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ABSTRACT. We consider the conformal decomposition of Einstein’s constraint equa-
tions introduced by Lichnerowicz and York, on a closed manifold. We establish exis-
tence of non-CMC weak solutions using a combination of a priori estimates for the in-
dividual Hamiltonian and momentum constraints, barrier constructions and fixed-point
techniques for the Hamiltonian constraint, Riesz-Schauder theory for the momentum
constraint, together with a topological fixed-point argument for the coupled system.
Although we present general existence results for non-CMC weak solutions when the
rescaled background metric is in any of the three Yamabe classes, an important new
feature of the results we present for the positive Yamabe class is the absence of the
near-CMC assumption, if the freely specifiable part of the data given by the traceless-
transverse part of the rescaled extrinsic curvature and the matter fields are sufficiently
small, and if the energy density of matter is not identically zero. In this case, the mean
extrinsic curvature can be taken to be an arbitrary smooth function without restrictions
on the size of its spatial derivatives, so that it can be arbitrarily far from constant, giv-
ing what is apparently the first existence results for non-CMC solutions without the
near-CMC assumption. Using a coupled topological fixed-point argument that avoids
near-CMC conditions, we establish existence of coupled non-CMC weak solutions with
(positive) conformal factor ¢ € WP, where p € (1,00) and s(p) € (1+3/p, o0). In the
CMC case, the regularity can be reduced to p € (1,00) and s(p) € (3/p,00) N [1, 00).
In the case of s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10],
and in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but
with a proof that goes through the same analysis framework that we use to obtain the
non-CMC results. The non-CMC results on closed manifolds here extend the 1996 non-
CMC result of Isenberg and Moncrief in three ways: (1) the near-CMC assumption is
removed in the case of the positive Yamabe class; (2) regularity is extended down to the
maximum allowed by the background metric and the matter; and (3) the result holds for
all three Yamabe classes. This last extension was also accomplished recently by Allen,
Clausen and Isenberg, although their result is restricted to the near-CMC case and to
smoother background metrics and data.
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1. INTRODUCTION

In this article, we give an analysis of the coupled Hamiltonian and momentum con-
straints in the Einstein equations on a 3-dimensional closed manifold. We consider the
equations with matter sources satisfying an energy condition implied by the dominant
energy condition in the 4-dimensional spacetime; the unknowns are a Riemannian three-
metric and a two-index symmetric tensor. The equations form an under-determined sys-
tem; therefore, we focus entirely on a standard reformulation used in both mathematical
and numerical general relativity, called the conformal method, introduced by Lichnerow-
icz and York [32, 49, 50]. The conformal method assumes that the unknown metric is
known up to a scalar field called a conformal factor, and also assumes that the trace and
a term proportional to the trace-free divergence-free part of the two-index symmetric
tensor is known, leaving as unknown a term proportional to the traceless symmetrized
derivative of a vector. Therefore, the new unknowns are a scalar and a vector field, trans-
forming the original under-determined system for a metric and a symmetric tensor into a
(potentially) well-posed elliptic system for a scalar and a vector field. See [5] for a recent
review article.
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The question of existence of solutions to the Lichnerowicz-York conformally rescaled
Einstein’s constraint equations, for an arbitrarily prescribed mean extrinsic curvature, has
remained an open problem for more than thirty years. The rescaled equations, which are a
coupled nonlinear elliptic system consisting of the scalar Hamiltonian constraint coupled
to the vector momentum constraint, have been studied almost exclusively in the setting
of constant mean extrinsic curvature, known as the CMC case. In the CMC case the
equations decouple, and it has long been known how to establish existence of solutions.
The case of CMC data on closed (compact without boundary) manifolds was completely
resolved by several authors over the last twenty years, with the last remaining sub-cases
resolved and all the CMC sub-cases on closed manifolds summarized by Isenberg in [25].
Over the last ten years, other CMC cases on different types of manifolds containing
various kinds of matter fields were studied and partially or completely resolved; see the
survey [5]. We take a moment to point out just some of the quite substantial number
of works in this area, including: the original work on the Lichnerowicz equation [32];
the development of the conformal method [49, 50, 51, 52]; the initial solution theory for
the Hamiltonian constraint [39, 40, 41]; the thin sandwich alternative to the conformal
method [4, 37]; the complete classification of CMC initial data [25] and the few known
non-CMC results [26, 28, 11]; various technical results on transverse-traceless tensors
and the conformal Killing operator [6, 8]; the more recent development of the conformal
thin sandwich formulation [53]; initial data for black holes [7, 9]; initial data for Kerr-
like black holes [13, 14]; initial data with trapped surface boundaries [15, 34]; rough
solution theory for CMC initial data [33, 35, 10]; and the gluing approach to generating
initial data [12]. A survey of many of these results appears in [5].

On the other hand, the question of existence of solutions to the Einstein constraint
equations for non-constant mean extrinsic curvature (the “non-CMC case”) has remained
largely unanswered, with progress made only in the case that the mean extrinsic curva-
ture is nearly constant (the “near-CMC case”), in the sense that the size of its spatial
derivatives is sufficiently small. The near-CMC condition leaves the constraint equations
coupled, but ensures the coupling is weak. In [26], Isenberg and Moncrief established the
first existence (and uniqueness) result in the near-CMC case, for background metric hav-
ing negative Ricci scalar. Their result was based on a fixed-point argument, together with
the use of iteration barriers (sub- and super-solutions) which were shown to be bounded
above and below by fixed positive constants, independent of the iteration. We note that
both the fixed-point argument and the global barrier construction in [26] rely critically
on the near-CMC assumption. All subsequent non-CMC existence results are based on
the framework in [26] and are thus limited to the near-CMC case (see the survey [5], the
non-existence results in [27], and also the newer existence results in [1] for non-negative
Yamabe classes).

This article presents (together with the brief overview in [22]) the first non-CMC ex-
istence results for the Einstein constraints that do not require the near-CMC assumption.
Two recent advances make this possible: A new topological fixed-point argument (estab-
lished here and in [21]) and a new global super-solution construction for the Hamilton-
ian constraint (established here and in [22]) that are both free of near-CMC conditions.
These two results allow us to establish existence of non-CMC solutions for conformal
background metrics in the positive Yamabe class, with the freely specifiable part of the
data given by the traceless-transverse part of the rescaled extrinsic curvature and the mat-
ter fields sufficiently small, and with the matter energy density not identically zero. Our
results here and in [21, 22] can be viewed as reducing the remaining open questions of
existence of non-CMC (weak and strong) solutions without near-CMC conditions to two
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more basic and clearly stated open problems: (1) Existence of near-CMC-free global
super-solutions for the Hamiltonian constraint equation when the background metric is
in the non-positive Yamabe classes and for large data; and (2) existence of near-CMC-
free global sub-solutions for the Hamiltonian constraint equation when the background
metric is in the positive Yamabe class in vacuum (without matter). We will make some
further comments about this later in the paper.

Our results in this article, which can be viewed as pushing forward the rough solu-
tions program that was initiated by Maxwell in [33, 35] (see also [10]), further extend
the known solution theory for the Einstein constraint equations on closed manifolds in
several directions:

(i) Far-from-CMC Weak Solutions: We establish the first existence results (Theo-
rem 3.1) for the coupled Einstein constraints in the non-CMC setting without the
near-CMC condition. In particular, if the rescaled background metric is in the pos-
itive Yamabe class, if the freely specifiable part of the data given by the traceless-
transverse part of the rescaled extrinsic curvature and the matter fields are suffi-
ciently small, and if the energy density of matter is not identically zero, then we
show existence of non-CMC solutions with mean extrinsic curvature arbitrarily
far from constant. Two advances in the analysis of the Einstein constraint equa-
tions make this result possible: A topological fixed-point argument (Theorems 3.4
and 3.5) based on compactness arguments rather than k-contractions that is free
of near-CMC conditions, and constructions of global barriers for the Hamiltonian
constraint that are similarly free of the near-CMC condition (Lemmas 5.2, 5.3, 5.4,
5.8, and 5.9).

(ii) Near-CMC Weak Solutions: We establish existence results (Theorem 3.2) for non-
CMC solutions to the coupled constraints under the near-CMC condition in the
setting of weaker (rougher) solutions spaces and for more general physical scenar-
10s than appeared previously in [26, 1]. In particular, we establish existence of weak
solutions to the coupled Hamiltonian and momentum constraints on closed mani-
folds for all three Yamabe classes, with (positive) conformal factor in ¢ € W*P
where p € (1,00) and s(p) € (1 + 3/p, 00). These results are based on combining
barriers, a priori estimates, and other results for the individual constraints together
with a new type of topological fixed-point argument (Theorems 3.4 and 3.5), and
are established in the presence of a weak background metric and data meeting very
low regularity requirements.

(iii) CMC Weak Solutions: In the CMC case, we establish existence (Theorem 3.3) of
weak solutions to the un-coupled Hamiltonian and momentum constraints on closed
manifolds for all three Yamabe classes, with (positive) conformal factor ¢ € W*P
where p € (1,00) and s(p) € (3/p, 00)N[1,00). In the case of s = 2, we reproduce
the CMC existence results of Choquet-Bruhat [10], and in the case p = 2, we
reproduce the CMC existence results of Maxwell [33], but with a different proof;
our CMC proof goes through the same analysis framework that we use to obtain the
non-CMC results (Theorems 3.4 and 3.5). Again, these results established in the
presence of a weak background metric and with data meeting very low regularity
requirements.

(iv) Barrier Constructions: We give constructions (Lemmas 5.4 and 5.8) of weak global
sub- and super-solutions (barriers) for the Hamiltonian constraint equation which
are free of the near-CMC condition. The constructions require the assumption that
the freely specifiable part of the data given by the traceless-transverse part of the
rescaled extrinsic curvature and the matter fields are sufficiently small (required for
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the super-solution construction in Lemma 5.4) and if the energy density of matter
is not identically zero (required for the sub-solution in construction Lemma 5.8,
although we note this can be relaxed using the technique in [1]). While near-CMC-
free sub-solutions are common in the literature, our near-CMC-free super-solution
constructions appear to be the first such results of this type.

(v) Supporting Technical Tools: We assemble a number of new supporting technical
results in the body of the paper and in several appendices, including: topological
fixed-point arguments designed for the Einstein constraints; construction and prop-
erties of general Sobolev classes 117" and elliptic operators on closed manifolds
with weak metrics; the development of a very weak solution theory for the momen-
tum constraint; a priori L*°-estimates for weak W !2-solutions to the Hamiltonian
constraint; Yamabe classification of non-smooth metrics in general Sobolev classes
W#P; and an analysis of the connection between conformal rescaling and the near-
CMC condition.

The results in this paper imply that the weakest differentiable solutions of the Einstein
constraint equations we have found correspond to CMC and non-CMC hypersurfaces
with physical spatial metric h,;, satisfying

hay € WHP(M), p € (1,00), s(p) € (1+ }%,oo). (1.1)

The curvature of such metrics can be computed in a distributional sense, following [17].
In the CMC case, the regularity can be reduced to

hay € WHP(M), p € (1,00), s(p) € (g, 00) N [1, 00). (1.2)
In the case s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10], and
in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but with a
different proof; our CMC proof goes through the same analysis framework that we use
to obtain the non-CMC results (Theorems 3.4 and 3.5). In this paper we do not include
uniqueness statements on CMC solutions, or necessary and sufficient conditions for the
existence of CMC solutions; however, we expect that the techniques used in the above
mentioned works can be adapted to this setting without difficulty.

