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Abstract

The drift method, introduced in [Ma14a], provides a new formulation of the Einstein constraint equa-

tions, either in vacuum or with matter fields. The natural of the geometry underlying this method com-

pensates for its slightly greater analytic complexity over, say, the conformal or conformal thin sandwich

methods. We review this theory here and apply it to the study of solutions of the constraint equations with

non-constant mean curvature. We show that this method reproduces previously known existence results

obtained by other methods, and does better in one important regard. Namely, it can be applied even when

the underlying metric admits conformal Killing (but not true Killing) vector fields. We also prove that the

absence of true Killing fields holds generically.

1 Introduction

Let (M, g,K) denote a triplet consisting of an n-dimensional manifold M, a metric g on M, and an auxiliary

symmetric 2-tensor K. The vacuum Einstein constraint equations for this triplet are

Rg − |K|
2
g + (trg K)2

= 0 [Hamiltonian constraint] (1.1a)

divg K − d(trg K) = 0. [momentum constraint] (1.1b)

We typically assume that M is compact, or at least that (M, g) is complete. Solutions correspond to space-like

hypersurfaces in a Lorentzian spacetime (X,G), i.e., solutions of the vacuum Einstein equations Ric(G) = 0,

so g is the induced metric and K the second fundamental form of this hypersurface. Solutions to system

(1.1) serve as Cauchy data for the Einstein evolution problem (which of course must be supplemented by

some choice of gauge to make the problem hyperbolic). The interest in finding solutions of the constraint

equations is directly tied in this way to the study of the general Einstein equations. More general versions of

these equations include a cosmological constant and source terms, and will be recalled below.

The set of pairs (g,K) which solve (1.1a, 1.1b) is infinite dimensional, and in a suitable topology constitutes

a Banach manifold (at least away from the solutions for which the linearized operator has cokernel). To turn

the search for these solutions into a less underdetermined and hence more tractable problem, it is customary

to decompose the space of all pairs (g,K) into ‘slices’ and consider the constraint equations as an equation

within each slice. If done correctly, this leads to a family of semilinear elliptic equations, one for each

slice, to which one can apply a vast panoply of known techniques. The traditional slicing is known as
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the conformal method, originally proposed by Lichnerowicz and Choquet-Bruhat, and studied by them and

many others over the past 60 years. Another common method appearing in the intervening years is called

the conformal thin sandwich method. Although apparently different, it was proved by the second author

[Ma14b] that this is completely equivalent to the older conformal method.

In the conformal method, the data for the slices consist of triplets (g, τ, σ; N) where g dictates the confor-

mal class [g] of the solution metric g, τ is the ‘mean curvature function’, i.e., τ = trg K for the eventual

solution, σ is a transverse-traceless (i.e. trace-free and divergence-free) tensor with respect to g, and N is a

positive function that plays the role of a gauge choice and is related to the so-called lapse associated with a

coordinate system on the spacetime generated by the solution of the constraint equations. A comprehensive

description of solutions to the conformal method is known in the special case when τ is constant [Is95], and

this led to perturbative results shortly thereafter [IM96]. Significant breakthroughs were obtained by the

first and later the second authors [HNT08, Ma09] concerning existence for ‘far-from-CMC’ data, where the

mean-curvature function is allowed to be variable and seemingly nowhere close to constant, with a price of

requiring the transverse-traceless tensor to be very small. This led to several new developments, and exten-

sions and refinements of these ideas in various other standard settings. It was pointed out recently, however,

by Gicquaud and his collaborators [GN14] that upon recasting the setup in certain way, all of these results

are still fundamentally perturbative and hence should be regarded as ‘near-CMC’.

In recent years limitations of the conformal method in the far-from-CMC setting have appeared. We point

to [Ma11] [Ma15] along with the very nice results in [Ng15] (based on the original blowup analysis of

[DGH12]) for examples where there exist either no or multiple solutions of the constraint equations cor-

responding to a given set of conformal data (g, σ, τ; N), and there is nothing apparent in the geometry of

this data set which allows one to a priori predict what happens. Motivated by these difficulties, the second

author here proposed [Ma14a] a different idea to slice up the space of pairs (g,K). This is known as the drift

method, and is based on an invariant geometric interpretation of the dynamics of spacelike hypersurfaces

evolving in a Lorentzian Einstein manifold. We review these methods carefully below. For now let us note

one key difference. In the drift method, the mean curvature function τ is replaced by a pair (τ∗,V), where

τ∗ is a certain average V is a vector field which represents a ‘drift’ equivalence class. The equations in this

formulation are more nonlinear and more complicated than for the older methods, but the key motivation is

that this new framework should make it easier to handle various well-known obstructions and subtleties in

the conformal method. More specifically, it is not clear how to make the conformal method work when the

conformal class [g] admits conformal Killing fields, and indeed, we show here that there is a fundamental

breakdown in that procedure. That method is also less tractable when τ has zeros. In fact, there are no

general a priori estimates for solutions of these equations, and there are examples of families of solutions

which blow up. The hope remains that better methods may predict the data sets near which a priori estimates

fail.

The goal of the present paper is to show that drift method does at least as well as the conformal method, and

in a certain sense, much better. More specifically, we prove a set of existence results for the drift formulation

of the constraint equations, both without and with source terms, which include the far-from-CMC results

cited above. All of this is done perturbatively around the CMC case. The major improvement is that these

results also hold when the conformal class [g] admits conformal Killing fields, so long as the the metric we

are perturbing from has no Killing fields.

This paper is organized as follows. We begin by reviewing the standard conformal method and introducing

the notion of conformal momentum, and then describe the precise way by which conformal Killing fields
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present an obstruction in the conformal method. We finally present the drift method in §4, and in §5 the

adaptations necessary to incorporate matter fields. Section 6 then proves the existence of near-CMC solutions

using the drift method, and also establishes that the hypotheses needed to apply this theorem hold generically.

1.1 Notation and Conventions

In this paper we assume that M is a manifold of dimension n ≥ 3. We assume M is compact, and occasionally

do not say this explicitly in the statements of results, etc. Solutions to various equations are found in a

Sobolev space Wk,p, where k ∈ N, k ≥ 2, and p > 1 are chosen so that

1

p
−

k − 1

n
< 0;

this ensures that Wk,p functions have Hölder continuous first derivatives. If E is any smooth vector bundle

over M, we write Wk,p(M, E) for the space of sections of E which are in Wk,p with respect to any local

trivialization. In particular, we have the bundles T M of vector fields, T ∗M of covector fields, S 2M of

symmetric (0, 2) tensors and its subbundle S tt(g) of transverse-traceless tensors with respect to the metric g.

