metric h be conformally equivalent to a metric with scalar curvature
(−aτ ). Then, there exists a positive scalar function φ− ∈ W s,p such that for any β ∈
(0, 1], βφ− is a global sub-solution of the Hamiltonian constraint equation.

Proof. Let u > 0 be the conformal factor which transforms h into a metric with scalar
curvature λ = −8aτ , i.e., let u ∈ W s−2,p be a weak solution to

−∆u+ 1
8
Ru+ aτu

5 = 0, u > 0.

Taking φ = βu with a constant β > 0, we have

ALφ+ f(φ,w) 6 ALφ+ aτφ
5 + aRφ = −β∆u+ aτ (βu)

5 + β
8
Ru

= βaτu
5(β4 − 1).

By choosing β ∈ (0, 1], we get the sub-solution. �
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The following lemma shows that the additional condition on the metric appearing in
Lemma 5.9 is indeed not restrictive. It is worth noting that this next result can be viewed
as an apparently new non-existence result in the context of the non-CMC constraints,
which is interesting in its own right. This result was first proved in [33] for the case of
p = 2; we just need to reinterpret it here in our setting. It states that for there to be a
(CMC or non-CMC) solution to the Hamiltonian constraint, the background metric hab

must be conformally equivalent to a metric with scalar curvature equal to (−aτ ).

Lemma 5.10. (Non-existence h ∈ Y−) Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p in Y−(M). Let aτ ∈ W s−2,p, and let there
exist a solution to the Hamiltonian constraint equation. Then, the metric h is conformally
equivalent to a metric with scalar curvature (−aτ ).

Proof. It suffices to show that the equation

−∆ψ + 1
8
Rψ + aτψ

5 = 0, (5.17)

has a solution ψ > 0. Since the above equation is just a Hamiltonian constraint equation
with aρ = aw = 0, Theorem 3.3 establishes the proof upon constructing sub- and super-
solutions to (5.17).

Let φ > 0 be a solution to the (general) Hamiltonian constraint equation. Then, since
both aρ and aw are non-negative, we have

−∆φ+ 1
8
Rφ+ aτφ

5 > 0,

which means that φ is a super-solution to (5.17).
Let u ∈ W s,p be a (weak) solution to

−∆u+ 1
8
Ru = −λu, u > 0,

with a constant λ > 0, which exists by Theorem A.31 in Appendix A.7, and with a real
parameter ε, let vε ∈ W s,p be the solution to

〈u2∇vε,∇ϕ〉+ 〈λu2vε, ϕ〉 = 〈λu2 − aτε, ϕ〉, ∀ϕ ∈ C∞.

We have vε ≡ 1 for ε = 0, and we have vε ∈ W s,p ↪→ L∞, so as ε goes to 0, vε tends
to 1 uniformly. Let us fix ε > 0 such that vε > 1

2
. By taking ψ = βuvε with a constant

β > 0, and using (5.13), it holds for any ϕ ∈ C∞
+ that

〈∇ψ,∇(uϕ)〉+〈1
8
Rψ + aτψ

5, uϕ〉 = β〈u2∇vε,∇ϕ〉+ 〈aτu
6(βvε)

5 − βλu2vε, ϕ〉
= β〈aτ (u

6v5
εβ

4 − ε), ϕ〉+ βλ〈u6(1− 2vε), ϕ〉.
Now, by choosing β > 0 small enough, we can ensure that ψ is a sub-solution of (5.17).

�

5.3. A priori L∞ bounds on W 1,2 solutions. We now establish some related a priori
L∞-bounds on any W 1,2-solution to the Hamiltonian constraint equation. Although such
results are standard for semi-linear scalar problems with monotone nonlinearities (for
example, see [29]), the nonlinearity appearing in the Hamiltonian constraint becomes
non-monotone when R becomes negative. Nonetheless, we are able to obtain a priori
L∞-bounds on solutions to the Hamiltonian constraint in all cases including the non-
monotone case. See [21] for an analogue of this result in the case of compact manifolds
with boundary; in that case a more general result is possible.

Lemma 5.11. (Pointwise a priori bounds) Let φ ∈ W 1,2 be any non-constant positive
solution of the Hamiltonian constraint equation (2.23).
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(a) Let a∨τR := ess inf (aτ + aR) > 0, and let a∧ρ and a∧w be finite. Then, φ satisfies
the a priori bound

φ4 6 max

{
1,
a∧ρ + a∧w
a∨τR

}
.

(b) Let a∨τ > 0 and let a∧ρ and a∧w be finite. Then, φ satisfies the a priori bound

φ4 6 max

1,

√
(a∨R)2 + a∨τ (a∧ρ + a∧w)− a∨R

a∨τ

 .

(c) Let a∨ρw := ess inf (aρ +aw) > 0, and let a∧τ be finite. Then, φ satisfies the a priori
bound

φ4 >
a∨ρw

max{a∨ρw, a
∧
τ + a∧R}

.

Proof. We will only prove (a) since the other cases can be proven similarly.
Let χ ∈ W 1,2 be any function with χ > 1. Then for ϕ ∈ C∞

+ we have

〈fw(χ), ϕ〉 > (χ∨)5〈aτ , ϕ〉+ χ∨〈aR, ϕ〉 − (χ∨)−3(aρ, ϕ)− (χ∨)−7(aw, ϕ)

>
(
a∨τR χ

∨ − (χ∨)−3[a∧ρ + a∧w]
)
‖ϕ‖1.

So we conclude that

〈fw(χ), ϕ〉 > 0 ∀χ > φ∧, χ ∈ W 1,2, ∀ϕ ∈ C∞
+ ,

where (φ∧)4 = max{1, a∧ρ +a∧w
a∨

τR
}.

Now, suppose that φ ∈ W 1,2 is a solution of the Hamiltonian constraint equation, such
that φ 66 φ∧. Denoting by (φ−φ∧)+ the positive part of φ−φ∧ (cf. Appendix A.6), then
we have

0 > −〈fw(φ), (φ− φ∧)+〉 = (∇φ,∇(φ− φ∧)+) = (∇(φ− φ∧)+,∇(φ− φ∧)+)

> c‖(φ− φ∧)+ − (φ− φ∧)+‖2
2,

where c > 0, and (φ− φ∧)+ is the integral average of (φ− φ∧)+. This implies that φ is
constant, leading to a contradiction. �

6. PROOF OF THE MAIN RESULTS

It is convenient to prove Theorem 3.2 first, which is the most general of the three;
the proofs of Theorem 3.1 and Theorem 3.3 involve minor modifications of the proof of
Theorem 3.2.

6.1. Proof of Theorem 3.2. Our strategy will be to prove the theorem first for the case
s 6 2, and then to bootstrap to include the higher regularity cases.

Step 1: The choice of function spaces. We have the (reflexive) Banach spaces X =
W s,p and Y = W e,q, where p, q ∈ (3,∞), s = s(p) ∈ (1 + 3

p
, 2], and e = e(p, s, q) ∈

(1, s]∩(1+ 3
q
, s− 3

p
+ 3

q
]. We have the ordered Banach space Z = W s̃,p with the compact

embeddingX = W s,p ↪→ W s̃,p = Z, for s̃ ∈ (3
p
, s). The interval [φ−, φ+]s̃,p is nonempty

(by compatibility of the barriers we will choose below), and by Lemma 3.6 on page 20 it
is also convex with respect to the vector space structure of W s̃,p and closed with respect
to the norm topology of W s̃,p. We then take U = [φ−, φ+]s̃,p ∩ BM for sufficiently large
M (to be determined below), where BM is the closed ball in Z = W s̃,p of radius M
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about the origin, ensuring that U is non-empty, convex, closed, and bounded as a subset
of Z = W s̃,p.

Step 2: Construction of the mapping S. We have bj ∈ W e−2,q, and bτ ∈ Lz with
z = 3q

3+(2−e)q
so that Lz ↪→ W e−2,q. Moreover, since the metric admits no conformal

Killing field, by Lemma 4.1 the momentum constraint equation is uniquely solvable for
any “source” φ ∈ [φ−, φ+]s̃,p. The ranges for the exponents ensure that Lemma 4.3 holds,
so that the momentum constraint solution map

S : [φ−, φ+]s̃,p → W e,q = Y,

is continuous.
Step 3: Construction of the mapping T . Define r = 3p

3+(2−s)p
, so that the continuous

embedding Lr ↪→ W s−2,p holds. Since the pointwise multiplication is bounded on L2r⊗
L2r → Lr, and w ∈ W e,q ↪→ W 1,2r, we have aw ∈ W s−2,p by σ ∈ L2r. The embeddings
W 1,z ↪→ W e−1,q ↪→ L2r also guarantee that aτ = 1

12
τ 2 ∈ W s−2,p. We have the scalar

curvature R ∈ W s−2,p, and these considerations show that the Hamiltonian constraint
equation is well defined with [φ−, φ+]s,p as the space of solutions.

Suppose for the moment that the scalar curvature R of the background metric h is
continuous, and by using the map T s introduced in Lemma 4.4, define the map T by
T (φ,w) = T s(φ, aw), where aw is now considered as an expression depending on w.
Then Lemma 4.4 implies that the map T : [φ−, φ+]s̃,p ×W e,q → W s,p is continuous for
any reasonable shift as, which, by Lemma 4.5, can be chosen so that T is monotone in
the first variable. Combining the monotonicity with Lemma 4.6, we infer that the interval
[φ−, φ+]s̃,p is invariant under T (·, aw) if w ∈ S([φ−, φ+]s̃,p). Since Lz ↪→ W e−2,q, from
Theorem 4.1 we have

‖w‖e,q 6 C ‖bτφ
6 + bj‖e−2,q 6 C ‖φ+‖6

∞‖bτ‖z + C ‖bj‖e−2,q

for any w ∈ S([φ−, φ+]s̃,p). In view of Lemma 4.7, this shows that there exists a closed
ball BM ⊂ W s̃,p such that

φ ∈ [φ−, φ+]s̃,p ∩BM , w ∈ S([φ−, φ+]s̃,p ∩BM) ⇒ T (φ,w) ∈ BM .

Under the conditions in the above displayed formula, from the invariance of the interval
[φ−, φ+]s̃,p, we indeed have T (φ,w) ∈ U = [φ−, φ+]s̃,p ∩BM .