There are several related motivations for establishing the extensions outlined above.
First, as outlined in [5], new results for the non-CMC case, beyond the case analyzed
in [26, 1], are of great interest in both mathematical and numerical relativity. Non-
CMC results that are free of the near-CMC assumption are of particular interest, since
the existence of solutions in this case has been an open question for more than thirty
years. Second, there is currently substantial research activity in rough solutions to the
Einstein evolution equations, which rest on rough/weak solution results for the initial
data [30]. Third, the approximation theory for Petrov-Galerkin-type methods (including
finite element, wavelet, spectral, and other methods) for the constraints and similar sys-
tems previously developed in [20] establishes convergence of numerical solutions in very
general physical situations, but rests on assumptions about the solution theory; the results
in the present paper and in [21], help to complete this approximation theory framework.
Similarly, very recent results on convergence of adaptive methods for the constraints
in [23, 24] rest in large part on the collection of results here and in [20, 21].

An extended outline of the paper is as follows.

In §2, we summarize the conformal decomposition of Einstein’s constraint equations
introduced by Lichnerowicz and York, on a closed manifold. We describe the classical
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strong formulation of the resulting coupled elliptic system, and then define weak formu-
lations of the constraint equations that will allow us to develop solution theories for the
constraints in the spaces with the weakest possible regularity.

After setting up the basic notation, we give an overview of our main results in §3,
summarized in three existence theorems (Theorems 3.1, 3.2, and 3.3) for weak far-from-
CMC, near-CMC, and CMC solutions to the coupled constraints, extending the known
solution theory in several distinct ways as described above. We outline the two recent
advances in the analysis of the Einstein constraint equations that make these results
possible. The first advance is an abstract coupled topological fixed-point result (The-
orems 3.4 and 3.5), the proof of which is based directly on compactness rather than on
k-contractions. This gives an analysis framework for weak solutions to the constraint
equations that is fundamentally free of the near-CMC assumption; the near-CMC as-
sumption then only potentially arises in the construction of global barriers as part of the
overall fixed-point argument. A result of this type also makes possible the new non-CMC
results for the case of compact manifolds with boundary appearing in [21]. The second
new advance is the construction of global super-solutions for the Hamiltonian constraint
that are also free of the near-CMC condition; we give an overview of the main ideas in
the constructions, which are then derived rigorously in §5.

In §4 we then develop the necessary results for the individual constraint equations
in order to complete an existence argument for the coupled system based on the ab-
stract fixed-point argument in Theorems 3.4 and 3.5. In particular, in §4.1, we first de-
velop some basic technical results for the momentum constraint operator under weak
assumptions on the problem data, including existence of weak solutions to the momen-
tum constraint, given the conformal factor as data. In §4.2, we assume the existence of
barriers (weak sub- and super-solutions) to the Hamiltonian constraint equation forming
a nonempty positive bounded interval, and then derive several properties of the Hamil-
tonian constraint that are needed in the analysis of the coupled system. The results are
established under weak assumptions on the problem data, and for any Yamabe class.

Using order relations on appropriate Banach spaces, we then derive several such com-
patible weak global sub- and super-solutions in §5, based both on constants and on more
complex non-constant constructions. While the sub-solutions are similar to those found
previously in the literature, some of the super-solutions are new. In particular, we give
two super-solution constructions that do not require the near-CMC condition. The first is
constant, and requires that the scalar curvature be strictly globally positive. The second
is based on a scaled solution to a Yamabe-type problem, and is valid for any background
metric in the positive Yamabe class.

In §6, we establish the main results by giving the proofs of Theorems 3.1, 3.2, and 3.3.
In particular, using the topological fixed-point argument in Theorem 3.5, we combine
the global barrier constructions in §5 with the individual constraint results in §4 to es-
tablish existence of weak non-CMC solutions. We summarize our results in §7. For
ease of exposition, various supporting technical results are given in several appendices
as follows: Appendix §A.1 — topological fixed-point arguments; Appendix §A.2 — or-
dered Banach spaces; Appendix §A.3 — monotone increasing maps; Appendix §A.4 —
construction of fractional order Sobolev spaces of sections of vector bundles over closed
manifolds; Appendix §A.5 — a priori estimates for elliptic operators; Appendix §A.6
— maximum principles on closed manifolds; Appendix §A.7 — Yamabe classification of
weak metrics; Appendix §A.8 — conformal covariance of the Hamiltonian constraint; and
Appendix §A.9 — conformal rescaling and the near-CMC condition.
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2. PRELIMINARY MATERIAL

2.1. Notation and conventions. Let M be an n-dimensional smooth closed manifold.
We denote by 7 : £ — M (or simply £ — M, or just ) a smooth vector bundle over
M, where the manifold M is called the base space, E is called the total space, and 7 is
the bundle projection such that for any z € M, E, = 7~ !(z) is the fiber over x, which is
a vector space of (fiber) dimension m,. If all fibers £, have dimension m, = m, we say
the fiber dimension of £ is m. The manifold M itself can be considered as the vector
bundle £ = M x {0} with fiber dimension m = 0. A section of the trivial vector bundle
E = M x R with fiber dimension m = 1 is simply a scalar function on M. Our primary
interest is the case where

E=TM=TM®.. g TMIT"M®...0T"M

>

r times s times

the (r, s)-tensor bundle with contravariant order r and covariant order s, giving fiber
dimension m = n(r + s), where 7'M is the tangent bundle, and 7*M is the co-tangent
bundle of M. A C* section of 7 (or of £) is a C* map v : M — E such that for each
v € M, m(y(x)) = x. These C* sections form real Banach spaces C*(E) which arise
naturally in the global linear analysis of partial differential equations on manifolds.

Let hy, € C®(T9 M) be a smooth Riemannian metric on M, (where by convention
Latin indices denote abstract indices as e.g. in [48]), meaning that it is a symmetric, posi-
tive definite, covariant, smooth two-index tensor field on M. The combination (M, h,p)
is referred to as a (smooth) Riemannian manifold; we will relax the smoothness require-
ment on h,, below. For each x € M, the metric h,,(x) defines a positive definite
inner product on the tangent space 7, M at z. Denote by h* the inverse of hy, that is,
hech® = 6,°, where §,° : T,M — T, M is the identity map. We use the convention
that repeated indices, one upper-index and one sub-index, denote contraction. Indices on
tensors will be raised and lowered with 7% and h;, respectively. For example, given the
tensor u®, we denote Ugpe = haa, by, ©*% ., and u®¢ = het 4%, ; notice that the order
of the indices is important in the case that the tensor g, or u®¢ is not symmetric. We
say that a tensor is of type m iff it can be transformed into a tensor uy, ...,,, by lowering
appropriate indices (its vector bundle then has fiber dimension mn).

We now give a brief overview of L” and Sobolev spaces of sections of vector bundles
over closed manifolds in order to introduce the notation used throughout the paper. An
overview of the construction of fractional order Sobolev spaces of sections of vector
bundles can be found in Appendix A.4, based on Besov spaces and partitions of unity.
The case of the sections of the trivial bundle of scalars can also be found in [19], and the
case of tensors can also be found in [42]. Let V, be the Levi-Civita connection associated
with the metric h;, that is, the unique torsion-free connection satisfying V,h,. = 0. Let
Ra.? be the Riemann tensor of the connection V,, where the sign convention used in
this article is (VoV}, — V,Vo)ve = Rap?vy. Denote by Ry, := R,.° the Ricci tensor
and by R := R.;h® the Ricci scalar curvature of this connection.

Integration on M can be defined with the volume form associated with the metric h ;.
Given an arbitrary tensor u® %, ..;,, of type m = r + s, we define a real-valued function
measuring its magnitude at any point x € M as

lu| == (U™ P gy, )2 (2.1)
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A norm of an arbitrary tensor field u* %, .., on M can then be defined for any 1 <
p < oo and for p = oo respectively using (2.1) as follows,

1/p
|ull, := </ |ul|? dx) , |u|loo := ess sup |ul. 2.2)
M reM
One way to construct the Lebesgue spaces L?(77 M) of sections of the (r, s)-tensor
bundle, for 1 < p < oo, is through the completion of C*°(7T7 M) with respect to the
LP-norm (2.2). The LP spaces are Banach spaces, and the case p = 2 is a Hilbert space
with the inner product and norm given by

(u, ) ::/ oo 0™ d ] = /) = [ulla. 2.3)
M

Denote covariant derivatives of tensor fields as VFy®9m = Vi, -+ Vi, u 7% where
k denotes the total number of derivatives represented by the tensor indices (by, .. ., bg).
Another norm on C*°(77 M) is given for any non-negative integer k£ and for any 1 <
p < oo as follows,

k
lallip =D V" ullp- 2.4)
=0

The Sobolev spaces 1W"?(TT M) of sections of the (r, s)-tensor bundle can be defined as
the completion of C°°(77 M) with respect to the W*?-norm (2.4). The Sobolev spaces
WkP are Banach spaces, and the case p = 2 is a Hilbert space. We have L? = W°? and
lIsll, = IIs|lop- See Appendix A.4 for a more careful construction that includes real order
Sobolev spaces of sections of vector bundles.

Let C'3° be the set of nonnegative smooth (scalar) functions on M. Then we can define
order cone

Wit = {pe W (¢,0) 20 VYoeC¥}, (2.5)

with respect to which the Sobolev spaces W*? = W *P(M) are ordered Banach spaces.
Here (-, -) is the unique extension of L2-inner product to a bilinear form WP W~ —
R, with z% + % = 1. The order relation is then ¢ > v iff ¢ — ¢ € W}*. We note that
this order cone is normal only for s = 0. See Appendix A.2, where we review the main
properties of ordered Banach spaces.

2.2. The Einstein constraint equations. We give a quick overview of the Einstein con-
straint equations in general relativity, and then define weak formulations that are funda-
mental to both solution theory and the development of approximation theory. Analogous
material for the case of compact manifolds with boundary can be found in [21].

Let (M, gw,) be a 4-dimensional spacetime, that is, M is a 4-dimensional, smooth
manifold, and g,,, is a smooth, Lorentzian metric on A/ with signature (—, +, +, +). Let
V,, be the Levi-Civita connection associated with the metric g,,,. The Einstein equation
is

G = KL,

where G, = R, — %R 9w 1 the Einstein tensor, 7}, is the stress-energy tensor, and
k = 81G/c*, with G the gravitation constant and c the speed of light. The Ricci tensor
is R, = R,,,° and R = R,,,,g"" is the Ricci scalar, where g*” is the inverse of g,,,, that
is 9,09°” = 0,”. The Riemann tensor is defined by R, w, = (VMV,, — VVVM)wU,
where w,, is any 1-form on M. The stress energy tensor 7, is assumed to be symmetric
and to satisfy the condition V,T"” = 0 and the dominant energy condition, that is,
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the vector —7""v, is timelike and future-directed, where v* is any timelike and future-
directed vector field. In this section Greek indices u, v, o, p denote abstract spacetime
indices, that is, tensorial character on the 4-dimensional manifold M. They are raised
and lowered with ¢"” and g,,,,, respectively. Latin indices a, b, ¢, d will denote tensorial
character on a 3-dimensional manifold.

The mapt : M — R is atime function iff the function ¢ is differentiable and the vector
field —V*t is a timelike, future-directed vector field on M. Introduce the hypersurface
M = {x € M : t(z) = 0}, and denote by n, the unit 1-form orthogonal to M. By
definition of M the form n,, can be expressed as n,, = —«a V ,t, where «, called the lapse
function, is the positive function such that n,n, g = —1. Let EW and /%W be the first
and second fundamental forms of M, that is,

~

Py = Guw — Ny, ku, == —h,"Ven,.
The Einstein constraint equations on M are given by
(GW — K;TW) n’ = 0.