Function spaces of positive functions are denoted by a subscript +, e.g. W
k,p
+ (M).

We henceforth set the constants

q =
2n

n − 2
, κ =

n − 1

n
, a = 2κq,

so q is a critical Sobolev exponent and κ and a are dimensional constants which appear in various equations

below.

We also consider the conformal Killing operator, whose action on vector fields is

(L X)ab = ∇aXb + ∇bXa −
2

n
div X gab.

Its adjoint L∗ acts on symmetric, trace-free (0, 2) tensor Aab by

(L∗ A)b = −2∇aAab

The kernel of L is the finite dimensional space Q of conformal Killing fields.

2 The Standard Conformal Method and Conformal Momentum

The conformal method appears in the literature in two forms. The original conformal method was introduced

by Lichnerowicz [Li44] and substantially extended by York, O’Murchadha, and Choquet-Bruhat among oth-

ers in the 1970s. Some decades later York introduced the conformal thin-sandwich method [Yo99], and later,

with Pfeiffer, also gave an equivalent Hamiltonian formulation [PY03]. It turns out that the original confor-

mal method and the conformal thin-sandwich method are really the same parameterization of the constraint

equations [Ma14b]; we describe them here in a unified fashion that will also be helpful for describing the

3



drift formulations of the constraint equations. For simplicity, we focus for now on the vacuum constraint

equations; Section 5 below describes an approach for incorporating matter fields into both the standard

conformal method and the drift formulation.

A metric and second fundamental form (g,K) canonically determine

• a conformal class [g], and

• a mean curvature τ = gabKab.

These are two of the parameters of the conformal method. The third and final parameter is not completely

canonical and depends on a choice of volume form α. We will call α a volume gauge. Once this has been

fixed, the final parameter is

• the conformal momentum of (g,K) measured by α,

which we define in Definition 2.3 below. We refer to [Ma14b] and [Ma14a] for the geometric and physical

motivation behind this terminology.

Definition 2.1 (Conformal Momentum). A conformal momentum is an equivalence class of pairs (g, σ)

where g is a metric, σ is transverse traceless with respect to g (i.e., σ is trace-free and divergence-free) and

where we identify pairs

(g, σ) ∼ (φq−2g, φ−2σ) (2.1)

for any conformal factor φ ∈ W
k,p
+ (M).

To complete the description of the measurement of conformal momentum, we first recall a variation of York

splitting [Yo73].

Lemma 2.2. Suppose that A ∈ Wk−1,p(M, S 2M) be trace-free and fix any N ∈ W
k,p
+ (M). Then there is a

unique transverse-traceless σ ∈ Wk−1,p(M, S 2M) and a vector field W ∈ Wk,p(M, T M) such that

A = σ +
1

2N
L W. (2.2)

This formulation uses that M is compact. The vector field W here is uniquely determined up to addition with

a conformal Killing field.

The special case N ≡ 1/2 is more commonly known as York splitting, but the result for arbitrary N is a

consequence of the N ≡ 1/2 case [Ma14b], or alternatively, can be proved directly by applying Lemma 6.10

below to solve

L∗
1

2N
L W = L∗ A. (2.3)

Definition 2.3 (Measurement of Conformal Momentum). Suppose that α is a fixed Wk,p volume form on

M. The conformal momentum of (g,K) measured by α, denoted [g,K]α, is the equivalence class of the pair

(g, σ), where σ is computed as follows. Write K = A + τ
n
g where A is trace-free, and let N = dVg/α; then

apply York splitting to decompose

A = σ +
1

2N
L W. (2.4)
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Briefly, the aim of the conformal method is to use the conformal class, conformal momentum measured by

α, and mean curvature as the ‘seed data’ for solutions of the constraint equations. Fixing α, we prescribe

a conformal class g, a conformal momentum σ, and a mean curvature τ, and seek a solution (g,K) of the

vacuum constraints with

[g] = g, [g,K]α = σ, g
ab

Kab = τ. (2.5)

To cast this as a PDE, pick an arbitrary representative g of g, let σ be the unique g-transverse-traceless tensor

such that (g, σ) is a representative of σ, and define the lapse N = dVg/α. We call (g, σ, τ; N) a conformal

data set, with the lapse segregated from the other terms to reflect its role as a gauge choice. Starting from a

conformal data set we seek a conformal factor φ and a vector field W solving

−a∆φ + Rφ −

∣∣∣∣∣σ +
1

2N
L W

∣∣∣∣∣
2

φ−q−1
+ κτ2φq−1

= 0 [CTS-H Hamiltonian constraint] (2.6a)

1

2
L∗

[
1

2N
L W

]
+ κφq d τ = 0 [CTS-H momentum constraint] (2.6b)

which we call the conformal thin-sandwich equations in their Hamiltonian formulation (the CTS-H equa-

tions). If (φ,W) solves these equations then the pair

g = φq−2g, K = φ−2

(
σ +

1

2N
L W

)
+
τ

n
g (2.7)

solves (2.5), and all solutions of problem (2.5) are obtained this way.

We observe that (2.5) is intrinsically conformally covariant, and hence the CTS-H equations must also be.

Concretely, the solutions determined by (g, σ, τ; N) and

(ĝ, σ̂, τ̂; N̂) = (ψq−2g, ψ−2σ, τ; ψqN) (2.8)

are the same. In other words, we are expressing the same problem (2.5) using two different, but conformally

related, sets of data. The standard conformal method corresponds to using the conformal representative of

g with volume form dVg = α/2, so that N ≡ 1/2 in (2.6); we are thus restricting ourselves to an inflexible

choice for the background metric to represent the problem, whereas if we allow an arbitrary background

metric in the conformal class, we must introduce the lapse function N into (2.6), which then gives the

Hamiltonian conformal thin-sandwich method of [PY03].

A conformal data set (g, σ, τ; N) determines the volume gauge α by N = dVg/α. Thus, fixing the back-

ground metric, the choice of lapse is equivalent to the choice of a volume gauge. It is important to note that

the lapse transforms conformally by N̂ = ψqN, cf. [Yo99]; we say that the conformal method involves a

densitized lapse. On the other hand, the volume gauge α is a fixed object, and applies to all representatives

of a conformal class.

3 Conformal Killing Fields and the Conformal Method

Suppose (g,K) is a vacuum initial data set and that g admits a conformal Killing field Q. The momentum

constraint implies

− ∇
a
(Kab − τ gab) = 0 (3.1)
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where, as usual, τ = gabKab. Multiplying equation (3.1) by the conformal Killing field Q, integrating by

parts, and using the conformal Killing equation

∇aQb + ∇bQa =
2

n
∇cQcgab, (3.2)

we find

0 =

∫

M

[
Kab − τ gab

] 1

2
(∇

a
Qb
+ ∇

b
Qa) dVg

=

∫

M

[
Kab − τ gab

] 1

n
(∇cQc)gab dVg

=
1 − n

n

∫

M

τ ∇cQc dVg.