However, the scalar curvature of h may be not continuous, and in general it is not
clear how to introduce a shift so that the resulting operator is monotone. Nevertheless,
we can conformally transform the metric into a metric with continuous scalar curvature,
cf. Theorem A.32, and by using the conformal covariance of the Hamiltonian constraint,
we will be able to construct an appropriate mapping T . Let h̃ = θ4h be a metric with
continuous scalar curvature, where θ ∈ W s,p is the (positive) conformal factor of the
scaling. Let T̃ s be the mapping introduced in Lemma 4.4, corresponding to the Hamil-
tonian constraint equation with the background metric h̃, and the coefficients ãτ = aτ ,
and ãρ = θ−8aρ. With ãw = θ−12aw, this scaled Hamiltonian constraint equation has sub-
and super-solutions θ−1φ− and θ−1φ+, respectively, as long as φ− and φ+ are sub- and
super-solutions respectively of the original Hamiltonian constraint equation, cf. Appen-
dix A.8. We choose the shift in T̃ s so that it is monotone in [θ−1φ−, θ

−1φ+]s̃,p. Then by
the monotonicity and the above mentioned sub- and super-solution property under con-
formal scaling, for w ∈ S([φ−, φ+]s̃,p), T̃ s(·, θ−12aw) is invariant on [θ−1φ−, θ

−1φ+]s̃,p.
Finally, we define

T (φ,w) = θT̃ s(θ−1φ, θ−12aw),
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where, as before, aw is considered as an expression depending on w. From the point-
wise multiplication properties of θ and θ−1, the map T : [φ−, φ+]s̃,p × W e,q → W s,p

is continuous, and from the monotonicity and Lemma 4.7 , T (·,w) is invariant on U =
[φ−, φ+]s̃,p ∩ BM for w ∈ S(U), where M is taken to be sufficiently large. Moreover, if
the fixed point equation

φ = θT̃ s(θ−1φ, θ−12aw),

is satisfied, then θ−1φ is a solution to the scaled Hamiltonian constraint equation with
ãw = θ−12aw, and so by conformal covariance, φ is a solution to the original Hamiltonian
constraint equation, cf. Appendix A.8.

Step 4: Barrier choices and application of the fixed point theorem. At this point,
Theorem 3.5 implies the Main Theorem 3.2, provided that we have an admissible pair
of barriers for the Hamiltonian constraint. The ranges for the exponents ensure through
Corollary 4.2 that we can use the estimate (5.1); see the discussion following the estimate
on page 28. We will separate into the two cases in the theorem, depending on which
Yamabe class we are in:

(a) hab is in Y−(M): We use the global constant super-solution from Lemma 5.2(a)
or the non-constant super-solution from Lemma 5.7 depending on whether ρ and
σ are both in L∞, and the global sub-solution from Lemma 5.9.

(b) hab is in Y0(M) or in Y+: We use the global constant super-solution from
Lemma 5.2(a) or the non-constant super-solution from Lemma 5.7 depending
on whether ρ and σ are both in L∞, and the global sub-solution from Lemma 5.8
or Lemma 5.3(c).

This concludes the proof for the case s 6 2.
Step 5: Bootstrap. Now suppose that s > 2. First of all we need to show that the equa-

tions are well defined in the sense that the involved operators are bounded in appropriate
spaces. All other conditions being obviously satisfied, we will show that aτ ∈ W s−2,p,
and aw ∈ W s−2,p for any w ∈ W e,q. Since τ , σ and Lw belong to W e−1,q, it suffices to
show that the pointwise multiplication is bounded on W e−1,q ⊗W e−1,q → W s−2,p, and
by employing Corollary A.20(b) in Appendix, we are done as long as s− 2 6 e− 1 > 0,
s − 2 − 3

p
< 2(e − 1 − 3

q
), and s − 2 − 3

p
6 e − 1 − 3

q
. After a rearrangement these

conditions read as e > 1, e > s − 1, e > 3
q

+ d
2
, and e > 3

q
+ d − 1, with the shorthand

d = s− 3
p
> 1, the latter inequality by the hypothesis of the theorem. We have d−1 > d

2

for d > 2, and 1 > d
2

for d 6 2, meaning that the condition e > 3
q

+ d
2

is implied by the
hypotheses e > 3

q
+ d − 1 and e > 1 + 3

q
. So we conclude that the constraint equations

are well defined.
Next, we will treat the equations as equations defined with s = e = 2 and with p

and q appropriately chosen. This is possible, since if the quadruple (p, s, q, e) satisfies
the hypotheses of the theorem, then (p̃, s̃ = 2, q̃, ẽ = 2) satisfies the hypotheses too,
provided that 2− 3

p̃
6 s− 3

p
, and 1 < 2− 3

q̃
6 e− 3

q
. Since the latter conditions reflect

the Sobolev embeddings W s,p ↪→ W 2,p̃ and W e,q ↪→ W 2,q̃ ↪→ W 1,∞, the coefficients of
the equations can also be shown to satisfy sufficient conditions for posing the problem
for (p̃, 2, q̃, 2). Finally, we have τ ∈ W e−1,q ↪→ W 1,q̃ = W 1,z since z = q̃ by ẽ = 2 for
this new formulation. Now, by the special case s 6 2 of this theorem that is proven in
the above steps, under the remaining hypotheses including the conditions on the metric
and the near-CMC condition, we have φ ∈ W 2,p̃ with φ > 0 and w ∈ W 2,q̃ solution to
the coupled system.
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To complete the proof we only need to show that these solutions indeed satisfy φ ∈
W s,p and w ∈ W e,q. Suppose that φ ∈ W s1,p1 and w ∈ W e1,q1 , with 1 < s1− 3

p1
6 s− 3

p
,

1 < e1 − 3
q1

6 e − 3
q
, max{2, s − 2} 6 s1 6 s, and max{2, e − 2} 6 e1 6 min{e, s}.

Then we have bτφ
6 + bj ∈ W e−2,q, and so Corollary A.26 from Appendix A.5 implies

that w ∈ W e,q. This implies that aw ∈ W s−2,p, and by employing Corollary A.26 once
again, we get φ ∈ W s,p. The proof is completed by induction. �

6.2. Proof of Theorem 3.1. The proof is identical to the proof of Theorem 3.2, except
for the particular barriers used. In the proof of Theorem 3.2, the near-CMC condition is
used to construct global barriers satisfying

0 < φ− 6 φ+ <∞,

for all three Yamabe classes, and then the supporting results for the operators S and T
established in §4.1 and §4.2 are used to reduce the proof to invoking Theorem 3.5. The
construction of φ+ is in fact the only place in the proof of Theorem 3.2 that requires the
near-CMC condition. Here, the proof is identical, except that the additional conditions
made on the background metric hab (that it be in Y+(M)), and on the data (the smallness
conditions on σ, ρ, and j) allow us to make use of the alternative construction of a global
super-solution given in Lemma 5.4, together with compatible global sub-solution given
in Lemma 5.8, properly scaled for compatibility with the super-solution. Theorem 3.1
now follows from Theorem 3.5, without the use of near-CMC conditions. �

6.3. Proof of Theorem 3.3. The CMC result in this theorem can be proved using the
same analysis framework used for the proofs of the two non-CMC results in Theorem 3.1
and Theorem 3.2 above. Therefore, the proof follows the same general outline of the
proof of Theorem 3.2, with slightly different spaces and supporting results. The main
difference is that we can avoid having to construct “global” barriers and getting uniform
bounds on the solution to the momentum constraint, since it is solved only once a priori
and then is input as data into the nonlinearity of the Hamiltonian constraint.

The case (d) follows from the Yamabe classification, cf. Appendix A.7.
Since otherwise we can use the conformal covariance of the Hamiltonian constraint

as in Section 6.1, for simplicity, assume that the scalar curvature of the background
metric is continuous. Also assume that s 6 2, and let us look at the hypotheses of
Theorem 3.5. We have the (reflexive) Banach spaces X = W s,p and Y = W 1,2r, where
p ∈ (3

2
,∞), s = s(p) ∈ (3

p
,∞) ∩ [1, 2], and r = r(s, p) = 3p

3+(2−s)p
. On the diagram

in Figure 2, for s 6 2 the space W 1,2r corresponds to the lower right corner of the
shaded parallelogram, and so W 1,2r contains all the spaces W e,q which are represented
by the points in the shaded parallelogram. In fact, W 1,2r is outside of this parallelogram,
because of the strict inequality relating e and q in order to have the boundedness of
the pointwise multiplication on W e−1,q⊗W e−1,q → W s−2,p by using Corollary A.20(b).
However, the conditions of Corollary A.20(b) are not necessary conditions when some of
the smoothness indices are integers, for example, in our case the pointwise multiplication
is bounded on L2r ⊗ L2r → Lr, even though these spaces do not satisfy the conditions
of the corollary. As a consequence, as we have seen e.g. in Section 2.4, the constraint
equations are well defined for these spaces.

We have the ordered Banach space Z = W s̃,p with the compact embedding X =
W s,p ↪→ W s̃,p = Z, for s̃ ∈ (3

p
, s). The interval [φ−, φ+]s̃,p is nonempty (by compatibil-

ity of the barriers we will choose below), and by Lemma 3.6 on page 20 it is also convex
with respect to the vector space structure of W s̃,p and closed with respect to the norm
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topology of W s̃,p. We then take U = [φ−, φ+]s̃,p∩BM for sufficiently large M (to be de-
termined below), where BM is the closed ball in Z = W s̃,p of radius M about the origin,
ensuring that U is non-empty, convex, closed, and bounded as a subset of Z = W s̃,p.

We take as T the shifted Picard mapping T s having as its fixed-point a solution to the
Hamiltonian constraint, and we take S(φ) = w = −A−1

IL bj ∈ W 1,2r which is independent
of φ, since the momentum equation decouples from the Hamiltonian constraint in this
case. The map S, which is constant as a function of φ due to the CMC de-coupling, is
trivially continuous as a map S : U → W 1,2r = Y . We now consider properties we have
for T . By Lemma 4.4, T : U×R(S) → W s,p = X is a continuous map. By Lemma 4.5,
T is invariant on the closed interval [φ−, φ+]s̃,p, and by Lemma 4.7, T is invariant on
U = [φ−, φ+]s̃,p ∩ BM . To summarize, T is invariant on the non-empty, closed, convex,
bounded set U .

Finally, Theorem 3.5 implies the Main Theorem 3.3, as long as we have an admissible
pair of barriers for the Hamiltonian constraint. That is when we need to separate into the
three remaining cases in the theorem, depending on which Yamabe class we are in:

(a) hab is in Y−(M); τ 6= 0: We take the super-solution from Lemma 5.6(c), and we
take the sub-solution from Lemma 5.9. These lemmata require that the metric hab

is conformally equivalent to a metric with scalar curvature (−aτ ), and we shall
verify this condition. By conformal invariance, it suffices to verify the condition
for metrics with continuous and negative scalar curvature, meaning that we have
to solve the equation (5.17) with R < 0 continuous and aτ > 0 constant. Indeed,
this equation has a positive solution ψ ∈ W s,p as the constants ψ− = (min |R|

8aτ
)1/4

and ψ+ = (max |R|
8aτ

)1/4 are respectively sub- and super-solutions of (5.17).
(b) hab is inY+(M); ρ 6= 0 or σ 6= 0: We take the super-solution from Lemma 5.6(b),

and we take the sub-solution from Lemma 5.8. For the case ρ = 0 and σ 6= 0, a
local sub-solution can easily be constructed following the approach in the proof
of Lemma 5.8.

(c) hab is in Y0(M); τ 6= 0; ρ 6= 0 or σ 6= 0: We take the super-solution from
Lemma 5.6(a), and we take the sub-solution from Lemma 5.8. The case ρ = 0
and σ 6= 0 is treated as above.