A well known calculation allows us to express these equations involving tensors on M
as equations involving intrinsic tensors on M. The result is the following equations,

R+ k% — kgk™ — 2kp = 0, (2.6)
Dk — Dyk™ + k7* = 0, 2.7)

where tensors ﬁab, l;:ab, Ja and p on a 3-dimensional manifold are the pull-backs on M
of the tensors fz,w, l%,“,, Ju and p on the 4-dimensional manifold M. We have introduced
the energy density p := n,n,T"” and the momentum current density Ju = —h l,nUT”"

We have denoted by D the Levi-Civita connection associated to hab, so (M, hab) is a
3-dimensional Riemannian manifold, with hab having signature (+, +, +), and we use
the notation h“b for the inverse of the metric hab Indices have been raised and lowered
with ~9 and g, respectively. We have also denoted by 3R the Ricci scalar curvature of
the metric ﬁab. Finally, recall that the constraint Egs. (2.6)-(2.7) are indeed equations on
hap, and kq, due to the matter fields satisfying the energy condition —p? + 7,7% < 0 (with
strict inequality holding at points on M where p # 0; see [48]), which is implied by the
dominant energy condition on the stress-energy tensor 7#” in spacetime.

2.3. Conformal transverse traceless decomposition. Let gb denote a pos1t1ve scalar
field on M, and decompose the extrinsic curvature tensor k b = lab + habr where

T .= l%abﬁ“b is the trace and then Zab is the traceless part of the extrinsic curvature tensor.
Then, introduce the following conformal re-scaling:
hap =0 ¢ hay, 10 =1 9701", 7 =17,

ca . =10 ; A . 48

J=r0m7 0 p=10"p
We have introduced the Riemannian metric h,; on the 3-dimensional manifold M, which
determines the Levi-Civita connection D,, and so we have that D, h;. = 0. We have also
introduced the symmetric, traceless tensor [,;, and the non-physical matter sources ;¢

and p. The different powers of the conformal re-scaling above are carefully chosen so
that the constraint Egs. (2.6)-(2.7) transform into the following equations

—8A¢ + 3R + 2720° — Lyl — 2kpp = 0, (2.9)
— Dyl + 265D + rj* = 0, (2.10)

(2.8)
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where in equation above, and from now on, indices of unhatted fields are raised and
lowered with 7% and h,, respectively. We have also introduced the Laplace-Beltrami
operator with respect to the metric h,;, acting on smooth scalar fields; it is defined as
follows

A¢ = h®D,Dyé. (2.11)
Egs. (2.9)-(2.10) can be obtained by a straightforward albeit long computation. In order
to perform this calculation it is useful to recall that both ba and D, are connections
on the manifold M, and so they differ on a tensor field C;,¢, which can be computed
explicitly in terms of ¢, and has the form

Cap® = 46(a° Dy In(¢) — 2haph* Dy In(9).

We remark that the power of four on the re-scaling of the metric Pap together with M
being 3-dimensional imply that R = ¢~>(*R¢ — 8 A¢), or in other words, that ¢ satisfies
the Yamabe-type problem:

—8A¢+Rp—Rp> =0, ¢ >0, (2.12)

where 3R represents the scalar curvature corresponding to the physical metric hap =
¢*hqy,. Note that for any other power in the re-scaling, terms proportional to the quan-
tity h®(D,¢)(Dyp)/$? appear in the transformation. The set of all metrics on a closed
manifold can be classified into the three disjoint Yamabe classes Y+ (M), yO(M), and
Y~ (M), corresponding to whether one can conformally transform the metric into a met-
ric with strictly positive, zero, or strictly negative scalar curvature, respectively, cf. [31]
(See also Appendix A.7). We note that the Yamabe problem is to determine, for a given
metric h.,, whether there exists a conformal transformation ¢ solving (2.12) such that
3R = const. Arguments similar to those above for ¢ force the power negative ten on the
re-scaling of the tensor [% and J%, so terms proportional to (D,¢)/¢ cancel out in (2.10).
Finally, the ratio between the conformal re-scaling powers of p and )* is chosen such
that the inequality —p® + hgy,j®j® < 0 implies the inequality —p2 + haj*7® < 0. For a
complete discussion of all possible choices of re-scaling powers, see Appendix A.9.

There is one more step to convert the original constraint equation (2.6)-(2.7) into a
determined elliptic system of equations. This step is the following: Decompose the
symmetric, traceless tensor [, into a divergence-free part o, and the symmetrized and
traceless gradient of a vector, that is, [ =: 0% + (Lw)®, where D,0% = 0 and we
have introduced the conformal Killing operator £ acting on smooth vector fields and
defined as follows

(Lw)™ := D*w® + D'w* — 2(D.w®)h®. (2.13)

Therefore, the constraint Eqs. (2.6)-(2.7) are transformed by the conformal re-scaling
into the following equations

—8A¢ 4R+ 2720° — [0 + (Lw)w)[0"" + (Lw)?]¢™" — 2kpp~2 =0,  (2.14)
—Dy(Lw)® + 2¢5 D7 + kje =0, 2.15)

In the next section we interpret these equations above as partial differential equations for
the scalar field ¢ and the vector field w®, while the rest of the fields are considered as
given fields. Given a solution ¢ and w® of Egs. (2.14)-(2.15), the physical metric hap and
extrinsic curvature k% of the hypersurface M are given by

i’zab = ¢ hap, Lab — ¢—10[0.ab + (£w>ab] + % ¢_4Thab,
while the matter fields are given by Eq (2.8).
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From this point forward, for simplicity we will denote the Levi-Civita connection of
the metric h,, on the 3-dimensional manifold M as V, rather than D,, and the Ricci
scalar of hg;, will be denoted by R instead of *R. Let (M, h) be a 3-dimensional Rie-
mannian manifold, where M is a smooth, compact manifold without boundary, and
h € C®(T9 M) is a positive definite metric. With the shorthands C*° = C*°(M x R)
and C*° = C®(TM),let L : C*° — C* and IL : C*° — C* be the operators with
actions on ¢ € C'™° and w € C* given by

Lo := —A¢, (2.16)
(ILw)* := =V, (Lw)™, (2.17)

where A denotes the Laplace-Beltrami operator defined in (2.11), and where £ denotes
the conformal Killing operator defined in (2.13). We will also use the index-free notation
ILw and Lw.

The freely specifiable functions of the problem are a scalar function 7, interpreted
as the trace of the physical extrinsic curvature; a symmetric, traceless, and divergence-
free, contravariant, two index tensor o; the non-physical energy density p and the non-
physical momentum current density vectorj subject to the requirement —p® +j -j < 0.
The term non-physical refers here to a conformal rescaled field, while physical refers
to a conformally non-rescaled term. The requirement on p and j mentioned above and
the particular conformal rescaling used in the semi-decoupled decomposition imply that
the same inequality is satisfied by the physical energy and momentum current densities.
This is a necessary condition (although not sufficient) in order that the matter sources
in spacetime satisfy the dominant energy condition. The definition of various energy
conditions can be found in [48, page 219]. Introduce the non-linear operators F' : C'*° X
C” — C*and FF : C*° — C™ given by

F(¢,w) = a,¢° + ard —a,0 > —a,d "', and I[F(¢) =b, ¢° +b;,

where the coefficient functions are defined as follows

1.2 1 K
ar == 3577, ag = 3R, a, == 5p,

2.18
ay = §(0 + Lw)ap(o + Lw)®, by = 5VOT, b= R -

Notice that the scalar coefficients a,, a,,, and a, are non-negative, while there is no sign
restriction on ap.

With these notations, the classical formulation (or the strong formulation) of the cou-
pled Einstein constraint equations reads as: Given the freely specifiable smooth functions
7,0, p,andj in M, find a scalar field ¢ and a vector field w in M solution of the system

Lo+ F(p,w) =0 and ILw+ IF(p)=0 in M. (2.19)

2.4. Formulation in Sobolev spaces. We now outline a formulation of the Einstein con-
straint equations that involves the weakest regularity of the equation coefficients such
that the equation itself is well-defined. So in particular, the operators L and IL are no
longer differential operators sending smooth sections to smooth sections. We shall em-
ploy Sobolev spaces to quantify smoothness, cf. Appendix A.4.

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, com-
pact manifold without boundary, and with p € (2,00) and s € (%, o) N [L,2], h €
W#P(TP) M) is a positive definite metric. Note that the restriction s < 2 is only apparent,
since W4 — W?2P for any ¢ > 2. In the formulation of the constraint equations we need
to distinguish the cases s > 2 and s < 2 at least notation-wise, and we choose to present
in this subsection the case s < 2 because this is the case that is considered in the core
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existence theory; the higher regularity is obtained by a standard bootstrapping technique.
The general case is discussed in Sections 4 and 6. Let us define r = r(s,p) = %,
so that the continuous embedding L™ — W*~2? holds. Introduce the operators

Ap WP — WE2P, and  Ap: WY - wbh

as the unique extensions of the operators L and I in Egs. (2.16) and (2.17), respectively,
cf. Lemma A.24 in Appendix A.5. The boldface letters denote spaces of sections of the
tangent bundle T M, e.g., W'?" = WL (T M).

Fix the source functions

TELY, peW™ oel¥, jeWw ' (2.20)

where o is symmetric, traceless and divergence-free in weak sense, the latter meaning
that (o, Lw) = O forall w € W1’ Here ﬁ +5 =1, and (-, -) denotes the extension
of the L2-inner product to W ~1%" @ W ("' We say that the matter fields p andj satisfy
the energy condition iff there exist sequences {p,} C C* and {j ,} C C™, respectively

converging to p andj in the appropriate topology, such that
Pr—dndn=0.
Given any function 7 € L*" we have b, = 2V7 € W 1?" The assumptions 7 € L

and o € L* imply that for every w € W 2" the functions a, and a,, belong to L". For
example, to see that a,, € L", we proceed as

lawllr = llo + Lwllzr < 2 (lloll5, + 1£w]5.) < 2 (loll3, + Wl 2)

where we used the boundedness ||[Lw||2, < cz||w|l12-. The assumption on the back-
ground metric implies that ap € WS=2P,
Given any two functions u,v € L*°, and ¢ > 0 and ¢ € [1, 00|, define the interval

[u,v)sg ={p e W u < p<v} CWH,
see Lemma 3.6 on page 20. We equip [u, v];, with the subspace topology of W7, We

will write [u, v], for [u,v]o 4, and [u, v] for [u, v]s. Now, assuming that ¢_, ¢, € WP
and 0 < ¢_ < ¢4 < oo, we introduce the non-linear operators

[ [(b*’ ¢+]s,p x Wh" — WS?Z’pa and [ [¢77 ¢+]s,p — W71’2T7

by
f(¢v W) = ar¢5 + aRQb - ap¢_3 - aw¢_7a and f(¢) = b’rgbG + ij
where the pointwise multiplication by an element of 1/ %" defines a bounded linear map
in W*=2? and in W ~1%" cf. Corollary A.20(a) in Appendix A 4.
Now, we can formulate the Einstein constraint equations in terms of the above defined
operators: Find elements ¢ € [¢_, ¢,]s, and w € W?" solutions of

Agw +f(¢) =0. (2.22)
In the following, often we treat the two equations separately. The Hamiltonian con-

straint equation is the following: Given a function w € W%, find an element ¢ €
[¢_, ¢+]s,p solution of

Ao+ flo,w) =0. (2.23)

When the Hamiltonian constraint equation is under consideration, the function w is re-
ferred to as the source. To indicate the dependence of the solution ¢ on the source w,
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sometimes we write ¢ = ¢,,. Let us define the momentum constraint equation: Given
¢ € W*P with ¢ > 0, find an element w € W 12" solution of

Agw +f(¢) = 0. (2.24)

When the momentum constraint equation is under consideration, the function ¢ is re-
ferred to as the source. To indicate the dependence of the solution w on the source ¢,
sometimes we write w = w,.