(3.3)

Integrating by parts one more time gives the CKF compatibility condition

∫

M

Q(τ) dVg = 0 (3.4)

between mean curvature and conformal Killing fields.

Suppose (g, σ, τ; N) is a CTS-H conformal data set where g admits a conformal Killing field Q, and let

(φ,W) be a solution of the corresponding CTS-H equations. The CKF compatibility condition (3.4) then

becomes ∫

M

Q(τ) φq dVg = 0. (3.5)

Since (3.5) involves the unknown φ, it is not obvious whether the CKF compatibility condition imposes

a genuine restriction on allowable conformal data sets; conceivably, the conformal method might always

manage to find a conformal factor φ satisfying (3.5), regardless of the choice of τ. Nevertheless, equation

(3.5) presents an obstacle in current solution techniques for the CTS-H equations. Typically one generates

a sequence (φ(n),W(n)) of approximate solutions iteratively; each iteration involves solving a variation of the

momentum constraint such as

∇b

[
1

2N
(L W(n+1))

ab

]
=

n − 1

n
(φ(n))

q ∇aτ. (3.6)

Equation (3.6) is solvable for W(n+1) if and only if

∫

M

Q(τ) φ
q

(n)
dVg = 0 (3.7)

for all conformal Killing fields Q. Any standard method does not ensure that the successive functions φ(n)

still satisfy (3.7), so it may not be possible to continue the iteration procedure.

Nevertheless, for certain conformal data sets, conformal Killing fields are not an obstruction to solving the

CTS-H equations. Most importantly, if τ is constant then Q(τ) ≡ 0 for any conformal Killing field, and

condition (3.5) is satisfied trivially for every conformal factor. In other words, the presence of conformal

Killing fields plays no role in the CMC theory as described in, for example, [Is95]. A minor generalization

is that if τ is constant on the integral curves of every conformal Killing field Q, then we still have that

Q(τ) ≡ 0, hence (3.5) is satisfied trivially regardless of the conformal factor. This observation was exploited
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in [CBIM92] to construct near-CMC solutions under this hypothesis on the mean curvature function. This

is a strong hypothesis, of course (and amounts to assuming that τ is constant for metrics conformal to the

flat torus or the round sphere). Moreover, this hypothesis is not necessary: [Ma11] and [Ma15] contain

examples of non-CMC conformal data sets where the background metric is a flat torus (hence not covered

by [CBIM92]) and where there exist solutions. The current theory for the CTS-H equations does not exclude

the possibility that conformal Killing fields are irrelevant to solvability.

We now give a simple example which shows that at least in certain situations, the existence theory is sensitive

to the presence of conformal Killing fields. The argument stems from the observation that (3.4) is analogous

to the Pohozaev constraint ∫

M

Q(R) dVg = 0, (3.8)

which relates the scalar curvature function R and conformal Killing fields Q on a compact manifold [BE87].

Its proof is a straightforward adaptation of ideas from [KW74] and [BE87] concerning obstructions to the

existence of solutions for the Nirenberg problem of finding metrics in a conformal class with prescribed

scalar curvature.

Proposition 3.1. Let g be the round metric on the sphere S n, σ . 0 a smooth transverse traceless tensor,

and τ0 a constant. There exists a smooth function T such that for every ǫ ∈ R, the conformal data set

(g, σ, τ0 + ǫT ; N) admits a solution of the vacuum CTS-H equations if and only if ǫ = 0.

Proof. Fix p ∈ S n and let T be the distance function from p, and Q the conformal Killing field grad T .

Define τǫ = τ0 + ǫT . Since (S n, g) is Yamabe positive and σ . 0, the CMC case of existence theory for the

conformal method implies there exists a solution of the CTS-H equations when ǫ = 0. On the other hand, if

ǫ , 0, then Q(τǫ ) = ǫQ(T ) has a single sign (except at the antipodal points), and hence
∫

S n Q(τ)φq dVg , 0

for any choice of conformal factor φ. This violates the CKF compatibility condition (3.5) for every possible

conformal factor and hence there exists no solution of the CTS-H equations for this conformal data when

ǫ , 0. The lack of smoothness of T at the antipodal points is not relevant here since we could replace T by

a smooth nonnegative function of dist(p, ·) which is smooth on S n and satisfies the same conclusion.

Proposition 3.1 shows that there exist CMC solutions of the constraint equations such that, replacing the

mean curvature function by certain arbitrarily small perturbations of it in the conformal data set, then the

CTS-H equations no longer have a solution. This means that the standard hypothesis in the near-CMC theory

that the metric does not admit nontrivial conformal Killing fields cannot be dropped completely. It is not at

all clear if there is some natural and easily apparent geometric condition that distinguishes when one should

expect there to exist solutions or not.

We shall take an alternate course and give up on prescribing the mean curvature function specifically. The

drift method described in the next section involves the prescription of different sets of data, and implicitly

shows how to adjust the mean curvature to account for the CKF compatibility condition.

4 Drift Variations of the Conformal Method

In this section we give a brisk description of the drift formulations of the conformal method [Ma14a].

Before getting into details, we observe that the principal distinction between the drift and standard conformal
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methods is that while the conformal method prescribes the mean curvature τ of the solution directly, the drift

techniques involve a decomposition

τ = τ∗ +
1

N
div V (4.1)

where τ∗ ∈ R, N is a positive function (the same lapse appearing in the CTS-H equations) and V is a vector

field. The mean curvature determined by τ∗ and V changes as we move between representatives in a given

conformal class for several reasons. First, the divergence operator depends on the choice of representative.

Second, the lapse transforms as a densitized lapse, as described at the end of Section 2. Finally, if the metric

admits conformal Killing fields, we cannot prescribe V directly, but must add a suitable conformal Killing

field Q that changes as we change the conformal class representative. So in general,

τ = τ∗ +
1

N
div(V + Q) (4.2)

where Q is a conformal Killing field determined by V . In short, the actual mean curvature function deter-

mined by the data in the drift formulations naturally adapts to the presence of conformal Killing fields. This

allows one to prove slightly more general results.

As discussed next in Section 4.1, the constant τ∗ in equation (4.2) represents a certain dynamical quantity

called the volumetric momentum. To interpret the vector field V , we first note that the mean curvature is

unchanged by adding a divergence-free vector field to V . Moreover, V is prescribed only up to adjustment

by a suitable conformal Killing field, so V is an element of the space of vector fields modulo both conformal

Killing fields and divergence-free vector fields. This quotient space is the space of so-called drifts. We

discuss them further in Section 4.2, before giving the equations for the drift formulations in Section 4.3.