To complete the proof one can bootstrap as in Section 6.1. �

7. SUMMARY

We began in §2 by summarizing the conformal decomposition of Einstein’s constraint
equations introduced by Lichnerowicz and York, on a closed manifold. After this setting
up of the notation, we gave an overview of our main results in §3, represented by three
new weak solution existence results for the Einstein constraint equations in the far-from-
CMC, near-CMC, and CMC cases. In §4 we then developed the necessary results we
need for the individual constraint equations in order to analyze the coupled system. In
particular, in §4.1, we first developed some basic technical results for the momentum
constraint operator under weak assumptions on the problem data. We also established
the properties we need for the momentum constraint solution mapping S appearing in
the analysis of the coupled system. In §4.2, we assumed the existence of barriers φ−
and φ+ (weak sub- and super-solutions) to the Hamiltonian constraint equation, forming
a nonempty positive bounded interval, and then established the properties we need for
the Hamiltonian constraint Picard mapping T appearing in the analysis of the coupled
system. We then derived several weak global sub- and super-solutions in §5, based both
on constants and on more complex non-constant constructions. While the sub-solutions
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are similar to those found previously in the literature, some of the super-solutions were
new. In particular, we gave two super-solution constructions that do not require the near-
CMC condition. The first was constant, and requires that the scalar curvature be strictly
globally positive. The second was based on a scaled solution to a Yamabe-type problem,
and is valid for any background metric in the positive Yamabe class.

In §6, we proved the main results. In particular, using topological fixed-point argu-
ments and global barrier constructions, we combined the results for the individual con-
straints and the global barriers to establish existence of coupled non-CMC weak solutions
with (positive) conformal factor φ ∈ W s,p where p ∈ (1,∞) and s(p) ∈ (1 + 3

p
,∞). In

the CMC case, the regularity can be reduced to p ∈ (1,∞) and s(p) ∈ (3
p
,∞) ∩ [1,∞).

In the case of s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10],
and in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but with
a different proof; our CMC proof goes through the same analysis framework that we use
to obtain the non-CMC results (Theorems 3.4 and 3.5). We also assembled a number
of new supporting technical results in the body of the paper and in several appendices,
including: topological fixed-point arguments designed for the Einstein constraints; con-
struction and properties of general Sobolev classes W s,p and elliptic operators on closed
manifolds with weak metrics; the development of a very weak solution theory for the
momentum constraint; a priori L∞-estimates for weak W 1,2-solutions to the Hamilton-
ian constraint; Yamabe classification of non-smooth metrics in general Sobolev classes
W s,p; and a discussion and analysis of conformal covariance and the connection between
conformal rescaling and the near-CMC condition.

An important feature of the results we presented here is the absence of the near-CMC
assumption in the case of the rescaled background metric in the positive Yamabe class,
as long as the freely specifiable part of the data given by the matter fields (if present) and
the traceless-transverse part of the rescaled extrinsic curvature are taken to be sufficiently
small. In this case, the mean extrinsic curvature can be taken to be an arbitrary smooth
function without restrictions on the size of its spatial derivatives, so that it can be arbitrar-
ily far from constant. Under these conditions, we have the first existence result for non-
CMC solutions without the near-CMC condition. The two advances in the analysis of the
Einstein constraint equations make these results possible were: A topological fixed-point
theorem based on compactness arguments that is free of the near-CMC condition (The-
orems 3.4 and 3.5 and in [21]), and a new construction of global super-solutions for the
Hamiltonian constraint that is similarly free of the near-CMC condition (Lemma 5.2 and
Lemma 5.4). We note that the near-CMC-free constructions based on scaled solutions to
a Yamabe-like problem also work for compact manifolds with boundary and other cases;
see e.g. [21].

Finally, we point out that our results here and in [21, 22] can be viewed as reducing the
remaining open questions of existence of non-CMC (weak and strong) solutions without
near-CMC conditions to two more basic and clearly stated open problems: (1) Existence
of near-CMC-free global super-solutions for the Hamiltonian constraint equation when
the background metric is in the non-positive Yamabe classes and for large data; and (2)
existence of near-CMC-free global sub-solutions for the Hamiltonian constraint equation
when the background metric is in the positive Yamabe class in vacuum (without matter).
However, an important new development, which occurred a few months after the first
draft of this article was made available, is that Maxwell has now shown [36] how a related
topological fixed-point argument can be constructed so that a global sub-solution is not
needed, as long as the global super-solution is available; this allows for the extension of
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the far-CMC results in this article to the vacuum case without having to solve problem
(2).
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APPENDIX A. SOME KEY TECHNICAL TOOLS AND SOME SUPPORTING RESULTS

A.1. Topological fixed-point theorems. In this appendix, we give a brief review of
some standard topological fixed-point theorems in Banach spaces that provide the frame-
work for our analysis of the coupled constraint equations. The analysis framework that
was developed earlier in [26] for analyzing the coupled constraints was based on k-
contractive mappings, and as a result required the near-CMC condition in order to es-
tablish k-contractivity. All subsequent non-CMC results (see e.g. [1]) are based on the
framework from [26], and as a result remain limited to the near-CMC case. Our interest
here is on more general topological fixed-point arguments that will allow us to avoid the
near-CMC condition.

Brouwer, Schauder, and Leray-Schauder Fixed-Point Theorems. To establish the
main abstract results we will need, we first give a brief overview of some standard results
on topological fixed-point arguments involving compactness.

Theorem A.1. (Brouwer Theorem) Let U ⊂ Rn be a non-empty, convex, compact
subset, with n > 1. If T : U → U is a continuous mapping, then there exists a fixed-
point u ∈ U such that u = T (u).

Proof. See Proposition 2.6 in [54]; a short proof can be based on homotopy-invariance
of topological degree. �

Theorem A.2. (Schauder Theorem) Let X be a Banach space, and let U ⊂ X be a
non-empty, convex, compact subset. If T : U → U is a continuous operator, then there
exists a fixed-point u ∈ U such that u = T (u).

Proof. This is a direct extension of the Brouwer Fixed-Point Theorem from Rn to X;
see Corollary 2.13 in [54]. The short proof involves a simple finite-dimensional approxi-
mation algorithm and a limiting argument, extending the Brouwer Fixed-Point Theorem
(itself generally having a more complicated proof) from Rn to X . �

Theorem A.3. (Schauder Theorem B) Let X be a Banach space, and let U ⊂ X be a
non-empty, convex, closed, bounded subset. If T : U → U is a compact operator, then
there exists a fixed-point u ∈ U such that u = T (u).

Proof. See Theorem 2.A in [54]; the proof is a simple consequence of Theorem A.2
above. �
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A.2. Ordered Banach spaces. These notes follow the main ideas and definitions given
Chapter 7.1, page 275, in [54], while some examples were taken from [2] and [16]. Let
X be a Banach space, R+ be the non-negative real numbers. A subset C ⊂ X is a cone
iff given any x ∈ C and a ∈ R+ the element ax ∈ C. A subset X+ ⊂ X is an order
cone iff the following properties hold:

(i) The set X+ is non-empty, closed, and X+ 6= {0};
(ii) Given any a, b ∈ R+ and x, x ∈ X+ then ax+ bx ∈ X+;

(iii) If x ∈ X+ and −x ∈ X+, then x = 0.
The second property above says that every order cone is in fact a cone, and that the set
X+ is convex. The space X = R2 is a convenient Banach space to picture non-trivial
examples of cones and order cones, as can be seen in Fig. 3. A pair X , X+ is called
an ordered Banach space iff X is a Banach space and X+ ⊂ X is an order cone. The
reason for this name is that the order cone X+ defines several relations on elements in
X , called order relations, as follows:

u > v iff u− v ∈ X+,

u� v iff u− v ∈ int(X+),

u > v iff u > v and u 6= v,

u � v iff u > v is false;

finally it is also used the notation u 6 v, u < v, and u � v to mean v > u, v > u,
v � u, respectively. A simple example of an ordered Banach space is R with the usual
order. Another example can be constructed when this order on R is transported into
C0(M), the set of scalar-valued functions on a set M ⊂ Rn, with n > 1. An order on
C0(M) is the following: the functions u, v ∈ C0(M) satisfy u > v iff u(x) > v(x) for
all x ∈ M. The following Lemmas summarize the main properties of order relations in
Banach spaces.

Lemma A.4. Let X , X+ be an ordered Banach space. Then, for all elements u, v,
w ∈ X , hold: (i) u > u; (ii) If u > v and v > u, then u = v; (iii) If u > v and v > w,
then u > w.

Proof. The property that u − u = 0 ∈ X+ implies that u > u. If u > v and v > u then
u− v ∈ X+ and −(u− v) ∈ X+, therefore u− v = 0. Finally, if u > v and v > w, then
u− v ∈ X+ and v−w ∈ X+, which means that u−w = (u− v) + (v−w) ∈ X+. �

Furthermore, the order relation is compatible with the vector space structure and with
the limits of sequences.

Lemma A.5. Let X , X+ be an ordered Banach space. Then, for all u, û, v, v̂, w ∈ X ,
and a, b ∈ R, hold

(i) If u > v and a > b > 0, then au > bv;
(ii) If u > v and û > v̂, then u+ û > v + v̂;

(iii) If un > vn for all n ∈ N, then limn→∞ un > limn→∞ vn.

Proof. The first two properties are straightforward to prove, and we do not do it here.
The third property holds because the order cone is a closed set. Indeed, un > vn means
that un−vn ∈ X+ for all n ∈ N, and then limn→∞(un−vn) ∈ X+ becauseX+ is closed,
then Property (iii) follows. �

The remaining order relations have some other interesting properties.

Lemma A.6. Let X , X+ be an ordered Banach space. Then, for all u, v, w ∈ X , and
a ∈ R, hold: (i) If u � v and v � w, then u � w; (ii) If u � v and v > w, then
u� w; (iii) If u > v and v � w, then u� w; (iv) If u� v and a > 0, then au� av.



44 M. HOLST, G. NAGY, AND G. TSOGTGEREL

The Proof of Lemma A.6 is similar to the previous Lemma, and is not reproduced
here. Given an ordered Banach space X , X+, and two elements u > v, introduce the
intervals

[v, u] := {w ∈ X : v 6 w 6 u}, (v, u) := {w ∈ X : v � w � u}.
Analogously, introduce the intervals [v, u) and (v, u]. See Fig. 3 for an example in X =
R2. Useful order cones for solving PDE are those that define an order structure in the

[v,u]

R2

R2+

u

v

FIGURE 3. The shaded regions in the first picture represents an order
cone, while the second picture represents a cone that is not an order cone.
The shaded region between u and v in the third picture represents the
closed interval [v, u], constructed with the order cone R2

+, which is also
represented by a shaded region.

Banach space which is related with the norm and the notion of boundedness. These type
of order cones are called normal. More precisely, an order cone X+ in a Banach space
X is called normal order cone iff there exists 0 < a ∈ R such that for all u, v ∈ X with
0 6 v 6 u holds ‖v‖ 6 a ‖u‖.

Lemma A.7. If X , X+ is an ordered Banach space with normal order cone X+, then
every closed interval in X is bounded.