3. OVERVIEW OF THE MAIN RESULTS

In this section, we state our three main theorems (Theorems 3.1, 3.2, and 3.3 below) on
the existence of far-from-CMC, near-CMC, and CMC solutions to the Einstein constraint
equations, and give an outline of the overall structure of the argument that we build in
the paper. The proofs of the main results appear in §6 toward the end of the paper, after
we develop a number of supporting results in the body of the paper. After we give an
overview of the basic abstract structure of the coupled nonlinear constraint problem, we
prove two abstract topological fixed-point theorems (Theorems 3.4 and 3.5) that are the
basis for our analysis of the coupled system; these arguments are also the basis for our
results in [21] on existence of non-CMC solutions to the Einstein constraints on compact
manifolds with boundary. After proving these abstract results, we give an overview of
the technical results that must be established in the remainder of the paper in order to use
the abstract results.

Before stating the main theorems, let us make precise what we mean by near-CMC
condition in this article. We say that the extrinsic mean curvature 7 satisfies the near-
CMC condition when the following inequality is satisfied

V7|, < F1}\1/(f|7\, 3.1

where the constant I' = 2%% if po? € L™, and T = %(%)6 otherwise, with the
constant C' > 0 as in Corollary 4.2 and the continuous functions u,v > 0 are as defined
in (5.14) or in (5.15) on page 33. Here C' depends only on the Riemannian manifold
(M, hg), and not mentioning (M, hyp), u and v depend only on p, o2, and 7. It is

important to note that we always have 0 < % < 1, so that in any case the condition

(3.1) is at least as strong as the same condition with I' taken to be equal to 2%5 The
condition depends on the value of z, and that will be inserted through the context.
Recall that the three Yamabe classes Y (M), Y~ (M) and Y°(M) are defined after

Eq. (2.12). See Appendix A.7 for more details.

3.1. Theorem 3.1: Far-CMC weak solutions. Here is the first of our three main re-
sults. This result does not involve the near-CMC condition, which is one of the main
contributions of this paper. The result is developed in the presence of a weak background
metric hy, € W*P, for p € (1,00) and s € (1 + %, 00), with the weakest possible
assumptions on the data that allows for avoiding the near-CMC condition.

Theorem 3.1. (Far-CMC W*? solutions, p € (1,00), s € (1 + 2,00)) Let (M, hap)
be a 3-dimensional closed Riemannian manifold. Let h,, € W*P admit no conformal
Killing field and be in Y+ (M), where p € (1,00) and s € (1 + %, o0) are given. Select
q and e to satisfy:

e Le(0,1)n(0, 51 n[%E, b,

3 3 3 3 3
eec(l+,00)N[s—1s]N[Z+s—2—-12+s—":]

Assume that the data satisfies:
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3q

e—1,q ; 1,z : ; —
eTcW ife > 2, and T € W"* otherwise, with z = T {0210’

o 0 € WL with |02 sufficiently small,

o p € WP N L=\ {0}, with ||p||s sufficiently small,

o j € W24 with ||j||_2., sufficiently small.
Then there exist o € WP with ¢ > 0 and w € W? solving the Einstein constraint
equations.

Proof. The proof will be given in §6. O

Q=

FIGURE 1. Range of e and ¢ in Theorems 3.1 and 3.2, with d = s — % > 1.

Remark. The above result avoids the near-CMC condition (3.1); however, one should be
aware of the various smallness conditions involved in the above theorem. More precisely,
the mean curvature 7 can be chosen to be an arbitrary function from a suitable function
space, and afterwards, one has to choose o, p, andj satisfying smallness conditions that
depend on the chosen 7. Nevertheless, the novelty of this result is that 7 can be specified
freely, whereas the condition (3.1) is not satisfied for arbitrary 7.

3.2. Theorem 3.2: Near-CMC weak solutions. Here is the second of our three main
results; this result requires the near-CMC condition, but still extends the known near-
CMC results to situations with weaker assumptions on metric and on the data. In partic-
ular, the result is developed in the presence of a weak background metric h,, € W*P, for
p€ (l,o0)and s € (1 + g, 00), and with the weakest possible assumptions on the data.

Theorem 3.2. (Near-CMC W*? solutions, p € (1,00), s € (1 + %, 00)) Let (M, hap)
be a 3-dimensional closed Riemannian manifold. Let h,, € W*P admit no conformal
Killing field, where p € (1,00) and s € (1+ z%’ 00) are given. Select q, e and z to satisfy:

° % € (0,1) ﬂ(O,%) A [33;;’3%3]’
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o66(1+§,oo)ﬂ[s—1,s]ﬂ[§+s—%—1,§+3—%].

3q
34+max{0,2—e}q"

Assume that T satisfies the near-CMC condition (3.1) with z as above, and that the data
satisfies:

eTcWellife>2 andt € WY ife < 2,

o o CcWely

e pcE Wi_Q’p,

ojc W2

In addition, let one of the following sets of conditions hold:

[ Aa—

(@) hap isin Y~ (M), the metric hyy, is conformally equivalent to a metric with scalar
curvature (—72);
(b) hap is in YO (M) or in YT (M); either p £ 0 and 7 # 0 or 7 € L* and inf y 0
is sufficiently large.
Then there exist o € WP with ¢ > 0 and w € W solving the Einstein constraint
equations.

Proof. The proof will be given in §6. 0

3.3. Theorem 3.3: CMC weak solutions. Here is the last of our three main results;
it covers specifically the CMC case, and allows for lower regularity of the background
metric than the non-CMC case. In particular, the result is developed with a weak back-
ground metric hy, € WP, forp € (1,00) and s € (%, 00) N [1,00). In the case of s = 2,
we reproduce the CMC existence results of Choquet-Bruhat [10], and in the case p = 2,
we reproduce the CMC existence results of Maxwell [33], but with a different proof; our
CMC proof goes through the same analysis framework that we use to obtain the non-
CMC results (Theorems 3.4 and 3.5). In the following theorem we do not include the
trivial case hg, € Y and 7 =0 = p = 0.

Theorem 3.3. (CMC W** solutions, p € (1,00), s € (2,00) N [1,00)) Let (M, has)
be a 3-dimensional closed Riemannian manifold. Let h,, € W*P admit no conformal
Killing field, where p € (1,00) and s € (%, o0) N [1,00) are given. With d := s — %,
select q and e to satisfy:
3-p 3+ 1-d 3+s
o % € (07 1) N [3_1;177 3_pp] N [Ta 6pp)’
ececlloo)Nls—1,s|N[E+d-12+dNE+ g 00)
Assume T = const (CMC) and that the data satisfies:
o o cWely
e pE WiﬁQ’p ,
ojc We 2,
In addition, let one of the following sets of conditions hold:
(@) hgyisin Y~ (M); 7 #0;
(b) hapisin YT (M); p#£0oro #0;
(©) hapisin Y (M); 7#£0;, p#0oro #0;
(d) hapisin Y'(M); 7=p=0=0;j=0.
Then there exist o € WP with ¢ > 0 and w € W solving the Einstein constraint
equations.

Proof. The proof will be given in §6. U
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FIGURE 2. Range of ¢ and ¢ in Theorem 3.3. Recall thatd = s — > > 0.

3.4. A coupled topological fixed-point argument. In Theorems 3.4 and 3.5 below (see
also [21]) we give some abstract fixed-point results which form the basic framework for
our analysis of the coupled constraints. These topological fixed-point theorems will be
the main tool by which we shall establish Theorems 3.1, 3.2, and 3.3 above. They have
the important feature that the required properties of the abstract fixed-point operators S
and 7" appearing in Theorems 3.4 and 3.5 below can be established in the case of the
Einstein constraints without using the near-CMC condition; this is not the case for fixed-
point arguments for the constraints based on k-contractions (cf. [26, 1]) which require
near-CMC conditions. The bulk of the paper then involves establishing the required
properties of .S and 7" without using the near-CMC condition, and finding suitable global
barriers ¢_ and ¢ for defining the required set U that are similarly free of the near-CMC
condition (when possible).

We now set up the basic abstract framework we will use. Let X, Y, X, and Y be
Banach spaces, and let X*, Y*, X*, and Y* be their corresponding dual spaces, respec-
tively. Let f : X XY — X*andf : X — Y* be (generally nonlinear) operators, let
Ap 1Y — Y* be a linear invertible operator, and let Ay, : X — X* be a linear invertible
operator satisfying the maximum principle, meaning that Ayu < Arv = u < v. The
order structures on X and X (and hence on X* and X*) for interpreting the maximum
principle will be inherited from ordered Banach spaces Z and Z (see Appendices A.2,
A.3, and A.6, and also cf. [54]) through the compact embeddings X — Z and X — Z,
which will also make available compactness arguments.

The coupled Hamiltonian and momentum constraints can be viewed abstractly as cou-
pled operator equations of the form:

Ad+ f(ow) = 0, (3.2)
Apw+£(¢) = 0, (3.3)
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or equivalently as the coupled fixed-point equations
¢ = T(o,w), (3.4)
w = S(¢), 3.5)

for appropriately defined fixed-point maps 7" : X xY — X and S : X — Y. The
obvious choice for S is the Picard map for (3.3)

S(¢) = —AL'f(9), (3.6)

which also happens to be the solution map for (3.3). On the other hand, there are a
number of distinct possibilities for 7', ranging from the solution map for (3.2), to the
Picard map for (3.2), which inverts only the linear part of the operator in (3.2):

T(¢p,w) = —AL' f(, w). (3.7)

Assume now that 7" is as in (3.7), and (for fixed w € Y') that ¢_ and ¢, are sub- and
super-solutions of the semi-linear operator equation (3.2) in the sense that

AL¢— + f(gb—a w) < Ov AL¢+ + f(¢+7w) 2 0.

The assumptions on Ay, imply (see Lemma A.14 in Appendix A.3) that for fixed w € Y,
¢_ and ¢ are also sub- and super-solutions of the equivalent fixed-point equation:

¢— < T(¢—7 w)a ¢+ 2 T(¢+a w)

For developing results on fixed-point iterations in ordered Banach spaces, it is convenient
to work with maps which are monotone increasing in ¢, for fixed w € Y:

P11 < gy = T(p1,w) < T(p2,w).

The map T’ that arises as the Picard map for a semi-linear problem will generally not be
monotone increasing; however, if there exists a continuous linear monotone increasing
map J : X — X*, then one can always introduce a positive shift s into the operator
equation

Ao+ f7(d,w) =0,

with A5 = Ap + sJ and f*(¢,w) = f(¢,w) — sJ¢. Since s > 0 the shifted operator
Aj retains the maximum principle property of A, and if s is chosen sufficiently large
then f° is monotone decreasing in ¢. Under the additional condition on J and s that A}
is invertible (see also [21]), the shifted Picard map

T*(¢,w) = —(AL) " (6, w)

is now monotone increasing in ¢.
We now give two abstract existence results for systems of the form (3.4)—(3.5).

Theorem 3.4. (Coupled Fixed-Point Principle A) Let X and Y be Banach spaces, and
let Z be a Banach space with compact embedding X — Z. Let U C Z be a non-empty,
convex, closed, bounded subset, and let

S:U—-R(S)CY, T:UxR(S)—-UNX,
be continuous maps. Then there exist € U N X and w € R(S) such that
p=T(p,w) and w=5(p).
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Proof. The proof will be through a standard variation of the Schauder Fixed-Point The-
orem, reviewed as Theorem A.3 in Appendix A.1. The proof is divided into several
steps.