4.1 Volumetric Momentum

The first step toward the drift parameterization of the constraint equations involves the identification of a

parameter, volumetric momentum. This plays a role somewhat analogous to the transverse-traceless tensor

in the standard conformal method, and represents a cotangent vector to the one-dimensional space of volume

forms modulo diffeomorphisms, so the volumetric momentum is just a number. It arises in the following

analog of York splitting.

Lemma 4.1. Let τ ∈ Wk−1,p(M) and let N ∈ W
k,p
+ (M). There is a unique constant τ∗ and a vector field

V ∈ Wk,p such that

τ = τ∗ +
1

N
div V. (4.3)

Moreover, V is uniquely determined up to addition of a divergence-free vector field, and

τ∗ =

∫
M

Nτ dVg∫
M

N dVg

. (4.4)

This is proved in [Ma14a] when the data is smooth, but the same proof works for metrics and data with the

regularity stated here.
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Definition 4.2 (Measurement of Volumetric Momentum). Let α be a Wk,p volume form on M. The volumet-

ric momentum of (g,K) measured by α is computed as follows. First, let N = dVg/α and define τ = gabKab.

By Lemma 4.1, τ = τ∗ +
1
N

div V for a unique constant τ∗. The volumetric momentum of (g,K) measured by

α is

[g, τ]α = −2κτ∗, κ = (n − 1)/n. (4.5)

Volumetric momentum is already an interesting parameter in the standard conformal method. Examples in

[Ma15] exhibit the development of certain one-parameter families of non-CMC solutions of the constraint

equations generated by the standard conformal method, and τ∗ = 0 is among the several necessary conditions

needed to generate these families. Curiously, τ∗ = 0 is not easily detected from the usual conformal data;

in effect, one must solve the equations of the conformal method to determine if τ∗ vanishes or not. These

examples motivate finding a parameterization in which τ∗ is explicitly prescribed.

4.2 Drift

Fixing a volume gauge α, the conformal momentum and volumetric momentum of (g,K) measured by α

drop out of the momentum constraint. Indeed, using Lemmas 2.2 and 4.1 to decompose

K = σ +
1

2N
L W +

1

n

[
τ∗ +

1

N
div V

]
g, (4.6)

then the vacuum momentum constraint becomes

−
1

2
L∗

1

2N
L W = κ d

[
1

N
div V

]
. (4.7)

The momentum equation in this formulation has interesting symmetries. The vector fields W and V appear-

ing in it each represent a certain geometric object, coined a drift in [Ma14a].

Definition 4.3 (Drift). Let g be a Wk,p metric. A drift at g is an element of

Wk,p(M, T M)/(Ker Lg +Ker divg). (4.8)

We write [W]drift
g for the drift at g determined by the vector field W and Driftg for the space of drifts at g.

Remark 4.4. The spaces Ker Lg and Ker divg intersect in the space of Killing fields, but since Ker divg is

closed in Wk,p(M, T M) and Ker Lg is finite dimensional, Ker Lg +Ker divg is also a closed subspace and the

quotient Driftg inherits a Banach space topology.

As elaborated in [Ma14a], a drift represents an infinitesimal motion in the space of metrics, modulo dif-

feomorphisms, that preserves the conformal class up to diffeomorphism and the volume. Note that such a

motion need not preserve the diffeomorphism class of the metric.

Equation (4.7) represents a relationship between two drifts. To see this, suppose V is a drift at g, with V any

representative. Equation (4.7) can be regarded as a PDE in W. If g admits conformal Killing fields, there is

no solution unless the right-hand side of (4.7) is orthogonal to Lg. Assuming this orthogonality, hypothesis
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Theorem 10.1 of [Ma14a] shows (in the smooth category) that there is a conformal Killing field Q and a

vector field W such that

−
1

2
L∗

1

2N
L W = κ d

[
1

N
div(V + Q)

]
. (4.9)

Here Q is uniquely determined up to a true Killing field, W is uniquely determined up to a conformal Killing

field, and [W]drift
g is independent of the choice of representative of the drift V.

This process can be reversed. Suppose W ∈ Driftg and let W be any representative. We now wish to solve

(4.7) for V , but to do so, the left-hand side of (4.7) must be orthogonal to the space of divergence-free vector

fields. Theorem 10.6 of [Ma14a] shows (in the smooth category) that there is a divergence-free vector field

E and a vector field V such that

−
1

2
L∗

1

2N
L(W + E) = κ d

[
1

N
div(V)

]
. (4.10)

Now E is uniquely determined up to a true Killing field, V is uniquely determined up to a divergence-free

vector field, and [V]drift
g is independent of the choice of representative of the drift W.

Motivated by this discussion, we assign a pair of drifts to a pair (g,K) as follows.

Definition 4.5 (Measurement of Drift). Suppose g is a Wk,p metric, K ∈ Wk−1,p(M, S 2M) and α is a Wk,p

volume form. Set N = dVg/α and decompose

K = A +
τ

n
g, (4.11)

where A is trace-free. Now use Lemmas 2.2 and 4.1 to write

A = σ +
1

2N
L W (4.12)

and

τ = τ∗ +
1

N
div V. (4.13)

The volumetric drift of (g,K) measured by α is [V]drift
g , and the conformal drift measured by α is [W]drift

g .

In our application of drifts to the construction of near-CMC solutions of the Einstein constraint equations we

shall specify the conformal class of the solution metric and, among other parameters, the volumetric drift.

Since drift is defined in terms of a metric rather than the conformal class, one needs to be able to specify

a drift at an unknown solution metric g = φq−2g starting from a given representative g of the conformal

class. One can always specify the vector field V and let it determine the drift [V]drift
g

, but unless one knows

the conformal factor φ, it is impossible to know a priori whether V is divergence-free with respect to the

solution metric and hence [V]drift
g
= 0.

To address this difficulty, suppose for the moment that the Wk,p metric g admits no (nontrivial) conformal

Killing fields. The Helmholtz decomposition implies

Wk,p(M, T M) = E ⊕ E⊥

where E is the set of Wk,p divergence-free vector fields and E⊥ is the image of grad acting on Wk+1,p func-

tions. The factors in the direct sum are L2 orthogonal, and the projection of a vector field X onto E⊥ is
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grad u where ∆ u = div X. Because g admits no conformal Killing fields, the drifts at g can be identified with

E⊥. Moreover, for a conformally related metric g = φq−2g the conformal transformation rule for gradients

implies

E⊥
g
= φ2−qE⊥g .