Proof. Let w ∈ [v, u], then v 6 w 6 u, and so 0 6 w − v 6 u − v. Since the cone X+

is normal, this implies that there exists a > 0 such that ‖w − v‖ 6 a ‖u− v‖. Then, the
inequalities ‖w‖ 6 ‖w − v‖ + ‖v‖ 6 a ‖u − v‖ + ‖v‖, which hold for all w ∈ [v, u],
establish the Lemma. �

Not every order cone is normal. For example, consider the Sobolev spaces W k,p of
scalar-valued functions on an n-dimensional, closed manifoldM (or a compact manifold
with Lipschitz continuous boundary), where k is a non-negative integer, and p > 1 is a
real number. An order cone in W k,p is defined translating the order on the real numbers,
almost everywhere in M, that is,

W k,p
+ := {u ∈ W k,p : u > 0 a.e. in M}.

In the case k = 0, that is, we have W 0,p = Lp, the order cone above is a normal cone
[2, 54]. However, in the case k > 1 the cone above cannot be normal, since on the one
hand, the cone definition involves information only of the values of u(x) and not of its
derivatives; on the other hand, the norm in W k,p contains information of both the values
of u(x) and its derivatives. In the case of a compact manifold with boundary, since there
are no boundary conditions on ∂M in the definition of W k,p, there is no way to relate
the values of a function in M with the values of its derivatives. (In other words, there is
no Poincaré inequality for elements in W k,p, with k > 1.)

An order cone X+ ⊂ X is generating iff Span(X+) = X . An order cone X+ ⊂ X
is called total iff Span(X+) is dense in X . Total order cones are important because the
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order structure associated with them can be translated from the space X into its dual
space X∗.

Lemma A.8. Let X , X+ be an ordered Banach space. If X+ is a total order cone, then
an order cone in X∗ is given by the set X∗

+ ⊂ X∗ defined as

X∗
+ := {u∗ ∈ X∗ : u∗(v) > 0 ∀ v ∈ X+}.

Proof. We check the three properties in the definition of the order cone. The first property
is satisfied becauseX+ is an order cone, so there exists v 6= 0 inX+, and then there exists
u∗ 6= 0 in X∗ such that u∗(v) = 1 > 0, so X∗

+ is non-empty. Trivially, 0 ∈ X∗
+. Finally,

X∗
+ is closed because the order relation > for real numbers is used in its definition. The

second property of an order cone is satisfied, because given any u∗, v∗ ∈ X∗
+ and any

non-negative a, b ∈ R, then for all u ∈ X+ holds

(au∗ + bv∗)(u) = au∗(u) + bv∗(u) > 0

since each term is non-negative. This implies that (au∗ + bv∗) ∈ X∗
+. The third property

is satisfied because the order cone X+ is total. Suppose that the element u∗ ∈ X∗
+ and

−u∗ ∈ X∗
+, then for all u ∈ X+ holds that u∗(u) > 0 and −u∗(u) > 0, which implies

that u∗(u) = 0 for all u ∈ X+. Therefore, u∗ ∈ X◦
+ ⊂ X∗, where the super-script

◦ in X◦
+ means the Banach annihilator of the set X+, which is a subset of the space

X∗. Therefore, we conclude that u∗ ∈
[
Span(X+)

]◦. Since the order cone is total,
Span(X+) = X , that implies

[
Span(X+)

]◦
= {0}, so u∗ = 0. This establishes the

Lemma. �

An order cone X+ in a Banach space X is called a solid cone iff X+ has non-empty
interior. The following result asserts that solid order are generating. We remark that the
converse is not true. In the examples below we present function spaces frequently used
in solving PDE with order cones having empty interior which are indeed generating.

Lemma A.9. Let X , X+ be an order Banach space. If X+ is a solid cone, then X+ is
generating.

Proof. The cone X+ has a non-empty interior, so there exists x0 ∈ int(X+) and x0 6= 0.
This means that given any x ∈ X there exists 0 < a ∈ R small enough such that both
x+ := x0 + ax and x− := x0− ax belong to int(X+). But then, x = (x+− x−)/(2a), so
x ∈ Span(X+). This establishes the Lemma. �

Here is a list of examples of several order cones used in function spaces. All these
examples use order cones obtained from the usual order in R. In particular, they re-
fer to scalar-valued functions on an n- dimensional, closed manifold M (or a compact
manifold with Lipschitz boundary).

• Introduce on Ck the cone Ck
+ := {u ∈ Ck : u(x) > 0 ∀x ∈ M}. This is

an order cone for all non-negative integer k. The cone is a normal cone in the
particular case k = 0. The cone is solid for all k > 0, therefore it is a generating
cone.

• Introduce on L∞ the cone L∞+ := {u ∈ L∞ : u > 0 a.e. in M}. This is a
normal, order cone. It is a solid cone, therefore is generating.

• Introduce on W k,∞ the cone W k,∞
+ := {u ∈ W k,∞ : u > 0 a.e. in M}. This

is an order cone. It is not normal for k > 1. The cone is solid, therefore it is
generating.
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• Introduce on Lp the cone Lp
+ := {u ∈ Lp : u > 0 a.e. in M}. This is a normal,

order cone every real numbers p > 1. The cone is not solid, however it is a
generating cone.

• Introduce on W k,p the cone W k,p
+ := {u ∈ W k,p : u > 0 a.e. in M}. This is

an order cone every real numbers p > 1. The cone is not normal for k > 1. The
cone is not solid for kp 6 n, and it is solid for kp > n. In both cases, the cone is
generating.

A key concept that becomes possible in ordered Banach spaces is that of an operator
satisfying a maximum principle. We have not seen in the literature an approach to maxi-
mum principles on ordered Banach spaces in the generality we now present. Let X , X+

and Y , Y+ be ordered Banach spaces. An operator A : DA ⊂ X → Y satisfies the maxi-
mum principle iff for every u, v ∈ DA such that Au−Av ∈ Y+ holds that u− v ∈ X+.
In the particular case that the operator A is linear, then it satisfies the maximum principle
iff for all u ∈ X such that Au ∈ Y+ holds that u ∈ X+. The main example is the Laplace
operator acting on scalar-valued functions defined on different domains. It is shown later
on in this Appendix that the inverse of an operator that satisfies the maximum principle
is monotone increasing. The following result gives a simple sufficient condition for an
operator to satisfy the maximum principle. This result is useful on weak formulations of
PDE.

Lemma A.10. Let X , X+ be an ordered Banach space, and A : X → X∗ be a linear
and coercive map. Assume that X+ is a generating order cone, and that for all u ∈ X
such that Au ∈ X∗

+ there exists a decomposition u = u+ − u− with u+, u− ∈ X+ that
also satisfies Au+(u−) = 0. Then, the operator A satisfies the maximum principle.

Proof. Since the order cone X+ is generating, the space X∗ is also an ordered Banach
space. Denote its order cone byX∗

+. The assumption that the order coneX+ is generating
also implies that for any element u ∈ X there exists a decomposition u = u+ − u− with
u+, u− ∈ X+. By hypothesis, there exists at least one decomposition with the extra
property that Au+(u−) = 0. Now, by definition of the order in the space X∗ we have
that

Au ∈ X∗
+ ⇔ Au(u) > 0 ∀u ∈ X+.

Pick as test function u = u−. Then,

0 6 Au(u−) = A(u+ − u−)(u−) = Au+(u−)− Au−(u−) = −Au−(u−),

where the last equality comes from the condition Au+(u−) = 0. Therefore, we have

Au−(u−) 6 0 ⇒ u− = 0,

because A is coercive. So we showed that u = u+ ∈ X+. This establish the Lemma. �

An example is the weak form of the shifted Laplace-Beltrami operator ∆+s on scalar
functions on a closed manifold M, where s > 0. Consider the case X = W 1,2, with
Y = X∗ = W−1,2, and X+ = W 1,2

+ , while Y+ = W−1,2
+ . The Laplace operator in this

case is given by A : X → X∗ with action Au(v) := (∇u,∇v). It is not difficult to
check that this operator satisfies the hypothesis in Lemma A.10. Therefore, this operator
satisfies the maximum principle, that is, Au ∈ W−1,2

+ implies u ∈ W 1,2
+ , that is, u > 0

a.e. in the manifold M.
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A.3. Monotone increasing maps. LetX ,X+ and Y , Y+ be two ordered Banach spaces.
An operator F : X → Y is monotone increasing iff for all x, x ∈ X such that x− x ∈
X+ holds that F (x)−F (x) ∈ Y+. An operator F : X → Y is monotone decreasing iff
for all x, x ∈ X such that x−x ∈ X+ holds that−

[
F (x)−F (x)

]
∈ Y+. The main result

for these types of maps is the following; it can be found as Theorem 7.A in [54], page
283, and Corollary 7.18 on page 284. We reproduce it here for completeness, without
the proof.

Theorem A.11. (Fixed point for increasing operators) Let X be an ordered Banach
space, with a normal order cone X+. Let T : [x−, x+] ⊂ X → X be a monotone
increasing, compact map. If −

[
x− − T (x−)

]
∈ X+ and x+ − T (x+) ∈ X+, then the

iterations

xn+1 := T (xn), x0 = x−,

x̂n+1 := T (x̂n), x̂0 = x+,

converge to x and x̂ ∈ [x−, x+], respectively, and the following estimate holds,

x− 6 xn 6 x 6 x̂ 6 x̂n 6 x+, ∀n = N. (A.1)

We are interested in the following class of nonlinear problems: Find an element x ∈ X
which solves the equation

Ax+ F (x) = 0, (A.2)
where the principal part involves an invertible linear operator A : X → Y satisfying the
maximum principle, and the non-principal part involves a nonlinear operator F : X → Y
which has monotonicity properties. We now establish some basic results for this class of
problems. The first two results relate linear, invertible operators that satisfy the maximum
principle with monotone increasing (decreasing) operators.

Lemma A.12. Let X , X+ and Y , Y+ be two ordered Banach spaces. Let A : X → Y be
a linear, invertible operator satisfying the maximum principle. Then, the inverse operator
A−1 : Y → X is monotone increasing.

Proof. Let y, y ∈ Y be such that y − y ∈ Y+. Then,

A
(
A−1(y − y)

)
∈ Y+ ⇒ A−1(y − y) ∈ X+ ⇔ A−1y − A−1y ∈ X+.

This establishes that the operator A−1 is monotone increasing. �

Lemma A.13. Let X , X+ and Y , Y+ be two ordered Banach spaces. Let A : X → Y
be a linear, invertible operator satisfying the maximum principle. Let F : X → Y be
a monotone decreasing (increasing) operator. Then, the operator T : X → X given by
T := −A−1F is monotone increasing (decreasing).