Step 1: Construction of a non-empty, convex, closed, bounded subset U C Z. By as-
sumption we have that U C Z is non-empty, convex (involving the vector space structure
of Z), closed (involving the topology on Z), and bounded (involving the metric given by
the norm on 7).

Step 2: Continuity of a mapping G : U C Z — U N X C X. Define the composite
operator

G:=ToS:UcCcZ—-UnNnXcX.

The mapping G is continuous, since it is a composition of the continuous operators S :
UCZ—->RS)CYandT:UCZxR(S)—-UNXCX.

Step 3: Compactness of a mapping ' : U C Z — U C Z. The compact embedding
assumption X <— Z implies that the canonical injection operator 7 : X — Z is compact.
Since the composition of compact and continuous operators is compact, we have the
composition F':=i0G : U C Z — U C Z is compact.

Step 4: Invoking the Schauder Theorem. Therefore, by a standard variant of the
Schauder Theorem (see Theorem A.3 in Appendix A.1), there exists a fixed-point ¢ € U
such that ¢ = F(¢) = T(¢,S(¢)). Since R(T) = U N X, in fact p € U N X. We now
take w = S(¢) C R(S) and we have the result. O

The assumption in Theorem 3.4 that the mapping 7' is invariant on the non-empty,
closed, convex, bounded subset U can be established using a priori estimates if 1" is
the solution mapping, but if there are multiple fixed-points then continuity of 7" will not
hold. Fixed-point theory for set-valued maps could still potentially be used (cf. [54]).
On the other hand, if 7" is chosen to be the Picard map, then it is typically easier to
establish continuity of 7" even with multiple fixed-points, but more difficult to establish
the invariance property without additional conditions on 7'. In our setting, we wish to
allow for non-uniqueness in the Hamiltonian constraint (for example see [21] for possi-
ble non-uniqueness in the case of compact manifolds with boundary), so will generally
focus on the Picard map for the Hamiltonian constraint in our fixed-point framework for
the coupled constraints. The following special case of Theorem 3.4 gives some simple
sufficient conditions on 7" to establish the invariance using barriers in an ordered Banach
space (for a review of ordered Banach spaces, see Appendix A.2 or [54]).

Theorem 3.5. (Coupled Fixed-Point Principle B) Ler X and Y be Banach spaces,
and let Z be a real ordered Banach space having the compact embedding X — Z.
Let [p_, ¢1| C Z be a nonempty interval which is closed in the topology of Z, and set
U = [¢_, ¢, N By C Z where By is the closed ball of finite radius M > 0 in Z about
the origin. Assume U is nonempty, and let the maps

S:U—-R(S)CY, T:UxR(S)—-UNX,
be continuous maps. Then there exist € U N X and w € R(S) such that
p=T(p,w) and w=S5(p).

Proof. By choosing the set U to be the non-empty intersection of the interval [¢_, ¢, |
with a bounded set in Z, we have U bounded in Z. We also have that U is convex
with respect to the vector space structure of Z, since it is the intersection of two convex
sets [¢_, @] and By;. Since U is the intersection of the interval [¢_, ¢.], which by
assumption is closed in the topology of Z, with the closed ball B, in Z, U is also closed.
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In summary, we have that U is non-empty as a subset of Z, closed in the topology of Z,
convex with respect to the vector space structure of Z, and bounded with respect to the
metric (via normed) space structure of Z. Therefore, the assumptions of Theorem 3.4
hold and the result then follows. U

We make some final remarks about Theorems 3.4 and 3.5. If the ordered Banach space
Z in Theorem 3.5 had a normal order cone, then the closed interval [¢_, ¢, | would
automatically be bounded in the norm of Z (see Lemma A.7 in Appendix A.2 or [54]
for this result). The interval by itself is also non-empty and closed by assumption, and
trivially convex (see Appendix A.2), so that Theorem 3.5 would follow immediately
from Theorem 3.4 by simply taking U = [¢_,¢,]. Second, the closed ball By, in
Theorem 3.5 can be replaced with any non-empty, convex, closed, and bounded subset
of Z having non-trivial intersection with the interval [¢_, ¢ |. Third, in the case that T’
in Theorem 3.5 arises as the Picard map (3.7) of the semi-linear problem (3.2), we can
always ensure that 7" is invariant on U in Theorem 3.5 by: (1) obtaining sub- and super-
solutions to the semi-linear operator equation and using these for ¢_ and ¢, since these
will also be sub- and super-solutions for the fixed-point equation involving the Picard
map; (2) introducing a shift into the nonlinearity to ensure 7' is monotone increasing;
and (3) obtaining a priori norm bounds on Picard iterates. As noted earlier, (1) and (2)
will ensure

¢— < T(¢—7 w) < T(¢7 ?,U) < T<¢+7 U)) < ¢+7 (38)
forall ¢ € [p_, ¢4, and w € R(S), whereas (3) ensures that
IT(¢,w)lx <M, VYo €lp_,¢4], YweR(S), 3.9

which together ensure 7 : U x R(S) — UN X, where U = [¢_, ¢, ]N By C Z. Again,
if Z has a normal order cone structure, then ensuring (3.8) holds will automatically guar-
antee that (3.9) also holds, so it is not necessary to establish (3.9) separately in the case
of a normal order cone.

Finally, note that Theorem 3.5 also allows one to choose the solution map (or any other
fixed-point map) for 7" together with a priori order cone and norm estimates to ensure
the conditions (3.8) and (3.9) hold (as long as continuity for 7' can be shown). Even if
a priori order-cone estimates cannot be shown to hold directly for this choice of T, as
long as the map can be “bracketed” in the interval [¢_, ¢ | by two auxiliary monotone
increasing maps, then it can be shown that (3.8) holds. This allows one to use the Picard
map even if it is not monotone increasing, without having to introduce the shift into the
Picard map.

The overall argument we use to prove the non-CMC results in Theorems 3.1, 3.2,
and 3.3 using Theorems 3.4 and 3.5 involves the following steps:

Step 1: The choice of function spaces. We will choose the spaces for use of Theorem 3.5
as follows:
o X = W, with p € (1,00), and 5(p) € (1 + },00). In the CMC case in
Theorem 3.3, we can lower s to 5(p) € (2,00) N [1,00).
o Y = W%, with e and ¢ as given in the theorem statements.
o 7 =W?5 3¢ (%, 5), so that X = W*P <« WP = Z is compact.
e U= [p_,p4]s, N By C WP = Z, with ¢_ and ¢, global barriers (sub-
and super-solutions, respectively) for the Hamiltonian constraint equation
which satisfy the compatibility condition: 0 < ¢_ < ¢4 < o0.
Step 2: Construction of the mapping S. Assuming the existence of “global” weak sub-
and super-solutions ¢_ and ¢, and assuming the fixed function ¢ € U =
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[¢_,p4]sp N By C WS = Z is taken as data in the momentum constraint,
we establish continuity and related properties of the momentum constraint solu-
tionmap S : U — R(S) C W =Y. (§4.1)

Step 3: Construction of the mapping I'. Again existence of “global” weak sub- and
super-solutions ¢_ and ¢, with fixed w € R(S) C W% = Y taken as
data in the Hamiltonian constraint, we establish continuity and related prop-
erties of the Picard map 7" : U x R(S) — U N W#*P. Invariance of 7' on
U= [¢_,b4]sp N By C WP is established using a combination of a priori
order cone bounds and norm bounds. (§4.2)

Step 4: Barrier construction. Global weak sub- and super-solutions ¢_ and ¢ for the
Hamiltonian constraint are explicitly constructed to build a nonempty, convex,
closed, and bounded subset U = [¢_, ¢4]5, N By C© W9, which is a strictly
positive interval. These include variations of known barrier constructions which
require the near-CMC condition, and also some new barrier constructions which
are free of the near-CMC condition. (§5) Note: This is the only place in the
argument where near-CMC conditions may potentially arise.

Step 5: Application of fixed-point theorem. The global barriers and continuity properties
are used together with the abstract topological fixed-point result (Theorem 3.5)
to establish existence of solutions ¢ € U N W*? and w € W7 to the coupled
system: w = S(¢), » =T (P, w). (§6)

Step 6: Bootstrap. The above application of a fixed-point theorem is actually performed
for some low regularity spaces, i.e., for s < 2 and e < 2, and a bootstrap
argument is then given to extend the results to the range of s and p given in the
statement of the Theorem. (§6)

The ordered Banach space Z plays a central role in Theorem 3.5. We will use Z =
Wha t > 0,1 < g < oo, with order cone defined as in (2.5). Given such an order cone,
one can define the closed interval

(6, Ly = {6 €W 6_ <P < o} C W,

which as noted earlier is denoted more simply as [¢_, ¢ ], when ¢t = 0, and as simply
[0_, ¢ ] whent = 0, ¢ = co. Whent = 0, the W order cone is normal for 1 < g < oo,
meaning that closed intervals [¢_, ¢], C L9 = W4 are automatically bounded in the
metric given by the norm on L9.

If we consider the interval U = [¢p_, ¢4, C W'? = Z defined using this order
structure, it will be critically important to establish that U is convex (with respect to the
vector space structure of Z), closed (in the topology of Z), and (when possible) bounded
(in the metric given by the norm on Z). It will also be important that U be nonempty as
a subset of Z; this will involve choosing compatible ¢_ and ¢, . Regarding convexity,
closure, and boundedness, we have the following lemma.

Lemma 3.6. (Order cone intervals in W"9) Fort > 0, 1 < ¢ < oo, the set

U=[p_,dt]tg={0 €W ¢_ << pp} CWH

is convex with respect to the vector space structure of W% and closed in the topology of
Wt Fort =0, 1 < q < oo, the set U is also bounded with respect to the metric space
structure of L1 = W04,

Proof. That U is convex fort > 0, 1 < ¢ < oo, follows from the fact that any interval
built using order cones is convex. That U is closed in the case of t = 0, 1 < ¢ < o©
follows from the fact that norm convergence in L? for 1 < ¢ < oo implies pointwise
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subsequential convergence almost everywhere (see Theorem 3.12 in [44]). That U is
bounded when t = 0, 1 < g < oo follows from the fact that the order cone Li 1s normal
(see Appendix A.2).

What remains is to show that U is closed in the case of ¢ > 0, 1 < ¢ < oo. The
argument is as follows. Let {uy}32, be a Cauchy sequence in U C W% C L9, with
t > 0,1 < ¢ < oo. From completeness of W4 there exists limy_, up = v € Wh4,
From the continuous embedding W% — L for t > 0, we have that

ur — wllg < Cllur — wlfeq

so that uy, is also Cauchy in LY. Moreover, the continuous embedding also implies that
u is also the limit of u;, as a sequence in LY. Since [¢_, ¢4]o, is closed in L?, we have

u € [¢—7 ¢+]0,Q’ andsou € U = [¢—7 ¢+]t,q = [¢—7 ¢+]0,q nwha, O

Remark. We indicate now how the far-CMC result outlined in [22] can be recovered us-
ing Theorem 3.4 above. The framework is constructed by taking X = W?2P, Y = W?2P,
and Z = L™, with p > 3, giving the compact embedding W*? — L. The coefficients
are assumed to satisfy 7 € WP and 02, 7%, p € LP as well as the assumptions for the
construction of a near-CMC-free global super-solution (presented in [22] as Theorem 1,
analogous to Lemma 5.4 in this paper), and for the construction of a near-CMC-free
global sub-solution (presented in [22] as Theorem 2, analogous to Lemma 5.8 in this
paper). One then takes U = [¢p_, ¢,] C Z = L, where the compatible 0 < ¢_ < ¢
are these near-CMC-free barriers. Since Z = L is an ordered Banach space with nor-
mal order cone, we have (by Lemma 3.6 in this paper) that U is non-empty, convex,
closed and bounded as a subset of Z. The invariance of the Picard mapping on the in-
terval [¢_, ¢, | is proven using a monotone shift (cf. Lemma 4.5 in this paper) and a
barrier argument (cf. Lemma 4.6 in this paper). The main result in [22] (stated in [22] as
Theorem 4), now follows from Theorem 3.4 in this paper (stated in [22] as Lemma 1).