Hence in absence of conformal Killing fields we have a mechanism for parameterizing drifts within a con-

formal class: drifts can be represented by elements of E⊥g and V ∈ E⊥g corresponds to φ2−qV ∈ E⊥
g

.

In the event that g admits conformal Killing fields the representation of drift within a conformal class is less

straightforward because divergence-free vector fields and conformal Killing fields obey different conformal

transformation laws. In this case the drifts at g can be identified with any one of a number of subspaces

of E⊥, and it seems natural to use the L2 orthogonal complement of P(Q), where P is the L2 projection of

Wk,p(M, T M) onto E⊥ discussed above.

Definition 4.6. A canonical drift representative at a Wk,p metric g is a vector field V ∈ E⊥ satisfying

∫

M

g(V, P(Q)) dVg = 0

for all conformal Killing fields Q. The set of canonical drift representatives at g is denoted byDg.

It is easy to see that the map V 7→ [V]drift
g fromDg to Driftg is a Banach space isomorphism and hence Driftg

can be identified with a subspace of E⊥g with codimension equal to dim P(Q). This codimension need not be

constant among all representatives of a conformal class, however. Indeed, a conformal Killing field Q is a

true Killing field exactly when it is divergence-free, i.e. when P(Q) = 0. Thus dim P(Q) ≤ dimQ with strict

inequality whenever the metric admits nontrivial Killing fields. The non-constant codimension ofDg in E⊥g
poses an obstacle to the universal representation of drift for a fixed conformal class. Nevertheless, our main

application of drifts to the conformal method is perturbative, and the following lemma shows that we can

useDg to identify drifts at nearby representatives of the conformal class so long as g does not admit any true

Killing fields.

Lemma 4.7. Let g be a Wk,p metric. Given a conformal factor φ ∈ Wk,p let g = φq−2g. The map

V 7→ [φ2−qV]drift
g

fromDg to Driftg is an isomorphism if either

• g admits no (nontrivial) conformal Killing fields, or

• g admits no (nontrivial) Killing fields and φ is sufficiently close to 1 in Wk,p.

Proof. Let Eφ, E⊥φ ,Dφ and so forth represent objects associated with the metric g = φq−2g, let Pφ be the g-L2

projection of Wk,p(M, T M) onto E⊥φ , and let Dφ be the g-L2 projection of Wk,p(M, T M) ontoDφ. One readily

verifies that these maps are continuous, in part using the standing hypotheses on k and p (which ensure that

Wk,p ⊂ L2), along with the fact that P(Q) is finite dimensional. Given a vector field V , the projections Pφ(V)

and (Dφ ◦ Pφ)(V) differ from V by linear combinations of conformal Killing fields and g-divergence-free

vector fields. Hence

[V]drift
g
= [PφV]drift

g
= [(Dφ ◦ Pφ)(V)]drift

g
.

11



In particular, if V ∈ D1, then φ2−qV ∈ E⊥φ and

[φ2−qV]drift
g
= [Dφ(φ2−qV)]drift

g
.

Since the projection fromDg onto Driftg is an isomorphism it is therefore enough to show that Fφ : D1 →

Dφ defined by

Fφ(V) = Dφ(φq−2V)

is an isomorphism under the given hypotheses on g and φ.

Suppose first that g admits no conformal Killing fields. In this case D1 = E
⊥
1

, Dφ = E
⊥
φ , and the result

follows from the previously discussed isomorphism E⊥
1
→ φ2−qE⊥

1
= E⊥φ .

Now consider the case where g admits conformal Killing fields, but no Killing fields. Let Gφ be the g-L2

projection of Wk,p(M, T M) onto Pφ(Q); we claim that Gφ is continuous in φ when thought of as a map with

codomain Wk,p(M, T M). Indeed first note that the maps Pφ, defined previously in terms of solving a Poisson

problem for the metric g, are continuous in φ. Hence, fixing a basis {Qi} forQ, the vectors Pφ(Qi) also depend

continuously on φ. Moreover, since g has no Killing fields the map P1|Q is injective, and the continuity of

Pφ with respect to φ (along with the fact that Q is finite dimensional) ensures that Pφ|Q is injective for φ

sufficiently close to 1. Hence the vectors {Pφ(Qi)} are linearly independent. The map taking a frame (in this

case {Pφ(Qi)}) to an orthonormal frame via the Gram-Schmidt algorithm is continuous in the frame and the

inner product jointly, and writing the projection Gφ with respect to the orthonormal frame it readily follows

that Gφ is continuous in φ, as is Dφ = Id − Gφ with codomain Wk,p(M, T M).

Now consider the maps

Bφ = (D1 ◦ S −1
φ ) ◦ (Dφ ◦ S φ) : D1 → D1

where S φ(V) = φ2−qV . From our observation that Dφ is continuous in φ, so are the maps Bφ. And since

B1 = Id, we conclude that Bφ is an isomorphism for φ sufficiently close to 1. Noting that

Bφ = (D1 ◦ S −1
φ |Dφ

) ◦ Fφ, (4.14)

to show that Fφ is an isomorphism for φ close to 1 it is therefore enough to establish the same fact for

D1 ◦ S −1
φ |Dφ

: Dφ → D1. Moreover, the factorization (4.14) already implies that D1 ◦ S −1
φ |Dφ

is surjective for

all conformal factors sufficiently near 1, and we need only establish injectivity.

The kernel of D1 is P1(Q) and hence

Ker D1 ◦ S −1
φ |Dφ

= (S φ ◦ P1)(Q) ∩Dφ.

Now (S φ ◦ P1)(Q) ⊆ E⊥φ , and since Ker Gφ|E⊥
φ
= Dφ, to show that the subspace (S φ ◦ P1)(Q) ∩ Dφ is trivial

(for φ close to 1) it is enough to show that

Gφ ◦ S φ ◦ P1|Q : Q → Wk,p(M, T M)

is injective. But this follows from the fact that this family of linear maps has finite-dimensional domain, is

continuous in φ, and is injective at φ ≡ 1.
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4.3 Parametrizations of the Constraints Using Conformal Deformation, Expansion

and Drift

Recall that in the standard conformal method we prescribe the conformal class, conformal momentum, and

mean curvature of the solution. In the drift formulation, we replace the mean curvature with the combination

of volumetric momentum and either volumetric or conformal drift.

Consider a solution (g,K) of the vacuum constraint equations, and let α be a volume gauge. From Lemmas

2.2 and 4.1 the solution uniquely determines

• a conformal class [g],

• a conformal momentum measured by α represented by (g, σ) where σ is transverse-traceless with

respect to g,

• a volumetric momentum −2κτ∗ measured by α

• and a volumetric drift [V]drift
g

measured by α.