Proof. Assume first that the operator F is monotone decreasing. So, given any x, x ∈ X
such that x− x ∈ X+, the following inequalities hold,

x− x ∈ X+ ⇒ −
[
F (x)− F (x)

]
∈ Y+,

⇔ A
(
−A−1

[
F (x)− F (x)

])
∈ Y+,

⇒ −A−1
[
F (x)− F (x)

]
∈ X+,

⇔ −
[
A−1F (x)− A−1F (x)

]
∈ X+,

⇔ T (x)− T (x) ∈ X+,

which establishes that the operator T is monotone increasing. In the case that the operator
F is monotone increasing, then the first line in the proof above changes into x−x ∈ X+
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implies that F (x)−F (x) ∈ Y+, and then all the remaining inequalities in the proof above
are reverted. This establishes the Lemma. �

The next result translates the inequalities that satisfy sub- and super-solutions to the
equation Ax+ F (x) = 0, into inequalities for the operator T = −A−1F .

Lemma A.14. Assume the hypothesis in Lemma A.13.
If there exists an element x+ ∈ X such that Ax+ + F (x+) ∈ Y+, then this element

satisfies that x+ − T (x+) ∈ X+.
If there exists an element x− ∈ X such that−

[
Ax−+F (x−)

]
∈ Y+, then this element

satisfies that −
[
x− − T (x−)

]
∈ X+.

Proof. The first statement in the Lemma can be shown as follows,

Ax+ + F (x+) ∈ Y+ ⇔ A
(
x+ + A−1F (x+)

)
∈ Y+

⇒ x+ + A−1F (x+) ∈ X+,

which then establishes that x+− T (x+) ∈ X+. In a similar way, the second statement in
the Lemma can be shown as follows,

−
[
Ax− + F (x−)

]
∈ Y+ ⇔ A

(
−x− − A−1F (x−)

)
∈ Y+

⇒ −x− − A−1F (x−) ∈ X+,

which then establishes that −
[
x− − T (x−)

]
∈ X+. This establishes the Lemma. �

For nonlinear problems of the form (A.2), one can use Theorem A.11 for monotone
nonlinearities to conclude the following.

Corollary A.15. (Semi-linear equations with sub-/super-solutions) LetX , X+ and Y ,
Y+ be two ordered Banach spaces whereX+ is a normal order cone. LetA : X → Y be a
linear, invertible operator satisfying the maximum principle. Let x+, x− ∈ X be elements
such that (x+ − x−) ∈ X+, and then assume that the operator F : [x−, x+] ⊂ X → Y
is monotone decreasing and compact. If the elements x− and x+ satisfy the relations

−
[
Ax− + F (x−)

]
∈ Y+, Ax+ + F (x+) ∈ Y+, (A.3)

then there exists a solution x ∈ [x−, x+] ⊂ X of the equation Ax+ F (x) = 0.

Proof. The operator A is invertible, then rewrite the equation Ax+ F (x) = 0 as a fixed-
point equation,

x = −A−1F (x) =: T (x). (A.4)
By Lemma A.13, we know that the map T : X → X is monotone increasing. More-
over, this operator T it is compact, since is the composition of the continuous map-
ping −A−1 and the compact map F . The elements x− and x+ satisfy Eq. (A.3), there-
fore, by Lemma A.14, they are also sub- and super-solutions for the fixed-point equa-
tion involving the map T . It follows from Theorem A.11 that there exists an element
x ∈ X solution to the fixed-point equation (A.4), and this solution satisfies the bounds
x− 6 x 6 x+. �

A.4. Sobolev spaces on closed manifolds. In this appendix we will recall some proper-
ties of Sobolev spaces of sections of vector bundles over closed manifolds. The following
definition makes precise what we mean by fractional order Sobolev spaces. We expect
that without much difficulty all the results in this paper can be modified to reflect other
smoothness classes such as Bessel potential spaces or general Besov spaces.
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Definition A.16. For s > 0 and 1 6 p 6 ∞, we denote by W s,p(Rn) the space of all
distributions u defined in Rn, such that

(a) when s = m is an integer,

‖u‖m,p =
∑
|ν|6m

‖∂νu‖p <∞,

where ‖ · ‖p is the standard Lp-norm in Rn;
(b) and when s = m+ σ with m (nonnegative) integer and σ ∈ (0, 1),

‖u‖s,p = ‖u‖m,p +
∑
|ν|=m

‖∂νu‖σ,p <∞;

where

‖u‖σ,p =

(∫∫
Rn×Rn

|u(x)− u(y)|p

|x− y|n+σp
dxdy

) 1
p

, for 1 6 p <∞,

and

‖u‖σ,∞ = ess supx,y∈Rn

|u(x)− u(y)|
|x− y|σ

.

For s < 0 and 1 < p <∞, W s,p(Rn) denotes the topological dual of W−s,p′(Rn), where
1
p

+ 1
p′

= 1.

These well known spaces are Banach spaces with corresponding norms, and become
Hilbert spaces when p = 2. We refer to [18, 46] and references therein for further
properties.

Now we will define analogous spaces on closed manifolds. LetM be an n-dimensional
smooth closed manifold, and let {(Ui, ϕi)} be a collection of charts such that {Ui}
forms a finite cover of M. Then for any distribution u ∈ C∞

0 (Ui)
∗, the pull-back

ϕ∗i (u) ∈ C∞
0 (ϕi(Ui))

∗ is defined by ϕ∗i (u)(v) = u(v ◦ ϕi) for all v ∈ C∞
0 (ϕi(Ui)).

Extending ϕ∗i (u) by zero outside ϕi(Ui), in the following we treat it as a distribution on
Rn. Let {χi} be a smooth partition of unity subordinate to {Ui}.

Definition A.17. For s ∈ R and p ∈ (1,∞), we denote by W s,p(M) the space of all
distributions u defined in M, such that

‖u‖s,p =
∑

i

‖ϕ∗i (χiu)‖s,p <∞, (A.5)

where the norm under the sum is the W s,p(Rn)-norm. In case s > 0, these Sobolev
spaces can also be defined for p = 1 and p = ∞.

We collect the most basic properties of these spaces in the following lemma. Recall
that a Riemannian metric on M induces a volume form on M, so that Lp spaces can be
defined on M (cf. [43]).

Lemma A.18. Either let s > 0 and p ∈ [1,∞] or let s < 0 and p ∈ (1,∞). Then
the space W s,p(M) is a Banach space. It is independent of the choice of the covering
charts {(Ui, ϕi)} and the partition of unity {χi}. In particular, the different norms (A.5)
are equivalent. Moreover, the followings are true when M is equipped with a smooth
Riemannian metric.
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(a) Let ∇ be the Levi-Civita connection associated to the Riemannian metric. Then
for any nonnegative integer m,

‖u‖′m,p =
m∑

i=0

‖∇iu‖p,

is an equivalent norm on Wm,p(M). In particular, we have W 0,p(M) = Lp(M).
(b) IdentifyingC∞(M) as a subspace of distributions via theL2-inner product,C∞(M)

is densely embedded in W s,p(M) for any s ∈ R and p ∈ (1,∞).
(c) Let s ∈ R and p ∈ (1,∞). Then the L2-inner product onC∞(M) extends uniquely

to a continuous bilinear pairing W s,p(M) ⊗ W−s,p′(M) → R, where 1
p

+ 1
p′

= 1.
Moreover, the pairing induces a topological isomorphism between W−s,p′(M) and the
topological dual space of W s,p(M).

Proof. See for example [3, 19, 43, 45]. �

A main goal of this subsection is to extend the previous lemma to the case when the
Riemannian metric is not smooth. The following result will be of importance.

Lemma A.19. Let si > s with s1 + s2 > 0, and 1 6 p, pi 6 ∞ (i = 1, 2) be real
numbers satisfying

si − s > n

(
1

pi

− 1

p

)
, s1 + s2 − s > n

(
1

p1

+
1

p2

− 1

p

)
,

where the strictness of the inequalities can be interchanged if s ∈ N0. In case min(s1, s2) <
0, in addition let 1 < p, pi <∞, and let

s1 + s2 > n

(
1

p1

+
1

p2

− 1

)
.

Then, the pointwise multiplication of functions extends uniquely to a continuous bilinear
map

W s1,p1(M)⊗W s2,p2(M) → W s,p(M).

Proof. A proof is given in [55] for the case s > 0, and by using a duality argument one
can easily extend the proof to negative values of s. �

Some important special cases are considered in the following corollary.

Corollary A.20. (a) If p ∈ (1,∞) and s ∈ (n
p
,∞), then W s,p is a Banach algebra.

Moreover, if in addition q ∈ (1,∞) and σ ∈ [−s, s] satisfy σ− n
q
∈ [−n− s+ n

p
, s− n

p
],

then the pointwise multiplication is bounded as a map W s,p ⊗W σ,q → W σ,q.
(b) Let 1 < p, q < ∞ and σ 6 s > 0 satisfy σ − n

q
< 2(s − n

p
) and σ − n

q
6 s − n

p
.

Then the pointwise multiplication is bounded as a map W s,p ⊗W s,p → W σ,q.

The following lemma is proved in [33] for the case p = q = 2. With the help of
Lemma A.19, the proof can easily be adapted to the following general case.

Lemma A.21. Let p ∈ (1,∞) and s ∈ (n
p
,∞), and let u ∈ W s,p. Let σ ∈ [−1, 1]

and 1
q
∈ (1+σ

2
δ, 1 − 1−σ

2
δ), and let v ∈ W σ,q, where δ = 1

p
− s−1

n
. Moreover, let

f : [inf u, supu] → R be a smooth function. Then, we have

‖v(f ◦ u)‖σ,q 6 C ‖v‖σ,q (‖f ◦ u‖∞ + ‖f ′ ◦ u‖∞‖u‖s,p) ,

where the constant C does not depend on u, v or f .
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Proof. We consider the case σ = 1 first. Choosing a smooth Riemannian metric on M,
we have

‖v(f ◦ u)‖1,q 6 C (‖v(f ◦ u)‖q + ‖∇[v(f ◦ u)]‖q)

6 C (‖v(f ◦ u)‖q + ‖(∇v)(f ◦ u)‖q + ‖v(f ′ ◦ u)∇u‖q)

6 C (‖v‖q‖f ◦ u‖∞ + ‖v‖1,q‖f ◦ u‖∞ + ‖f ′ ◦ u‖∞‖v∇u‖q) .

By Lemma A.19, for 1
q

> δ, the last term can be bounded as

‖v∇u‖q 6 C‖v‖1,q‖∇u‖s−1,p 6 C‖v‖1,q‖u‖s,p,

proving the lemma for the case σ = 1. By using duality one proves the case σ = −1 and
1
q

6 1− δ, and the lemma follows from interpolation. �

Let M be an n-dimensional smooth closed manifold, and let E → M be a smooth
vector bundle over M. Analogously to Definition A.17, we define the Sobolev space
W s,p(E) of sections of E by utilizing a finite trivializing cover of coordinate charts, a
partition of unity subordinate to the cover, and the space [W s,p(Rn)]k of vector functions,
where k is the fiber dimension of E. Then, Lemma A.18 holds for these spaces with
obvious modifications. When there is no risk of confusion, we will omit the explicit
specification of the vector bundle E from the notation W s,p(E).

In the following lemma we consider nonsmooth Riemannian structures on E and non-
smooth volume forms on M.