4. WEAK SOLUTION RESULTS FOR THE INDIVIDUAL CONSTRAINTS

4.1. The momentum constraint and the solution map S. In this section we fix a par-
ticular scalar function ¢ € W*? with sp > 3, and consider separately the momentum
constraint equation (2.24) to be solved for the vector valued function w. The result is a
linear elliptic system of equations for this variable w = w. For convenience, we refor-
mulate the problem here in a self-contained manner. Note that the problem (4.2) below
is identical to (2.24) provided the functions b, and b; are defined accordingly. Our goal
is not only to develop some existence results for the momentum constraint, but also to
derive the estimates for the momentum constraint solution map S that we will need later
in our analysis of the coupled system. We note that a complete weak solution theory for
the momentum constraint on compact manifolds with boundary, using both variational
methods and Riesz-Schauder Theory, is developed in [21].

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, compact
manifold without boundary, and with p € (1,00) and s € ( 1%, o0), h € W*P is a positive
definite metric. With

q € (1,00), and eE(2—s,s]ﬂ(—s+§—1+§,s—%+§],
introduce the bounded linear operator
Ap : Wl — We 24,

as the unique extension of the operator IL in (2.17), cf. Lemmata A.24 and A.25 in
Appendix A.5. Fix the source terms b,,b; € W >4, Fix a function ¢ € W*?, and
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define
foeWs ™0 f :=b¢°+b 4.1)
We used the subscript ¢ in f , to emphasize that ¢ is not a variable (but the “source”) of
the problem. Note that the above conditions on ¢ and e are sufficient for the pointwise
multiplication by an element of W*? to be a bounded map in W¢ %, cf. Corollary
A.20(a) in Appendix A.4.
The momentum constraint equation is the following: find an element w € W7 solu-
tion of
Agw +f, = 0. 4.2)
We sketch here a proof of existence of weak solutions of the momentum constraint
equation (4.2).

Theorem 4.1. (Momentum constraint) Let e and q be as above. Then there exists a
solution w € W1 to the momentum constraint equation (4.2) if and only if f ¢(v) =0
forally € W4 satisfying Ay v = 0. The solution is unique if and only if the kernel
of Ay is trivial. Moreover, if a solution exists at all in W9, for any given closed linear
space K C W1 such that W = ker Ay, @ K, there is a unique solution satisfying
w € K, and for this solution, we have

”wHG,q g C Hf¢”e—2,q> (43)

with some constant C' > 0 not depending on w.

Proof. By Lemma A.28 in Appendix A.5, the operator Ay, is semi-Fredholm, and more-
over since Ay is formally self-adjoint, it is Fredholm. The formal self-adjointness also
implies that when the metric is smooth, index of Ay, is zero independent of e and g. Now
we can approximate the metric h by smooth metrics so that Ay, is sufficiently close to a
Fredholm operator with index zero. Since the set of Fredholm operators with constant
index is open, we conclude that the index of Ay, is zero, and the theorem follows. O

In the later sections we need to bound the coefficient a,, in the Hamiltonian constraint
equation, which can be obtained by using the following observation.

Corollary 4.2. Let p € (1,00) and s € (1 + %,oo). In addition, let ¢ € (3,00) and

ee€ (L,s]N(1+ g, s — % + 2] N (1,2], and with z = 3+(gq_e)q, letb, € L*. Assume that
the momentum constraint equation has a solution w € W 9. Then, we have
1£w]loo < ClION5IB-]I: + C [1B)le-24, (4.4)

with C' > 0 not depending on w. Moreover, if the solution is unique, the norm ||w||. , can
be bounded by the same expression.

Proof. Since the kernel of Ay, is finite dimensional, we can write W = ker Ay, & K
with a closed linear space K C W% We have the splitting w = wy + w; such that
wo € ker Ay, = ker £ and w; € K, implying that

1£wlloo = 1£w1loc < c[Will1o0 < € [W1leq,

the latter inequality by W9 < W 1>°_ We note that demanding W7 — W 1> gives us
the lower bound e > 1 + 2, and this in turn implies s > 1 + % if the range of ¢ is to be
nonempty. To complete the proof, we note that w; is also a solution of the momentum
constraint, and taking into account L* — W 29 we apply Theorem 4.1 to bound the
norm ||w1||.,. Note that the latter embedding requires e < 2, and combining this with
e>1—|—§,weneedq>3. O
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We now establish some properties of the momentum constraint solution map S' that
we will need later for our analysis of the coupled system. Suppose that the conditions for
Theorem 4.1 hold, so that the momentum constraint is uniquely solvable. Then for any
fixed ¢ € W*P with ¢ > 0, there exists a mapping

S0, ] NWP — W 4.5)

that sends the source ¢ to the corresponding solution w of the momentum constraint
equation. Since the momentum constraint is linear, it follows easily that .S is Lipschitz
continuous as stated in the following lemma.

Lemma 4.3. (Properties of the map S) In addition to the conditions imposed in the
beginning of this section, let s > 1. Let e € [1,3] and % € (526,1 — 3520), where
d = max{0, % — %} Assume that the momentum constraint (4.2) is uniquely solvable
in W49, With some ¢, € W?*P satisfying ¢ > 0, let wi and wy be the solutions to the

momentum constraint with the source functions ¢, and ¢, from the set [0, ¢ N WP,
respectively. Then,

w1 = walleg < Cllos % ]Brlle-24 |61 — D2l (4.6)

Proof. The functions ¢, and ¢, pointwise satisfy the following inequalities

n—1
65— o7 = (3 ehai™ ) (6 — 61) <nl62)" o — e,
3=0 “4.7)
[4—n _ —n] (bg — ¢7ll (¢+>n—1 o
(03" —d1"] = (Gadn)" n (6 P2 — 1],

for any integer n > 0. Since the equation (4.2) is linear, applying Theorem 4.1 with the
right hand side f :=f, —f,,, and by using Lemma A.21 in Appendix, we obtain

eq < [brlle—24 167 — @55 < 6ll61 12 1Br -2 [l P2 — 2

w1 —wo

[s.p-

U

4.2. The Hamiltonian constraint and the Picard map 7'. In this section we fix a par-
ticular function a,, in an appropriate space and we then separately look for weak solu-
tions of the Hamiltonian constraint equation (2.23). For convenience, we reformulate
the problem here in a self-contained manner. Note that the problem (4.9) below is iden-
tical to (2.23), provided the functionals a. and a, are defined accordingly. Our goal
here is primarily to establish some properties and derive some estimates for a Hamilton-
ian constraint fixed-point map 7' that we will need later in our analysis of the coupled
system, and also for the analysis of the Hamiltonian constraint alone in the CMC set-
ting. We remark that a complete weak solution theory for the Hamiltonian constraint on
compact manifolds with boundary, using both variational methods and fixed-point argu-
ments based on monotone increasing maps, combined with sub- and super-solutions, is
developed in [21].

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, compact
manifold without boundary, and with p € (1,00) and s € (%, o00) N [1,00), h € W*Pis
a positive definite metric. Introduce the operator

Ap WP — WH2P,

as the unique extension of the Laplace-Beltrami operator . = —A, cf. Lemma A.24 in
Appendix A.5. Fix the source functions

s—2, _
Ury Gpy Gy € WP, and aR:%RGWS 2P,
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where R is the scalar curvature of the metric h. (By Corollary A.20(b) in Appendix A.4,
we know hy, € W*P implies R € W*=2?)) Given any two functions ¢_, ¢, € WP
with 0 < ¢_ < ¢, introduce the nonlinear operator

P [0- 04lap = W20 fu(9) = ard” +arg — a0 —awd ", (4.8)
where the pointwise multiplication by an element of 1/ *? defines a bounded linear map
in W*=2P since s — 2 > —s and 2(s — %) > 0 > 2 — 3, cf. Corollary A.20(a) in
Appendix A.4. In case the coupled system is under consideration, the dependence of f,,
on w is hidden in the fact that the coefficient a,, depends on w, cf. (2.18). For generality,
in the following we will view that the operator f,, depends on a,,.

We now formulate the Hamiltonian constraint equation as follows: find an element
¢ € [¢p—, p4]s,p solution of
Ao+ fu(9) = 0. 4.9)
To establish existence results for weak solutions to the Hamiltonian constraint equation
using fixed-point arguments, we will rely on the existence of generalized (weak) sub-
and super-solutions (sometimes called barriers) which will be derived later in §5. Let us
recall the definition of sub- and super-solutions in the following, in a slightly generalized
form that will be necessary in our study of the coupled system.
A function ¢_ € (0, 00) N W*? is called a sub-solution of (2.23) iff the function ¢_
satisfies the inequality
AL + fulo-) <0, (4.10)
for some a,, € W*=2P. A function ¢, € (0,00) N W*? is called a super-solution of
(2.23) iff the function ¢ satisfies the inequality

Aoy + fu(o4) 20, (4.11)

for some a,, € W* %P, We say a pair of sub- and super-solutions is compatible if they
satisfy

0 <o < op <o, (4.12)
so that the interval [¢_, ¢ ] N W*P is both nonempty and bounded.

We now turn to the construction of the fixed-point mapping 7' : U x R(S) — X
for the Hamiltonian constraint and its properties. There are a number of possibilities for
defining 7'; the requirements are (1) that every fixed-point of 7" must be a solution to the
Hamiltonian constraint; (2) 7" must be a continuous map from its domain to its range;
and (3) 7" must be invariant on a non-empty, convex, closed, bounded subset U of an
ordered Banach space Z, with X — Z compact. It will be sufficient to define 7" using a
variation of the Picard iteration as follows. Due to the presence of the non-trivial kernel
of the operator Ay, which is a consequence of working with a closed manifold, we must
introduce a shift into the Hamiltonian constraint equation in order to construct 7" with
the required properties.

Lemma 4.4. (Properties of the map 7') In the above described setting, assume that
pe (2 00)ands e (%, 00) N [1,3]. With ag € WP satisfying ag # 0, and ) € W,
let ay = ag + a,) € WP, Fix the functions ¢_, ¢, € WP such that 0 < ¢_ < ¢,
and define the shifted operators

A7 WP — WP, A3 ¢ = Arg + a0, (4.13)
fo [0, Olsp — W27, fo(@) = fu(0) —asd. (414

Let, for ¢ € [¢_, d]sp and a,, € WP,
T5(h, ay) = —(A5) 1 fi (). (4.15)
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Then, the map T° : [¢p_, d1)sp X WS 2P — WSP is continuous in both arguments.
Moreover, there exist s € (%, s) and a constant C' such that

IT(0; aw)llsp < C (1 + [lawlls—2) [9l]sp, (4.16)
forall ¢ € [¢_, ¢y]s, and a,, € WP,
Proof. In this proof, we denote by C' a generic constant that may have different values at
its different occurrences. By applying Lemma A.21 from Appendix, for any § € (%, s],
s—2¢€[-1,1] and% € (5516,1 — 2556) with 6 = % — 221, we have
1£5(@)lls—2p < C (larlls—2p 6% loo + Naplls—2p 16=" ]l
Hlawlls-2p (10" lloc + [¥55) + llar + aolls—25) 6]l5,-

Let us verify if 1 is indeed in the prescribed range. First we have 0 = %+
1
3

s

13 1o
- » 3<381HCC
5

5= 5 > 0 and takmg 1nt0 account s > 1, we infer 1 — 35 — 71 % This shows

3
110 <1-— 35 for p > <, which is not sharp, but will be sufﬁ01ent for our analysis. For the

other bound, we need » < 75 = % — %, or in other words, (S_I)Gﬁ > %.
Since s € [1, 3], it is possible to choose 5 € (%, s| satisfying this inequality.