The first three parameters can be prescribed in a conformally invariant fashion by choosing a representative

g of the conformal class, along with a g-transverse-traceless tensor σ and a constant τ∗. Then g = φq−2g for

some conformal factor φ and σ = φ−2σ. As for the drift, recall from Lemma 4.7 that the map Dg → Driftg
given by V 7→ [φ2−qV]drift

g
is an isomorphism so long as g has no conformal Killing fields, or so long as g

has no Killing fields and g is sufficiently close to g. Hence we will select V ∈ Dg and set V = φ2−qV , and

the aim of the drift method is to recover the solution of the constraint equation from these parameters.

More precisely, we prescribe the following conformal data:

(g, σ, τ∗,V; N) (4.15)

where σ is transverse-traceless, τ∗ is a constant, V ∈ Dg is a canonical drift representative at g, and N is

lapse specifying a volume gauge α according to the relationship N = dVg/α. We seek a solution (φ,W,Q) of

the following variation of equations from [Ma14a] Section 12:

−a∆φ + Rφ +

∣∣∣∣∣σ +
1

2N
L W

∣∣∣∣∣
2

φ−q−1
+ κ

(
τ∗ +

1

Nφq
divφ(φ2−qV + Q))

)2

φq−1
= 0

1

2
L∗

(
1

2N
L W

)
− κ div∗φ

(
1

N
divφ(φ2−qV + Q)

)
= 0

(4.16)

where W is an arbitrary vector field and Q is a conformal Killing field. Here we are using the notation

divφ = φ
−q divφq (4.17)

for the divergence operator of the metric φq−2g, while

div∗φ = −φ
q d φ−q (4.18)
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is the adjoint of divφ with respect to the background metric g. The conformal Killing field Q is determined

by the CKF compatibility condition

∫
1

N
divφ(φ2−qV + Q) divφ P dVg = 0 (4.19)

for all conformal Killing fields P, which can be added to system (4.16) to make the number of equations

match the number of unknowns.

Supposing (φ,W,Q) solves system (4.16), let

g = φq−2g

τ = τ∗ +
1

Nφq
divφ(φ2−qV + Q)

K = φ−2

[
σ +

1

2N
L W

]
+
τ

n
g.

(4.20)

Following arguments from [Ma14a] it follows that (g,K) is a solution of the constraints with conformal

class [g], conformal momentum represented by (g, σ), volumetric momentum −2κτ∗, and volumetric drift

[φ2−qV]drift
g

as desired. We will call system (4.16) together with (4.19) the vacuum CED-V equations, short

for conformal deformation, expansion, and (volumetric) drift.

Alternatively, we can prescribe the conformal drift instead of the volumetric drift. Starting with conformal

data

(g, σ, τ∗,W; N) (4.21)

with W ∈ Dg we seek a solution (φ,V, E) of

−a∆φ + Rφ +

∣∣∣∣∣σ +
1

2N
L(φ2−qW + φ−qE)

∣∣∣∣∣
2

φ−q−1
+ κ

(
τ∗ +

1

Nφq
divφ(V + Q))

)2

φq−1
= 0

1

2
L∗

(
1

2N
L(φ2−qW + φ−qE)

)
− κ div∗φ

(
1

N
divφ(V)

)
= 0

(4.22)

where V is an arbitrary vector field and E is divergence free. The vector field E is determined by the

compatibility condition

−

∫
1

4N
L(φ2−qW + φ−qE) L(φ−qF) dVg = 0 (4.23)

for all divergence-free vector fields F. Given (φ,V, E) solving system (4.22), let

g = φq−2g

τ = τ∗ +
1

Nφq
divφ(V)

K = φ−2

[
σ +

1

2N
(L W + φ−qE)

]
+
τ

n
g.

(4.24)

We find (g,K) is a solution of the constraints as before, except that we have prescribed conformal drift

[φ2−qW]drift
g

rather than volumetric drift, and we will call system (4.22) the vacuum CED-C equations.
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5 Conformal Description of Matter

Section 2 described the conformal method in terms of natural geometric parameters such as conformal

momentum. By contrast, the current literature for including matter in the conformal method is somewhat

ad hoc, and is guided by finding formulations that make the problem mathematically tractable [CB09].

We note, for example, the methods of scaling and unscaling sources, in the vocabulary of [CBIY00]. It

has long been understood that in the CMC case the conformal method is compatible with scaling sources,

whereas unscaling sources lead to undesirable non-uniqueness properties [PY05]. We also point to [IN77],

which enunciates a fundamental guiding principle that leads to to the method of scaling sources; in effect

we specify the configuration and momentum of matter independent of the metric.1 Given our interest in

constructing near-CMC solutions, we employ scaling sources in the framework laid out in [IMP05]. This is

described briefly here without any focus on the underlying principle of [IN77].

We represent matter fields as sections F of a smooth vector bundle over M. The energy and momentum

densities of the matter fields are functions jointly of F and the metric g,

E(F , g) and J(F , g) (5.1)

respectively, and with this notation the full Einstein constraint equations read

Rg − |K|
2
g + (trg K)2

= 16πE(F , g) + 2Λ (5.2a)

divg K − d(trg K) = −J(F , g) (5.2b)

where Λ is the cosmological constant.

We assume that F obeys a conformal transformation law. Specifically, if the metric changes from g to

ĝ = φq−2g then the fields transform according to F̂ = Φ(F , φ) where Φ is a group action of the conformal

factors on the matter fields, i.e., Φ(F , 1) = F and Φ(Φ(F , φ1), φ2) = Φ(F , φ1φ2). We assume moreover that

any necessary compatibility conditions on the matter fields (e.g. the divergence-free condition for magnetic

fields) are preserved as we transform from g to ĝ and F to F̂ . The key hypothesis for scaling sources is that

J(Φ(F , φ), φq−2g) = φ−qJ(F , g). (5.3)

This perhaps unmotivated scaling occurs naturally in practice and for CMC conformal data leads to a mo-

mentum constraint that is semi-decoupled from the Hamiltonian constraint. Fixing F at the metric g, the

transformation law (5.3) amounts to assuming that the momentum density is described by a one form j that

conformally transforms according to

ĵ = ψ−q j. (5.4)

Turning to the energy density, again fix F at g and define

ρ(φ) = E(Φ(F , φ), φq−2g). (5.5)

The details of this map depend strongly on the specific type of matter, and we make the following minimal

hypothesis.