Lemma A.22. Let γ ∈ (1,∞) and α ∈ (n
γ
,∞). Fix on M a volume form of class W α,γ ,

and on E a Riemannian structure of class W α,γ .
(a) Let p ∈ (1,∞) and s 6 min{α, α+n(1

p
− 1

γ
)}. Then identifying the space C∞(E)

of smooth sections of E as a subspace of distributions via the L2-inner product, C∞(E)
is densely embedded in W s,p(E).

(b) Let s ∈ [−α, α], p ∈ (1,∞), and s − n
p
∈ [−n − α + n

γ
, α − n

γ
]. Then the L2-

inner product on C∞(E) extends uniquely to a continuous bilinear pairing W s,p(E) ⊗
W−s,p′(E) → R, where 1

p
+ 1

p′
= 1. Moreover, the pairing induces a topological isomor-

phism [W s,p(E)]∗ ∼= W−s,p′(E).

Proof. We will prove the lemma for scalar functions on M, i.e., for the trivial bundle
E = M× R. The general case is only more technical.

Fixing a smooth volume form on M and denoting the associated L2-inner product
by (·, ·)∗, the L2-inner product associated to the nonsmooth volume form (and the non-
smooth metric on M× R) satisfies

(u, v)L2 = (hu, v)∗, u, v ∈ C∞(M),

with some strictly positive function h ∈ W α,γ . From Lemma A.19, we have that mul-
tiplication by h is continuous on W s,p for s ∈ [−α, α], p ∈ (1,∞), and s − n

p
∈

[−n − α + n
γ
, α − n

γ
]. Since h > 0 this operation is invertible hence a homeomorphism

on W s,p. Now by using Lemma A.18 we complete the proof. �

Corollary A.23. Let γ ∈ (1,∞) and α ∈ (n
γ
,∞). Fix on M a volume form of class

W α,γ , and on E a Riemannian structure of class W α,γ . With s ∈ [−α, α], p ∈ (1,∞),
and s− n

p
∈ [−n− α+ n

γ
, α− n

γ
], let A : Lp → W s,p be a bounded linear operator and

let A∗ be its formal L2-adjoint, i.e., let

(Au, v)L2 = (u,A∗v)L2 , for u, v ∈ C∞(E).
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Then, A∗ extends uniquely to a bounded linear map A∗ : W−s,p′ → Lp′ , and we have

〈Au, v〉 = 〈u,A∗v〉, for u ∈ Lp(E), v ∈ W−s,p′(E),

where 〈·, ·〉 denotes the extension of the L2-inner product.

Proof. This is an application of Lemma A.22. �

A.5. Elliptic operators on closed manifolds. In this appendix we will state a pri-
ori estimates for general elliptic operators in some Sobolev spaces. Let M be an n-
dimensional smooth closed manifold, and let E → M be a smooth vector bundle over
M.

Let C−∞(E) be the topological dual of the space C∞(E) of smooth sections of E.
Then form ∈ N, α ∈ R, and γ ∈ [1,∞], we defineDα,γ

m (E) to be the space of differential
operators A : C∞(E) → C−∞(E) that can be written in local coordinates (trivializing
E) as

A =
∑
|ν|6m

aν∂ν with aν ∈ W α−m+|ν|,γ(Rn,Rk×k), |ν| 6 m,

where k is the fiber dimension of E.
One can easily verify that if the metric of a Riemannian manifold is in W α,γ with

αγ > n, then both the Laplace-Beltrami operator and vector Laplacian defined in (2.17)
are in the classes Dα,γ

2 (M× R) and Dα,γ
2 (TM), respectively.

Lemma A.24. Let A be a differential operator of class Dα,γ
m (E). Then, A can be ex-

tended to a bounded linear map

A : W s,q(E) → W σ,q(E),

for q ∈ (1,∞), s > m− α, and σ satisfying

σ 6 min{s, α} −m, σ < s−m+ α− n

γ
,

σ − n

q
6 α− n

γ
−m, and s− n

q
> m− n− α+

n

γ
.

Proof. This is a straightforward application of Lemma A.19. �

The Laplace-Beltrami operator and vector Laplacian are elliptic operators. We now
consider local a priori estimates for general elliptic operators. For any subset U ⊂ M,
the W s,p(U)-norm is denoted by ‖ · ‖s,p,U .

Lemma A.25. Let A ∈ Dα,γ
m (E) be an elliptic operator with α− n

γ
> max{0, m−n

2
}. Let

q ∈ (1,∞), s ∈ (m−α, α], and s− n
q
∈ (m− n−α+ n

γ
, α− n

γ
]. Then for any y ∈M,

there exists a constant c > 0 and open neighborhoods K ⊂ U ⊂M of y such that

c‖χu‖s,q 6 ‖Au‖s−m,q + ‖u‖s−1,q,U , (A.6)

for any u ∈ W s,q(E) and χ ∈ C∞
0 (K) with χ > 0.

Proof. We work in a local chart containing y, which trivializes E. LetK be the open ball
of radius r centered at y contained in the domain of the chart and extend the coefficients
ofA outsideK so that the resulting operator is still inDν,γ

m , with appropriate vector fields
over Rn. We make the decompositionA = L+R+B, where L is the highest order terms
of A with coefficients frozen at y, and R is what remains in the highest order terms, i.e.,

L =
∑
|ν|=m

aν(y)∂ν , R =
∑
|ν|=m

[aν − aν(y)]∂ν .
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Obviously B = A − L − R is the lower order terms. Let u ∈ W s,q with suppu ⊂ K.
From the theory of constant coefficient elliptic operators, we infer the existence of a
constant c > 0 such that for any u ∈ W s,q(E) with suppu ⊂ K,

c‖u‖s,q 6 ‖Lu‖s−m,q + ‖u‖s−m,q

6 ‖Au‖s−m,q + ‖Ru‖s−m,q + ‖Bu‖s−m,q + ‖u‖s−m,q.

Since α > n
γ

, without loss of generality we can assume for |ν| = m that aν ∈ C0,h for
some h > 0, so

‖Ru‖s−m,q 6 Crh‖u‖s,q,

where C is a constant depending only on A. By choosing r so small that Crh 6 c
2
, we

have
c
2
‖u‖s,q 6 ‖Au‖s−m,q + ‖Bu‖s−m,q + ‖u‖s−m,q.

Now we will work with the lower order term. Choose δ ∈ (0, α − n
γ
) such that

δ 6 min{1, s+α−m, s− n
q
+α− n

γ
+n−m}. We haveB ∈ Dα−1,γ

m−1 , so by Lemma A.24,
B : W s−δ,γ → W s−m,γ is bounded. Then using a well known interpolation inequality,
we get

‖Bu‖s−m,q 6 C‖u‖s−δ,q 6 Cε‖u‖s,q + C ′ε−(m−δ)/δ‖u‖s−m,q,

for any ε > 0. Choosing ε > 0 sufficiently small, we conclude that

c‖u‖s,q 6 ‖Au‖s−m,q + ‖u‖s−m,q, ∀u ∈ W s,q(E), suppu ⊂ K.

We apply the this inequality to χu, and then observing that [A,χ] is in Dα,γ
m−1(M), we

obtain (A.6). �

We can easily globalize the above result as follows.

Corollary A.26. Let the conditions of Lemma A.25 hold. Then there exists a constant
c > 0 such that

c‖u‖s,q 6 ‖Au‖s−m,q + ‖u‖s−m,q, ∀u ∈ W s,q(E). (A.7)

Proof. We first cover M by open neighborhoods K by applying Lemma A.25 to every
point y ∈ M, and then choose a finite subcover of the resulting cover. Then a partition
of unity argument gives (A.7) with the term ‖u‖s−m,q replaced by ‖u‖s−1,q, and finally
one can use an interpolation inequality to get the conclusion. �

Let us recall the following well known results from functional analysis.

Lemma A.27. Let X and Y be Banach spaces with continuous embedding X ↪→ Y . Let
A : X → Y be a continuous linear map. Then

(a) A necessary and sufficient condition that the graph of A be closed in X × Y is
that there exists a constant c > 0 such that c‖u‖X 6 ‖Au‖Y + ‖u‖Y for all
u ∈ X .

(b) If in addition the embedding X ↪→ Y is compact then the range of A is closed
and the kernel of A is finite-dimensional.

As an immediate consequence, we obtain the following result.

Lemma A.28. Let A ∈ Dα,γ
m (E) be an elliptic operator with α − n

γ
> max{0, m−n

2
}.

Let q ∈ (1,∞), s ∈ (m−α, α], and s− n
q
∈ (m−n−α+ n

γ
, α− n

γ
]. Then, the operator

A : W s,q(E) → W s−m,q(E) is semi-Fredholm, i.e., its range is closed and the kernel is
finite-dimensional.
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A.6. Maximum principles on closed manifolds. In this appendix, we present maxi-
mum principles for the operators of the form −∇ · (u∇) with positive function u, fol-
lowed by a simple application. These types of results are well known, but nevertheless
we state them here for completeness.

It is convenient at times when working with barriers and maximum principle argu-
ments to split real valued functions into positive and negative parts; we will use the
following notation for these concepts:

φ+ := max{φ, 0}, φ− := −min{φ, 0},
whenever they make sense. In the proof of the following lemma we will use the fact that
for φ ∈ W 1,p it holds φ+ ∈ W 1,p and so φ− ∈ W 1,p, cf. [38].

Lemma A.29. Let p ∈ (1,∞) and s ∈ (n
p
,∞) ∩ [1,∞), and let (M, hab) be an n-

dimensional, smooth, closed manifold with a Riemannian metric hab ∈ W s,p. Moreover,
let u ∈ W s,p be a function with u > 0 and let f ∈ W s−2,p. Let φ ∈ W s,p be such that

〈u∇φ,∇ϕ〉+ 〈f, φϕ〉 > 0, for all ϕ ∈ C∞
+ . (A.8)

(a) If f 6= 0 and 〈f, ϕ〉 > 0 for all ϕ ∈ C∞
+ , then φ > 0.

(b) If M is connected and φ > 0, then either φ ≡ 0 or φ > 0 everywhere.

Proof. For (a), we will follow the proof of [33, Lemma 2.9]. Since φ ∈ W 1,n, we have
φ− ∈ W 1,n

+ and −φφ− ∈ W 1,n
+ . Note that W 1,n ↪→ (W s−2,p)∗ by n > 2. Now, using the

positivity of f and the property (A.8), by density we get

0 > 〈f, φφ−〉 > −〈u∇φ,∇φ−〉 = 〈u∇φ−,∇φ−〉,
implying that φ− = const. So if φ < 0, it would have to be a negative constant. But
the property (A.8) gives 〈f, ϕ〉 6 0 for all ϕ ∈ C∞

+ , which, in combination with the
positivity, implies f = 0. This contradicts with the hypothesis f 6= 0 and proves (a).

Now we will prove (b). Since φ is continuous, the level set φ−1(0) ⊂ M is closed.
Following the proof of [35, Lemma 5.3], we apply the weak Harnack inequality [47,
Theorem 5.2] to show that φ−1(0) is also open. Then by connectedness of M we will
have the proof.