To finalize the proof of (4.16), we note that by Lemma A.30 in Appendix A.6, the
operator Aj is invertible, since the function a is positive, and that by Corollary A.26
also in that appendix, the inverse (A$)~! : W5~ 2P — WP is bounded.

The continuity of the mapping f5 : [¢_, ¢4]s, — W 2P for any a, € WP is
obtained similarly, and the continuity of a,, — f, (¢) for fixed ¢ € [¢_, ¢ s, is obvious.
Being the composition of continuous maps, (¢, a,) — T.5(¢) is also continuous. d

The following lemma shows that by choosing the shift sufficiently large, we can make
the map 7" monotone increasing. This result is important for ensuring that the Picard
map 7" for the Hamiltonian constraint is invariant on the interval [¢_, ¢] defined by
sub- and super-solutions. There is an obstruction that the scalar curvature should be con-
tinuous, which will be handled in general case by conformally transforming the metric
to a metric with continuous scalar curvature and using the conformal covariance of the
Hamiltonian constraint, cf. Section 6.1.

Lemma 4.5. (Monotone increasing property of T') In addition to the conditions of
Lemma 4.4, let ag be continuous and define the shift function as by

6
as :max{l,aR}jLSf;’L 214

Then, for any fixed a,, € W* 2P, the map ¢ — T*(¢,ay) : (-, di]sp — WP is
monotone increasing.

a, +5¢La, +7

Proof. The shifted operator A$ satisfies the maximum principle, hence the inverse (A3 )" :

W$=2P — WP is monotone increasing.
Now we will show that the operator f,; is monotone decreasing. Given any two func-
tions ¢, ¢1 € [, ¢+]s,p with ¢3 > ¢1, we have

fo(02) = ful@1) = fuld2) — ful@r) — aslda — &1
= a- (3 — ¢3] + arlp2 — ¢1] — as[p2 — d1] — a, (057 — 67°] —aw [y — o1

The inequalities (4.7), the condition 0 < ¢; < ¢9, and the choice of a, imply

fu(d2) — fiu(d1) <O,
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which establishes that f; is monotone decreasing.
Both the operator (A$)~! and the map — f; are monotone increasing, therefore the
operator 7°(-, a,,) is also monotone increasing. O

Lemma 4.6. (Barriers for 7' and the Hamiltonian constraint) Let the conditions of
Lemma 4.5 hold, with ¢_ and ¢, sub- and super-solutions of the Hamiltonian constraint
equation (4.9), respectively. Then, we have T* (¢, ay) < ¢y and T*(¢—, ay) = ¢O_.

Proof. We have
Gy — T*(04, aw) = (A7) [ALoy + fulo1)],

which is nonnegative since ¢, is a super-solution and (A%)~! is linear and monotone

increasing. The proof of the other inequality is completely analogous. [

Since we are no longer using normal order cones, our non-empty, convex, closed in-
terval [¢_, ¢ |, is not necessarily bounded as a subset of W*?. Therefore, we also need
a priori bounds in the norm on W*? to ensure the Picard iterates stay inside the intersec-
tion of the interval with the closed ball B, in W*? of radius M, centered at the origin.
We first establish a lemma to this effect that will be useful for both the non-CMC and
CMC cases.

Lemma 4.7. (Invariance of 7" on the ball B,;) Let the conditions of Lemma 4.4 hold,
and let a,, € W* %P, Then, for any § € (%, s| and for some t € (%, S) there exists a

closed ball By C W of radius M = O ([1 + ||ay ||s—2,)"/ "), such that
925 € [¢—7¢+]§,pﬂ§M = Ts(¢7aw> S EM
Proof. From Lemma 4.4, there exist t € (%, §) and K > 0 such that
IT5(6,a0) 39 < KU+ lawlloap)|llips V6 € 6, 64150
For any ¢ > 0, the norm ||¢||;,, can be bounded by the interpolation estimate

19]les < ellllsy + Ce™ 0 6]l,,

where C' is a constant independent of . Since ¢ is bounded from above by ¢, ||¢||, is
bounded uniformly, and now demanding that ¢ € By, we get

T, aw)||5p < KL+ |Jaw|s—2,) (Me + Ce™/E0Y) | (4.17)

with possibly different constant C'. Choosing ¢ such that 2¢ K[1 + ||ay|/s—2,] = 1 and
setting M = 2K C[1 + ||ay||s_2,)e7"/G~, we can ensure that the right hand side of
(4.17) is bounded by M. ]

5. BARRIERS FOR THE HAMILTONIAN CONSTRAINT

The results developed in §4.2 for a particular fixed-point map 7" for analyzing the
Hamiltonian constraint equation and the coupled system rely on the existence of gener-
alized (weak) sub- and super-solutions, or barriers. There, the Hamiltonian constraint
was studied in isolation from the momentum constraint, and these generalized barriers
only needed to satisfy the conditions given at the beginning of §4.2 for a given fixed
function w appearing as a source term in the nonlinearity of the Hamiltonian constraint.
Therefore, these types of barriers are sometimes referred to as local barriers, in that the
coupling to the momentum constraint is ignored. In order to establish existence results
for the coupled system in the non-CMC case, it will be critical that the sub- and super-
solutions satisfy one additional property that now reflects the coupling, giving rise to the
term global barriers. It will be useful now to define this global property precisely.



ROUGH SOLUTIONS OF THE EINSTEIN CONSTRAINTS ON CLOSED MANIFOLDS 27

Definition 5.1. A sub-solution ¢_ is called global iff it is a sub-solution of (2.23) for all
vector fields wy solution of (2.24) with source function ¢ € [¢p_,00) N W*P. A super-
solution ¢, is called global iff it is a super-solution of (2.23) for all vector fields w
solution of (2.24) with source function ¢ € (0, | N W*P. A pair ¢_ < ¢ of sub- and
super-solutions is called an admissible pair if ¢_ and ¢, are sub- and super-solutions
of (2.23) for all vector fields w, of (2.24) with source function ¢ € [p_, | N WP,

It is obvious that if ¢_ and ¢ are respectively global sub- and super-solutions, then
the pair ¢_, ¢, is admissible in the sense above, provided they satisfy the compatibility
condition (4.12).

Below we give a number of (local and global) sub- and super-solution constructions
for closed manifolds; analogous constructions for compact manifolds with boundary are
given in [21]. These constructions are based on generalizing known constant sub- and
super-solution constructions given previously in the literature for closed manifolds. On
one hand, the generalized global sub-solution constructions appearing here and in [21]
do not require the near-CMC condition, inheriting this property from the known sub-
solutions from literature on which they are based. However, on the other hand, all
previously known global super-solutions for the Hamiltonian constraint equation have
required the near-CMC condition.

Here and in [22, 21], one of our primary interests is in developing existence results
for weak (and strong) non-CMC solutions to the coupled system which are free of the
near-CMC assumption. This assumption had appeared in two distinct places in all prior
literature on this problem [26, 1]; the first assumption appears in the construction of a
fixed-point argument based on strict k-contractions, and the second assumption appears
in the construction of global super-solutions. Here and in [22, 21], an alternative fixed-
point framework based on compactness arguments rather than k-contractions is used to
remove the first of these near-CMC assumptions. In this section, we give some new
constructions of global super-solutions that are free of the near-CMC assumption, along
with some compatible sub-solutions. These sub- and super-solution constructions are
needed (without their global property) for the existence result for the Hamiltonian con-
straint (Theorem 3.3), and they are also needed (now with their global property) for the
general fixed-point result for the coupled system (Theorem 3.5), leading to our two main
non-CMC results (Theorems 3.1 and Theorem 3.2). The super-solutions in Lemmata
5.2(b) and 5.4 appear to be the first such near-CMC-free constructions, and provide the
second key piece of the puzzle we need in order to establish non-CMC results through
Theorem 3.5 without the near-CMC condition.

Throughout this section, we will assume that the background metric & belongs to WP
withp € (1,00) and s € (%, 00) N (1,2]. Recall that r = %, so that the continuous
embedding L” — W 2P holds. Given a symmetric two-index tensor 0 € L*" and a
vector field w € W, introduce the functions a, = 302 € L" and ag,, = $(Lw)* € L".
Note that under these conditions a,, belongs to L™ — W22, and that if a,, as, € L™
we have the pointwise estimate

ay < 2a) + 2a},.
Here and in what follows, given any scalar function u € L, we use the notation
N V

u” 1= ess sup u, u’ = ess infu.

In some places we will assume that when the vector field w € W?" is given by the
solution of the momentum constraint equation (2.24) (or (4.2)) with the source term
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¢ € W,

afy <k(9) =k [|]|2 + ke, (5.1)
with some positive constants k; and ko. We can verify this assumption e.g. when the
conditions of Corollary 4.2 are satisfied, since from Corollary 4.2 we would get

2
az, = [ILw[l2 < C% (18115 18- ]1: + 1B;le-2.0) "
giving the bound (5.1) with the constants

k, = 2C?||b,|?, and k= 2C?||b;|? (5.2)

—2,9°

5.1. Constant barriers. Now we will present some global sub- and super-solutions for
the Hamiltonian constraint equation (2.23) which are constant functions. The proofs
essentially follow the arguments in [21] for the case of compact manifolds with boundary.

Lemma 5.2. (Global super-solution) Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h € W*P. Assume that the estimate (5.1) holds for the
solution of the momentum constraint equation, and assume that a,,a, € L and that
ap is uniformly bounded from below. With the parameter ¢ > 0 to be chosen later, define
the rational polynomial
QE(X) = (a\r/ - Kla) X5 + C%X - (I;)\ X_3 - K2EX_77

where K. := (14 2)ki and Ky, := (14 €)a)y + (1 + )ko. We distinguish the following
two cases:

(a) In case k; < a), choose ¢ > If - has a root, let ¢, = ¢1(a) —

aYy — kl '
Kic, ap, ay, Ko ) be the largest positive root of q, and if q has no positive roots, let ¢, = 1.
Now, the constant ¢ is a global super-solution of the Hamiltonian constraint equation
(2.23).

(b) In case k, = a), choose ¢ > 0. In addition, assume that ay, > 0 and that both a))
and Ko, are sufficiently small, such that q has two positive roots. Then, the largest root
¢+ = ¢a(a) — Kic,ap, a),Ka.) of q is a super-solution of the Hamiltonian constraint
equation (2.23).

Proof. We look for a super-solution among the constant functions. Let y be any positive
constant. Then we have

FOGw) = arx’ +apx —apx > —awx " = alxX’ +apx —a)x P —apx "

| < eo? 4+ 1(Lw)? implies that

€

Given any ¢ > 0, the inequality 2|0, (Lw)*| <
8aw = 02 + (Lw)? 4 204 (Lw)™ < (1 +e)o® + (1+ 1) (Lw)?,
hence, taking into account (5.1), for any w € W2 that is a solution of the momentum
constraint equation (2.24) with any source term ¢ € (0, ], the constant @), must fulfill
the inequality
ay < (L+2)ag + (1+ 2)az, < Kie[l 9]l + Ko, (5.3)
Thus, for any constant xy > 0 and all ¢ € (0, x|, it holds that
FOewe) = alx® + afx — a)x ™ = (Kie | 0l152 + Kae) X~
P B5X5 + CLEX - CL;\X_?) - K25X_77

7

where B, := a) — K;.. Introduce the rational polynomial on y given by

¢-(x) = Box’ +apx —a)x® —Kax . (5.4)
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We calculate the first and second derivative of ¢. as
q.(x) = 5Bx* + a} + 3a2x74 + TKoe X5,

5.5
¢/ (x) = 20Bx” — 12a) x> — 56K-x 7. )

Consider the case (a). In this case, because of the choice £ > ka_l—l we have B, > 0,

and so ¢.(y) > 0 for sufficiently large y, and ¢. is increasing. The function ¢. has no
positive root only if ) = Ko. = 0. So if ¢ has no positive root, g.(x) > 0 for all x > 0.
If ¢. has at least one positive root, denoting by ¢, the largest positive root, g(x) = 0 for
all x > ¢;. Recalling now that any constant y satisfies A;y = 0, we conclude that

Apx + fx,we) =0 VX = o1, Vo e (0,x],

implying that ¢ is a global super-solution of the Hamiltonian constraint (2.21).