1In light of [IN77], the term ‘scaling sources’ is a misnomer. In the method of scaling sources the configuration of matter is

conformally invariant, and only the metric used to measure it changes.
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Definition 5.1. A smooth map ρ : W
k,p
+ (M)→ Wk−2,p(M) satisfies the energy scaling condition if:

1. The linearization of ρ at φ in the direction φ̇ can be written in the form

Dρφ[φ̇] = rφ̇ (5.6)

where r ∈ Wk−2,p(M) depends on φ.

2. Either

• ρ(φ) ≡ 0 for all φ ∈ W
k,p
+ (M), or

• for all φ ∈ W
k,p
+ (M) the Wk−2,p(M) function that is the linearization of

φ 7→ φq−2ρ(φ) (5.7)

is non-positive and not identically zero.

As with hypothesis (5.4) for the momentum density, Definition 5.1 is somewhat unmotivated, but admits the

following loose interpretation: energy density measured by the metric is a local property, depending on the

value of φ but not its derivatives, and it grows at least as fast as φ2−q as φ → 0, and decays at least as fast

as φ2−q as φ → ∞. We will use the notation ρ(·) for the map ρ as a reminder that it is a function taking a

conformal factor as an argument, rather than simply a function defined on M.

The framework for matter described here is broad enough to include a number of important matter mod-

els including electromagnetism (and Yang-Mills fields more generally), perfect fluids (including dust), and

Vlasov models. These details were treated in [IMP05], where the energy scaling condition appears in a

somewhat obscured form as hypothesis N1.2 This framework notably excludes scalar fields, however, where

condition 2 of Definition 5.1 fails, and we refer to [HPP08] for alternate techniques needed to include scalar

fields in the conformal method. As a concrete example, consider electromagnetism in 3-dimensions without

charged sources. The matter fields consist of divergence-free one-forms E and B representing the electric

and magnetic fields and we have energy and momentum densities

E(E, B, g) = |E|2g + |B
2|2g

J(E, B, g) = ∗g(E ∧ B)
(5.9)

where ∗g is the Hodge-star operator. We conformally transform the fields according to Φ((E, B), φ) =

(φ−2E, φ−2B) which preserve the conditions that these one-forms must be divergence-free. One readily

verifies that
J(φ−2E, φ−2B, φq−2g) = φ−2 ∗g (φ−2E ∧ φ−2B)

= φ−qJ(E, B, g)
(5.10)

since q = 6 when n = 3. Thus we can take j = ∗g(E ∧ B). For the Hamiltonian constraint we have

E(φ−2E, φ−2B, φq−2g) = φ−8|E|2 + φ−8|B|2 (5.11)

2Condition N1 of [IMP05] is equivalent to

φ 7→ φq−2ρ(φ) (5.8)

being decreasing in φ. The hypothesis of Definition 5.1 that it is strictly decreasing somewhere (except in vacuum) does not appear

explicitly in [IMP05], but is easy enough to verify from the expressions computed in that paper that this additional condition is satisfied

for all the specific matter fields treated in that work.
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and hence

ρ(φ) =
[
|E|2 + |B|2

]
φ−8. (5.12)

Noting that q − 2 = 4 when n = 3,

φq−2ρ(φ) =
[
|E|2 + |B|2

]
φ−4 (5.13)

which evidently satisfies the energy scaling condition.

For convenience, we treat the cosmological constant Λ as an additional form of matter, and we will call a

triple (ρ(·), j,Λ) where ρ(·) satisfies the conditions of Definition 5.1 a conformal matter distribution. The

CTS-H equations include a conformal matter distribution according to

−a∆φ + Rφ −

∣∣∣∣∣σ +
1

2N
L W

∣∣∣∣∣
2

φ−q−1
+ κτ2φq−1

= 2
[
8πρ(φ)φq−1

+ Λφq−1
]

1

2
L∗

[
1

2N
L W

]
+ κφqdτ = 8π j.

(5.14)

If (φ,W) is a solution of these equations then (g,K) defined by equations (2.7) solve the constraint equations

for matter fields F = Φ(F , φ) giving an energy density ρ = ρ(φ) and a momentum density j = φ−q j. We will

call (ρ, j,Λ) a physical matter distribution. An easy computation using the fact that Φ is group action shows

that the CTS-H equations with matter are conformally covariant as well, so long as when we conformally

transform to ĝ = ψq−2g we also transform to the field F̂ = Φ(F , ĝ) to obtain ρ̂(·) = ρ(ψ ·) and ĵ = ψ−q j.

Because the drift formulations differ from the CTS-H equations only in their treatment of the mean curvature,

a conformal matter distribution (ρ(·), j,Λ) appears in the drift formulations of the constraint equations in

exactly the same way as for the CTS-H equations. Simply replace the zeros on the right-hand sides of

equations (4.16) or (4.22) with the right-hand sides of equations (5.14), but observe that the associated

compatibility conditions need to account for the momentum density.

The CED-V equations in their final form, extending system (4.16) to include matter, are

−a∆φ + Rφ +

∣∣∣∣∣σ +
1

2N
L W

∣∣∣∣∣
2

φ−q−1
+ κ

(
τ∗ +

1

Nφq
divφ(φ2−qV + Q))

)2

φq−1

= 2
[
8πρ(φ)φq−1

+ Λφq−1
]

;

1

2
L∗

(
1

2N
L W

)
− κ div∗φ

(
1

N
divφ(φ2−qV + Q)

)
= 8π j

(5.15)

where the CKF compatibility condition (4.19) becomes

κ

∫
1

N
divφ(φ2−qV + Q) divφ P dVg = −8π

∫

M

jaPadVg (5.16)

for all conformal Killing fields P.

Analogously, CED-C equations with matter, generalizing system (4.22), are

−a∆φ + Rφ +

∣∣∣∣∣σ +
1

2N
L(φ2−qW + φ−qE)

∣∣∣∣∣
2

φ−q−1
+ κ

(
τ∗ +

1

Nφq
divφ(V + Q))

)2

φq−1

= 2
[
8πρ(φ)φq−1

+ Λφq−1
]

;

1

2
L∗

(
1

2N
L(φ2−qW + φ−qE)

)
− κ div∗φ

(
1

N
divφ(V)

)
= 8π j,

(5.17)
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with compatibility condition

∫
1

4N
L(φ2−qW + φ−qE) L(φ−qF) dVg = 8π

∫
jaφ
−qFadVg (5.18)

for all divergence-free vector fields F.

6 Near-CMC Solutions on Compact Manifolds using Drifts

In this section we prove the main result that, loosely stated, the drift method provides a good parameterization

of solutions of the constraint equations on compact manifolds near CMC solutions, even when the metric

admits conformal Killing fields.

To begin, we characterize the CMC solutions with respect to drift parameters.