The weak Harnack inequality [47, Theorem 5.2] can be applied to second order elliptic
operators of the form

Lφ = ∂i(a
ij∂jφ+ aiφ) + bj∂jφ+ aφ,

where aij are continuous, and ai, bj ∈ L2t, and a ∈ Lt for some t > n
2
. The first term

in (A.8) satisfies these conditions, and the second term can be cast into a form satisfying
the conditions (details can be found in the proof of [35, Lemma 5.3]). Now suppose that
φ(x) = 0 for some x ∈ M, and let us work in local coordinates around x. Then the
weak Harnack inequality says that for sufficiently small R > 0, and for some p > t′,

‖φ‖Lp(B(x,2R)) 6 CR
n
p inf

B(x,R)
φ,

where B(x,R) denotes the open ball of radius R (in the background flat metric) centered
at x, and C is a constant that depends only on t, p, and the differential operator. Since
φ(x) = 0 and φ is nonnegative, the infimum is zero and the inequality implies that φ ≡ 0
in a neighborhood of x. Hence the set φ−1(0) is open. �

Lemma A.30. Let the hypotheses of Lemma A.29(b) hold, and define the operator L :
W s,p → W s−2,p by

〈Lφ, ϕ〉 = 〈u∇φ,∇ϕ〉+ 〈f, φϕ〉, φ ∈ W s,p, ϕ ∈ C∞.
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Then, L is bounded and invertible.

Proof. By Lemma A.28, the operator L is semi-Fredholm, and moreover since L is for-
mally self-adjoint, it is Fredholm. It is well known that when the metric is smooth, index
of L is zero independent of s and p. We can approximate the metric h by smooth metrics
so that L is arbitrarily close to a Fredholm operator with index zero. Since the level sets
of index as a function on Fredholm operators are open, we conclude that the index of L is
zero. The injectivity of L follows from Lemma A.29(a), for if φ1 and φ2 are two solutions
of Lφ = g, then the above lemma implies that φ1 − φ2 > 0 and φ2 − φ1 > 0. �

A.7. The Yamabe classification of nonsmooth metrics. Let M be a smooth, closed,
connected n-dimensional Riemannian manifold with a smooth metric h, where we as-
sume throughout this section that n > 3. With a positive scalar ϕ, let h̃ be related to h
by the conformal transformation h̃ = ϕ2?−2h, where 2? = 2n

n−2
. We say that h̃ and h are

conformally equivalent, and this defines an equivalence relation on the space of metrics.
The equivalence class containing h will be denoted by [h]; e.g., h̃ ∈ [h]. It is well known
that any smooth Riemannian metric h on a given closed connected manifold M satisfies
one and only one of the following three conditions:
Y+: There is a metric in [h] with strictly positive scalar curvature;
Y0: There is a metric in [h] with vanishing scalar curvature;
Y−: There is a metric in [h] with strictly negative scalar curvature.

These conditions define three disjoint classes in the space of metrics: they are referred to
as the Yamabe classes.

We will extend the above classification to metrics in the Sobolev spaces W s,p under
rather mild conditions on s and p. Since the case p = 2 is treated in [33] and the argument
there easily extends to our slightly general setting, we shall only sketch the proof here.
Given a Riemannian metric h ∈ W s,p, let us consider the functional E : W 1,2 → R
defined by

E(ϕ) = (a∇ϕ,∇ϕ) + 〈R,ϕ2〉,
where a = 4n−1

n−2
. By Corollary A.20, the pointwise multiplication is bounded on W 1,2⊗

W 1,2 → W σ,q for σ 6 1 and σ − n
q
< 2 − n. Putting σ = 2 − s and q = p′, these

conditions read as 2− s− n
p′

= 2− n− s + n
p
< 2− n or s− n

p
> 0, and s > 1. So if

sp > n and s > 1, ϕ2 ∈ W 2−s,p′ for ϕ ∈ W 1,2, meaning that the second term is bounded
in W 1,2.

By using the functional E, we define the quantity

µq = µq(h) = inf
ϕ∈Bq

E(ϕ), where Bq = {ϕ ∈ W 1,2 : ‖ϕ‖q = 1}.

Under the conditions sp > n and s > 1, one can show that µq is finite for q > 2, and
moreover that µ2? is a conformal invariant, i.e., µ2?(h) = µ2?(h̃) for any two metrics
h̃ ∈ [h], now allowing W s,p functions for the conformal factor. We refer to µ2?(h) as the
Yamabe invariant of the metric h, and we will see that the Yamabe classes correspond to
the signs of the Yamabe invariant.

Theorem A.31. Let (M, h) be a smooth, closed, connected Riemannian manifold with
dimension n > 3 and with a metric h ∈ W s,p, where we assume sp > n and s > 1. Let
q ∈ [2, 2?). Then, there exists φ ∈ W s,p, φ > 0 in M, such that

− a∆φ+Rφ = µqφ
q−1, and ‖φ‖q = 1, (A.9)

where µq = µq(h) is as defined above.
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Proof. The above equation is the Euler-Lagrange equation for the functional E, so it
suffices to show thatE attains its infimum µq overBq at a positive function φ ∈ W s,p. Let
{φi} ⊂ Bq be a sequence satisfying E(φi) → µq. From the continuity of the embedding
Lq ↪→ L2, we have {φi} is bounded in L2. It is the content of [33, Lemma 3.1] that

E(ϕ) > C1‖ϕ‖2
1,2 − C2‖ϕ‖2

2, ϕ ∈ W 1,2,

for metrics in W s,2 with s > n
2
. The proof works verbatim for our case, and since

µq is finite, from this we conclude that {φi} is bounded in W 1,2. By the reflexivity
of W 1,2 and the compactness of W 1,2 ↪→ Lq, there exist an element φ ∈ W 1,2 and a
subsequence {φ′i} ⊂ {φi} such that φ′i ⇀ φ inW 1,2 and φ′i → φ in Lq. The latter implies
φ ∈ Bq. It is not difficult to show that E is weakly lower semi-continuous, and it follows
that E(φ) = µq, so φ satisfies (A.9). Bootstrapping with Corollary A.26 implies that
φ ∈ W s,p ↪→ W 1,n, so that |φ| ∈ W 1,n. Since E(|φ|) = E(φ), after replacing φ by |φ|,
we can assume that φ > 0. Finally, bootstrapping again gives φ ∈ W s,p, and since φ 6= 0
as φ ∈ Bq, by Lemma A.29 we have φ > 0. �

Under the conformal scaling h̃ = ϕ2?−2h, the scalar curvature transforms as

R̃ = ϕ1−2?

(−a∆ϕ+Rϕ),

so assuming the conditions of the above theorem we infer that any given metric h ∈ W s,p

can be transformed to the metric h̃ = φ2?−2h with the continuous scalar curvature R̃ =
µqφ

q−2? , where the conformal factor φ is as in the theorem. In other words, given any
metric hab ∈ W s,p, there exist continuous functions φ ∈ W s,p with φ > 0 and R̃ ∈ W s,p

having constant sign, such that

− a∆φ+Rφ = R̃φ2?−1. (A.10)

We will prove below that the conformal class of the metric h completely determines the
sign of R̃, giving rise to the Yamabe classification of metrics in W s,p.

In the class of smooth metrics there is a stronger result known as the Yamabe theorem:
each conformal class of smooth metrics contains a metric with constant scalar curvature.
The Yamabe theorem is a non-trivial extension of the above theorem to the critical case
q = 2?, and we see that for smooth metrics the sign of the Yamabe invariant determines
which Yamabe class the metric is in. A proof of the Yamabe theorem requires more
delicate techniques since we lose the compactness of the embedding W 1,2 ↪→ Lq, see
e.g. [31] for a treatment of smooth metrics. As far as we know there has not appeared
in the literature an explicit proof of the Yamabe theorem for nonsmooth metrics such as
the ones considered in this paper, although it is generally expected to be true. We will
not pursue this issue here; however, the following simpler result justifies the Yamabe
classification of nonsmooth metrics.

Theorem A.32. Let (M, h) be a smooth, closed, connected Riemannian manifold with
dimension n > 3 and with a metric h ∈ W s,p, where we assume sp > n and s > 1.
Then, the followings hold:

• µ2? > 0 iff there is a metric in [h] with continuous positive scalar curvature.
• µ2? = 0 iff there is a metric in [h] with vanishing scalar curvature.
• µ2? < 0 iff there is a metric in [h] with continuous negative scalar curvature.

In particular, two conformally equivalent metrics cannot have scalar curvatures with
distinct signs.
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Proof. We begin by proving that if there is a metric in [h] with continuous scalar cur-
vature of constant sign, then µ2? has the corresponding sign. Since µ2? is a conformal
invariant, we can assume that the scalar curvature R of h is continuous and has con-
stant sign. If R < 0, then E(ϕ) < 0 for constant test functions ϕ = const and there
is a constant function in B2? , so we have µ2? < 0. If R > 0, then E(ϕ) > 0 for any
ϕ ∈ W 1,2, so µ2? > 0. Taking constant test functions, we infer that R = 0 implies
µ2? = 0. Now, if R > 0 then E(ϕ) defines an equivalent norm on W 1,2, and we have
1 = ‖ϕ‖2? 6 C‖ϕ‖1,2 for ϕ ∈ B2? , so µ2? > 0.

Next, we will prove that there is a metric in [h] with continuous scalar curvature with
the same sign as that of µ2? . To this end, for any q ∈ [2, 2?), we shall show that the sign
of µ2? determines the sign of µq, so that the proof is completed by Theorem A.31. If
µ2? < 0, then E(ϕ) < 0 for some ϕ ∈ B2? , and since E(kϕ) = k2E(ϕ) for k ∈ R,
there is some kϕ ∈ Bq such that E(kϕ) < 0, so µq < 0. If µs? > 0, then E(ϕ) > 0 for
all ϕ ∈ B2? , and for any ψ ∈ Bq there is k such that kψ ∈ B2? , so µq > 0. All such k
are uniformly bounded since k = 1/‖ψ‖2? 6 C/‖ψ‖q = C by the continuity estimate
‖ · ‖1 6 C‖ · ‖2? . From this we have for all ψ ∈ Bq, E(ψ) = E(kψ)/k2 > µ2?/k2 >
µ2?/C2, meaning that µ2? > 0 implies µq > 0. A similar scaling argument gives that if
µ2? = 0 then µq = 0. �

A.8. Conformal covariance of the Hamiltonian constraint. LetM be a smooth, closed,
connected n-dimensional manifold equipped with a Riemannian metric h ∈ W s,p, where
we assume throughout this section that p ∈ (1,∞), s ∈ (n

p
,∞) ∩ [1,∞) and that n > 3.