For the case (b), since B. < 0 and af) and K. are nonnegative, the first derivative
q.(x) is strictly decreasing for y > 0, and since ¢.(¢) > 0 for sufficiently small xy > 0
and ¢.(x) < 0 for sufficiently large y > 0, the derivative ¢. has a unique positive root,
at which the polynomial ¢. attains its maximum over (0, o). This maximum is positive
if both a;,\ and Ky, are sufficiently small, and hence the polynomial ¢. has two positive
roots ¢ < ¢. Similarly to the above we conclude that

ALX+f(X7w¢)>O VXE[Cbl,QbL\V/QﬁE(O,X],
implying that ¢, is a global super-solution of the Hamiltonian constraint (2.21). U

Case (a) of the above lemma has the condition k; < Y, which is the near-CMC
condition. This condition seems to be present in all non-CMC results to date. The above
condition also requires that the extrinsic mean curvature 7 is nowhere zero. Noting that
there are solutions even for 7 = 0 in some cases (cf. [25]), the condition inf 7 > 0
appears as a rather strong restriction. We see that case (b) of the above lemma removes
this restriction, in exchange for the smallness conditions on p, j, and 0. We also need the
scalar curvature to be strictly positive, which condition is relaxed in the next subsection
to allow any metric in the positive Yamabe class.

In the following lemma, we list some constant sub-solutions. They impose consider-
able restrictions on the allowable data, which is the main reason to consider non-constant
sub-solutions in the next subsection.

Lemma 5.3. (Global sub-solution) Let (M, h) be a 3-dimensional, smooth, closed Rie-
mannian manifold with metric h € W*P. Assume that a, € L* and that ay is uniformly
bounded from above. We distinguish the following three cases.

(a) If a}y < 0, then the unique positive root of the polynomial

a(x) = a7 x* + ap,
is a global sub-solution of (2.23).
(b) If a},/ > (), then the unique positive root of the polynomial

4o(x) = a2 X* + max{1, ap} x* — a,
is a global sub-solution of (2.23).

(c) Let ¢ > 0 be a global super-solution of the Hamiltonian constraint. Let a) >
k(¢4 ), where k is as in (5.1). Then, with some ¢ € (k(¢y)/a), 1), the unique positive
root ¢ of the polynomial

0o (X) = al x** + max{1,ap} x* — K,
where K. := (1 —¢)ay — (£ — 1)k(¢4.), is a global sub-solution of (2.23).
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Proof. For the proof of (a,b), see e.g. [21]. We give a proof of (c) here.
Let y > 0 be any constant function, and let w € W'". Then we have
FOGW) = arx’ +ary — apX 7 — awX ' < AN+ aRx — ayx”
<apx’ +Cx —apx ™,
where we have used that a,, is nonnegative, and introduced the constant C' = max{1, a}.
Given any ¢ > 0, the inequality 2|0, (Lw)™| < e0? + L(Lw)? implies that
8, = 02 + (Lw)? + 204(Lw)®™ = (1 —¢) 0 — (% — 1) (Lw)?,

hence, taking into account (5.1), for any w € W 12" that is a solution of the momentum
constraint equation (2.24) with any source term ¢ € (0, ¢, ], the constant a,, must fulfill
the inequality

ay > (1-)af — (- Da, > (1 - e)ay — (£ — Dk(6) = K..

7
(5.6)

We use the above estimate in (5.6) to get, for any w € W 1" that is a solution of the
momentum constraint equation (2.24) with any source term ¢ € (0, ¢ |
fOew) <apx’ +Cx —Kex ™"

Because of the choice k(¢ )/ay < € < 1, we have K. > 0. So with the unique positive
root x, of

Go(X) = a7 X" +Cx =K X7,
we have ¢, (x) < 0 for any constant y € (0, x.], establishing the proof. O
5.2. Non-constant barriers. All global super-solutions found to date appear to require
the near-CMC condition; Lemma 5.2(b) avoids the near-CMC condition, but it requires

the scalar curvature to be strictly positive. The following lemma extends this result to
arbitrary metrics in the positive Yamabe class Y+ (M).

Lemma 5.4. (Global super-solution i € V) Let (M, h) be a 3-dimensional, smooth,
closed Riemannian manifold with metric h € W*? in Y (M). Assume there exist con-
tinuous positive functions u, A € W*P that together satisfy:

—Au+%Ru:A>0, u > 0. 5.7

Let 0 < k3 := u"/u¥ < oo, which is a trivially satisfied Harnack-type inequality.
Assume that the estimate (5.1) is satisfied for the solution of the momentum constraint
equation for two positive constants ki and ky, and assume that a,,a, € L. If the
constants aﬁ, al, and ky are sufficiently small, then

A\/ 1/4
¢y = Pu, B= [W] > 0, (5.8)

is a positive global super-solution to the Hamiltonian constraint equation.

Proof. Taking ¢ = Pu with a constant 3 > 0 in (5.7), gives
— Ao+ arp = B(—Au + %Ru) = GA. 5.9
Then for any ¢ € C°, by using (5.3) with K; := 2k; and Ky := 2a)) + 2k,, we infer
<AL¢ + f(‘b? W), ()0> = <V¢, V(P> + <CLR(Z5 + a7¢5 - ap(big - aw(bi?a 90>
(BA +a)6® — [Ki(6")" + Kol — apd ™, )
(BA + [a) — Kik*]¢” — Ko™ T — a2, )
<5G(ﬁ7 K27 ap)’ cp)

AVAR\VARAV
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where
G(B,Ka, ap) := A —Kikg®f (u")” — Ko 3 (u) ™" — a) 37 (u") 2,
and where we have used the fact that ¢ /¢" = u” /u" = k. Therefore, to ensure ¢ is a
super-solution we must now pick arguments ensuring G(f3, Kz, a,) > 0. We first pick (3
as in (5.8) giving
SAY =AY — Kk (u")3* > 0.
For this fixed 3, we then pick K, and aX, each sufficiently small, so that
A —KoB78(u) T — an B~ (u")=* > 0.
The result then follows. U

Remark. We now make some remarks about the existence of a pair of positive functions
(u, A) which satisfy the hypotheses of Lemma 5.4. Let the background metric h,, €
W#P be in the positive Yamabe class. Then in Theorem A.31 in Appendix A.7, for the
sub-critical range 1 < g < 5 we establish the existence of a positive u € WP and a
constant /1, > 0 satisfying
—8Au + Ru = pgul.
So the pair (u, %/Lquq) readily satisfies (5.7). In a sense the simplest construction of
the near-CMC-free global super-solution in Lemma 5.4 arises by taking ¢ = 1; one is
then simply using the first eigenfunction of the conformal Laplacian to build the global
super-solution.
Alternatively, one can consider a solution to the Yamabe problem

—8Au+ Ru=1u", u>0,

which exists for sufficiently smooth metrics in the positive Yamabe class, cf. [31]. This
approach is taken for simplicity in [22].

In any case, note that the function v > 0 that satisfies (5.7) is the conformal factor
which transforms h,; into a metric with scalar curvature R, = SAu=> > 0.

We remark that without the near-CMC condition, the only potentially strictly positive
term appearing in the nonlinearity of the Hamiltonian constraint is the term involving the
scalar curvature 2. Therefore, global super-solution constructions based on the approach
in Lemma 5.4 are restricted to data in )" (M). We extend this observation in the next
lemma, which essentially says that in a nonpositive Yamabe class, there is no way to
build a positive global super-solution without the near-CMC condition as long as we use
a global estimate of type (5.1).

Lemma 5.5. (Near-CMC condition and a, bounds) Let (M, h) be a 3-dimensional,
smooth, closed Riemannian manifold with metric h € W?*? in a nonpositive Yamabe
class, and let a, be continuous. Let ¢, € WP with ¢ > 0 be a global super-solution
to the Hamiltonian constraint equation. We assume that any vector fieldw € W?" that
is a solution of the momentum constraint equation with a source ¢ < ¢, satisfies the
estimate

aw < K64 1112 + Ko, (5.10)

with some positive constants Ky and Ky. Moreover, we assume that this estimate is sharp
in the sense that for any x € M there exist an open neighborhood U > x and a vector
fieldw € WY a solution of the momentum constraint equation with a source ¢ < ¢,
such that

aw =Ki||¢+ |22 +K2  inU. (5.11)

Then, we have K; < sup ,, a.
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Proof. Since the metric is in a nonpositive Yamabe class, there exists ¢ € W_Qfs’p " such
that (Vo , V@) + (argps,p) < 0. The collection of all neighborhoods in (5.11) will
form an open cover of M, and let {U;} be one of its finite subcovers. Let {u;} be a
partition of unity subordinate to {U;}. Then, by writing ¢ = ). ;;5, we can expand
the expression (Vo , V@) + (arp,, @) into a finite sum, which has at least one non-
positive term. Without loss of generality, let us assume (Vo , V) + (ardi, ) < 0
with ¢ = ;. With w € W'?" being a vector field that satisfies (5.11) with respect to
U := U,;, we have

(Voi, V) + (ardy + ard’, — awd” — a,07°, ¢)
(ar¢ — awdT" — a, 077, )

= (a,;¢7 — [Ki(¢})"? + Koo — a,07°, )

< (lar — K1 (0} /01) P07, ).

Using partitions of unity we can make the support of ¢ arbitrarily small, from which we
conclude that a, > K (¢} /¢4)'? > K; at some z € M. O

All of the subsequent barrier constructions below are more or less known. A number
of the more technically sophisticated construction techniques we employ below were
pioneered by Maxwell in [33]. For completeness, we first construct local super-solutions
and then global super-solutions for the near-CMC case.

Lemma 5.6. (Local super-solution) Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h € W*P. Let a,,a,,a, € sz’p , and let one of the
following conditions hold:

(a) The metric h is in a non-negative Yamabe class, a. # 0, and a, + a,, # 0.

(b) The metric h is in the positive Yamabe class, and a, + a,, # 0.

(¢) The metric h is conformally equivalent to a metric with scalar curvature —a, #
0, thus in particular the metric is in the negative Yamabe class.

Then, there is a positive (local) super-solution ¢, € W*P of the Hamiltonian constraint
equation (2.23).

Proof. First we prove (a) and (b). Let u € W*? be a (weak) solution to
—Au + %Ru =Au, u>0,

with a constant A > 0, which exists by Theorem A.31 in Appendix A.7, and letv € WP
be the solution to

WPV, Vo) + (MPv + a0, 0) = {a, + ay, ), Vo € C. (5.12)

Since a-, a,, a, € Wfr_Q’p with sp > 3, we have v € W*P — L[*°, and since \u*+a, # 0
and a,+a, # 0, Lemma A.29 (maximum principle) in Appendix A.6 implies that v > 0.
Let us define ¢ = Buv € W*