We consider the Hamiltonian constraint

H(φ) := −∆φ+ 1
r(n−1)

Rφ+ aτφ
r+1 − awφ

−r−3 − aρφ
−t = 0,

where r = 4
n−2

, t ∈ R are constants, R ∈ W s−2,p is the scalar curvature of the metric
h, and the other coefficients satisfy aτ , aw, aρ ∈ W s−2,p

+ . In this appendix, we will be
interested in the transformation properties of H under the conformal change h̃ = θrh of
the metric with the conformal factor θ ∈ W s,p satisfying θ > 0. To this end, we consider

H̃(ψ) := −∆̃ψ + 1
r(n−1)

R̃ψ + ãτψ
r+1 − ãwψ

−r−3 − ãρψ
−t = 0,

where ∆̃ is the Laplace-Beltrami operator associated to the metric h̃, R̃ ∈ W s−2,p is
the scalar curvature of h̃, and at the moment we do not impose any conditions on the
remaining coefficients other than that they satisfy ãτ , ãw, ãρ ∈ W s−2,p

+ . One can derive
the following relations

R̃ = θ−rR− r(n− 1)θ−r−1∆θ,

∆̃ψ = θ−r∆ψ + 2θ−r−1∇aθ∇aψ.

Combining these relations with

∆(θψ) = θ∆ψ + ψ∆θ + 2∇aθ∇aψ,

we obtain
−∆̃ψ + 1

r(n−1)
R̃ψ = θ−r−1

(
−∆(θψ) + 1

r(n−1)
Rθψ

)
,

which in turn implies that
H̃(ψ) = θ−r−1H(θψ),

provided in the definition of H̃ that ãτ = aτ , ãw = θ−2r−4aw, and ãρ = θ−t−r−1aρ. We
have proved the following well known result.
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Lemma A.33. Assume the above setting, so in particular, ãτ = aτ , ãw = θ−2r−4aw, and
ãρ = θ−t−r−1aρ. Then we have

H̃(ψ) = 0 ⇔ H(θψ) = 0,

H̃(ψ) > 0 ⇔ H(θψ) > 0,

H̃(ψ) 6 0 ⇔ H(θψ) 6 0.

A.9. General conformal rescaling and the near-CMC condition. In this article we
focused on the standard conformal method to produce the particular coupled elliptic PDE
system that we analyzed. Here we examine briefly other decompositions to see if it is
possible to remove the near-CMC obstacle for non-CMC existence that still seems to
remain for the non-positive Yamabe classes and for the positive Yamabe class with large
data.

The key question here is whether or not the standard conformal method essentially
hard-wires the near-CMC assumption into the coupled system in order to get a domain
of attraction for fixed-point iterations. If this is the case, then there remains the possibility
that one can reverse-engineer a formulation, different from the conformal method, that
gives a domain of attraction (preferably a contraction so that we also get uniqueness)
without use of near-CMC conditions. Unfortunately, the answer appears to be negative,
as we demonstrate below. In particular, it seems that the near-CMC obstacle is present
in all possible formulations based on conformal transformations, if the estimate (5.1) is
used.

To begin, recall that the objects (M, ĥab, k̂ab, ρ̂, ĵa) form an n-dimensional initial data
set for Einstein’s equations iff M is a n-dimensional smooth manifold, the tensor ĥab is
a Riemannian metric on M, the tensor k̂ab is a symmetric tensor field on M, the fields
ρ̂ and ĵa are a non-negative scalar and a tensor field on M, respectively, satisfying the
condition −ρ̂2 + ĵaĵ

a < 0, and the following equations hold:

R̂ + k̂2 − k̂abk̂
ab − 2κρ̂ = 0, (A.11)

−∇̂ak̂
ab + ∇̂bk̂ + κĵb = 0, (A.12)

where ∇̂a is the Levi-Civita connection of the metric ĥab, the scalar field R̂ is the Ricci
scalar of the connection ∇̂a, the scalar k̂ = k̂abĥ

ab is the trace of the tensor k̂ab, and the
constant κ = 8π in units where both the gravitation constant G and the speed of light c
have value one. The initial data set for Einstein’s equations describe an instant of time in
the physical world if we choose the number n = 3. Nevertheless, In the calculations that
follow we keep the number n as a general positive integer.

Introduce the decomposition of the two-index tensor kab into trace-free and trace parts,
as follows,

k̂ab = ŝab + 1
n
k̂ ĥab,

where ŝabĥ
ab = 0. Introduce the following conformal rescaling:

ĥab = φr hab, ŝab = φs sab, k̂ = φt k, (A.13)

where the integers r, s, and t are arbitrary, and we have introduced the Riemannian
metric hab, a symmetric tensor sab, and a scalar field k. Introduce ∇a the Levi-Civita
connection of the metric hab, which satisfies the equation ∇ahbc = 0, and denote by
R the Ricci scalar of this connection ∇a. The rescaling above induces the following
equations

ĥab = φ−r hab, ŝab = φ(2r+s) sab,
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where ĥab is the inverse tensor of ĥab, and hab is the inverse tensor of hab. We use the
convention that indices in all other hatted tensors are raised and lowered with the tensors
ĥab and ĥab, respectively, while indices on unhatted tensors are raised and lowered with
the tensors hab and hab, respectively. For example:

ŝab = ĥacĥbdŝ
cd = φrhac φ

rhbd φ
sscd = φ(2r+s)sab.

The rescaling introduced in Eq. (A.13) implies that the tensor field k̂ab transforms as
follows

k̂ab = φs sab + 1
n
φ(t−r) khab ⇔ k̂ab = φ(2r+s)sab + 1

n
φ(t+r) khab.

The connections ∇̂a and ∇a differ in a tensor field Cab
c, in the sense that for any tensor

field va holds
∇̂avb = ∇avb − Cab

cvc.

The tensor field Cab
c depends on the scalar field φ and the number r as follows,

Cab
c = r δ(a

c∇b) ln(φ)− r
2
habh

cd∇d ln(φ). (A.14)

This expression implies the contractions

habCab
c = − r

2
(n− 2)hcd∇d ln(φ), Cab

b = nr
2
∇a ln(φ).

Given any two connections ∇̂a and∇a related by a tensor field Cab
c, the Riemann, Ricci,

and Ricci scalar fields associated with these two connections are related by the following
expressions

R̂abc
d = Rabc

d − 2∇[aCb]c
d + 2Cc[a

eCb]e
d,

R̂ac = Rac −∇aCcb
b +∇bCac

b + Cca
eCeb

b − Ccb
eCae

b,

R̂ = φ−r
[
R−∇aCab

b +∇b(h
acCac

b) + hacCca
eCeb

b − hacCcb
eCae

b
]
,

where indices between square brackets mean anti-symmetrization, that is, given any ten-
sor uab we define u[ab] := (uab − uba)/2. In the case that the tensor Cab

c is given by
Eq. (A.14), the Ricci scalars R̂ and R satisfy the equation

R̂ = φ−(r+1)
[
φR− r(n− 1)∆φ− r

4φ
(n− 1)[r(n− 2)− 4](∇aφ)(∇aφ)

]
.

Introduce the Hamiltonian and momentum fields

Ĥ := R̂ + k̂2 − k̂abk̂
ab,

M̂ b := −∇̂ak̂
ab + ∇̂bk̂,

then the conformal rescaling given in Eq. (A.13) implies the following equations

Ĥ = φ−(r+1)
[
φR− r(n− 1)∆φ− r

4φ
(n− 1)[r(n− 2)− 4](∇aφ)(∇aφ)

]
+ n−1

n
φ2t k2 − φ2(r+s)sabs

ab,

M̂b = −φ(r+s)∇asb
a + n−1

n
φt∇bk −

(
rn
2

+ r + s
)
φ(r+s)sb

a∇a ln(φ)

+ n−1
n
t φt k∇b ln(φ).

It is convenient to reorder the terms in these equations in such a way that the equation
for the Hamiltonian field is given by

−r(n− 1)∆φ− r
4φ

(n− 1)[r(n− 2)− 4](∇aφ)(∇aφ)

+Rφ+ (n−1)
n

k2 φ(2t+r+1) − sabs
ab φ(3r+2s+1) = φ(r+1)Ĥ,
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and the equation for the momentum field is given by

−∇asb
a −

(
(n+2)

2
r + s

)
sb

a∇a ln(φ)

= φ−(r+s)M̂b − (n−1)
n
φ(t−r−s)∇bk − (n−1)

n
tφ(t−r−s−1)k∇bφ.

There are many interesting particular cases of the equations above. The first case is to
keep the dimension n > 3 arbitrary, and choose:

r = 4
n−2

, s = − (n+2)
2

r, t = 0,

then, introducing the number 2∗ := 2n/(n − 2), we conclude that the n-dimensional
vacuum Einstein constraint equations (H = 0, Mb = 0) can be written as follows,

−4(n−1)
(n−2)

∆φ+Rφ+ (n−1)
n

k2 φ(2∗−1) − sabs
ab φ−(2∗+1) = 0,

−∇asb
a + (n−1)

n
φ2∗∇bk = 0.

In the case that the manifold M is 3-dimensional, we have the number 2∗ = 6, and
the equation for the Hamiltonian field is given by

−2r∆φ− r
2φ

(r − 4)(∇aφ)(∇aφ)

+Rφ+ 2
3
k2 φ(2t+r+1) − sabs

ab φ(3r+2s+1) = φ(r+1)Ĥ, (A.15)

and the equation for the momentum field is given by

−∇asb
a −

(
3r
2

+ r + s
)
sb

a∇a ln(φ)

= φ−(r+s)M̂b − 2
3
φ(t−r−s)∇bk − 2

3
t φ(t−r−s−1)k∇bφ. (A.16)

The semi-decoupling decomposition in the case of the vacuum Einstein constraint equa-
tions (H = 0, Mb = 0) is obtained from Eqs. (A.15)-(A.16) in the particular case of
r = 4, s = −10, and t = 0, that is,

−8∆φ+Rφ+ 2
3
k2φ(2∗−1) − sabs

abφ−(2∗+1) = 0,

−∇asb
a + 2

3
φ2∗∇bk = 0.

The conformally covariant decomposition, in the case of the vacuum Einstein con-
straint equations (H = 0, Mb = 0) and in the case that the transverse, traceless part of
the tensor kab vanishes, is obtained from Eqs. (A.15)-(A.16) with the particular choice of
r = 4, s = −4, and t = 0, that is,

−8∆φ+Rφ+
(

2
3
k2 − sabs

ab
)
φ(2∗−1) = 0,

−∇asb
a − 6 sb

a∇a ln(φ) + 2
3
∇bk = 0.

As a final example, it is interesting to write down the rescaled equations above in the
case r = 4, s = −10, t arbitrary:

−8∆φ+Rφ+ 2
3
φ(2t+5) k2 − φ−7sabs

ab = φ5Ĥ,

−∇asb
a = φ6M̂b − 2

3
φ(t+6)∇bk − 2

3
t φ(t+5)k∇bφ.

Since the leading power in each equation scales exactly as the conformal method, the
same argument leading to the negative result for the conformal method in Lemma 5.5 will
apply here. Therefore, it appears that the different conformal rescalings produce coupled
systems leading to precisely the same form of the near-CMC condition to establish non-
CMC existence, in the case of both the non-positive Yamabe classes and the positive
Yamabe class for large data.
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