Lemma 6.1. Suppose (g,K) is a solution of the constraints equations (1.1) with matter fields (ρ, j,Λ), and

let α be an arbitrary volume gauge. The solution is CMC if and only if

1. the solution has zero volumetric drift measured by α, and

2. for all conformal Killing fields P, ∫
jaPadVg = 0. (6.1)

Proof. Write K = A + τ
n
g, where A is trace-free with respect to g, and then, applying Lemmas 2.2 and 4.1

with N = dVg/α, decompose further as

A = σ +
1

2N
(L W), τ = τ∗ +

1

N
div V , (6.2)

where σ is transverse-traceless, τ∗ is constant, and W and V are vector fields. With respect to this decompo-

sition, the momentum constraint reads

1

2
L∗

1

2N
L W + κ d

1

N
div V = j. (6.3)

First suppose that the solution is CMC. The expression for τ in (6.2) implies that
∫

N(τ − τ∗) dVg =∫
div V dVg = 0, and since N > 0 everywhere, we see first that τ = τ∗ and then that div V = 0. Recall

now from Definition 4.5 that the volumetric drift measured by α is V + (Ker L+Ker div). Since V ∈ Ker div,

the solution has zero volumetric drift. Moreover, multiplying equation (6.3) by a conformal Killing field and

integrating by parts on the left-hand side yields (6.1).

Conversely, suppose the solution has zero volumetric drift measured by α and that (6.1) holds. Since the

solution has zero volumetric drift we can write V = E + Q where E is divergence-free and Q is a conformal
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Killing field. Observe that div V = div Q. Now multiply the momentum constraint (6.3) by Q and integrate

by parts to get

0 =

∫
jaQadVg = −κ

∫
1

N
(div V)(div Q) dVg = −κ

∫
1

N
(div Q)2 dVg, (6.4)

i.e., div Q = 0. Finally,

τ = τ∗ +
1

N
div V = τ∗ +

1

N
div Q = τ∗, (6.5)

so the solution is CMC.

Lemma 6.1 suggests that the volumetric form of the drift method is nicely adapted to generate CMC solu-

tions. Indeed, if a volumetric drift conformal data (g, σ, τ∗,V; N) generates a solution metric g = φq−2g,

then the corresponding volumetric drift is [φ2−qV]drift
g

. This means that V = 0 suffices; furthermore, at least

when the metric admits no conformal Killing fields, Lemma 4.7 implies that V = 0 is the only choice in

Dg which results in a zero volumetric drift. The only potential difficulty is that (6.1) involves the unknown

solution metric and the solution momentum density j. Fortunately, the scaling law (5.4) for momentum

density ensures that (6.1) is conformally invariant, so this is not a real problem.

Corollary 6.2. Consider a CED-V data set (g, σ, τ∗,V; N) with V ≡ 0 and a conformal matter distribu-

tion (ρ(·), j,Λ) that generates a solution (φ,W,Q) of the CED-V equations. The associated solution of the

constraint equations is CMC if and only if

∫
jaPa dVg = 0 (6.6)

for all conformal Killing fields P. Moreover, when the solution is CMC, then Q is a true Killing field for the

solution metric, (φ,W, Q̃ ≡ 0) is also a solution of the CED-V equations that generates the same solution

of the constraints, and (φ,W) solves the standard CTS-H equations (5.14) with constant mean curvature

τ = τ∗.

Proof. Let (φ,W,Q) be the solution of (5.15) corresponding to a solution (g,K) of the constraints. Since

V = 0 the volumetric drift of the solution is [φ2−qV]drift
g
= 0, and Lemma 6.1 implies that the solution is

CMC if and only if ∫
jaPadVg = 0 (6.7)

for all conformal Killing fields P; here j is the physical momentum density given by

j = φ−q j. (6.8)

The physical volume form is dVg = φ
qdVg, and hence jdVg = jdVg. So (6.7) holds for all conformal Killing

fields P if and only if the same is true for (6.6).

Supposing now that the solution is CMC, equation (6.6) along with the choice V ≡ 0 implies that the CKF

compatibility condition (5.16) reduces to

∫
1

N
(divφ Q)(divφ P) dVg = 0 (6.9)
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for all conformal Killing fields P. In particular,
∫

(divφ Q)2N−1 dVg = 0. But divφ = divg, so Q is a

divergence-free conformal Killing field for g, i.e. it is a true Killing field for g. Since Q appears in the

CED-V equations only via divφ Q, we may as well take it to be zero and arrive at the same solution of the

constraints. Finally, since V ≡ 0 as well, a quick inspection verifies that the CED-V equations (5.15) reduce

to the CTS-H equations (5.14) with τ ≡ τ∗.

Corollary 6.2 shows that the CMC theory for the CTS-H equations transfers directly to the CED-V equations.

In vacuum we have the tidy and complete classification of CMC solutions completed in [Is95]. Conversely,

for a positive cosmological constant Λ with 2Λ > κτ2
∗ we have all the complexity demonstrated in, e.g,

[CG17].

6.1 Near-CMC Solutions Parametrized by Small Volumetric Drift

Given the natural connection between CMC solutions and volumetric drift, we first examine the construction

of near-CMC solutions by perturbing to small volumetric drift. We use the implicit function theorem in a

fashion parallel to that of [GN14], but with some technical features to handle conformal Killing fields.

Indeed, in the presence of conformal Killing fields, the vector Laplacian 1
2

L∗ 1
2N

L : Wk,p(M, T M) →

Wk−2,p(M, T ∗M) is Fredholm and has kernel equal to Q and cokernel

Q⊥ :=

{
η ∈ Wk−2,p(M, T ∗M) :

∫

M

ηaQa dVg = 0 for all conformal Killing fields Q

}
.

By modifying the domain and range slightly we can make this into an isomorphism

L∗
1

2N
L : Wk,p(M, T M)/Q → Wk−2,p(M, T ∗M) ∩ Q⊥. (6.10)

Indeed, writing [W]Q for the projection of a Wk,p vector field W to the quotient space Wk,p(M, T M)/Q, it is

clear that L[W]Q = L W is well-defined. We also set

P : Wk−2,p(M, T ∗M)→ Wk−2,p(M, T ∗M) ∩ Q⊥, (6.11)

to be the projection with kernel consisting of the conformal Killing covector fields; this is defined since

Wk−2,p(M, T ∗M) ∩ Q⊥ has finite codimension in Wk−2,p(M, T ∗M).

For the remainder of this section, fix a metric g, a lapse N, and a conformal matter distribution (ρ(·), j,Λ).

Before setting up an implicit function theorem argument, we define the following three functionals:

• the Hamiltonian constraint

CH(σ, τ∗,V; φ, [W]Q,Q) =

− a∆φ + Rφ −

∣∣∣∣∣σ +
1

2N
L[W]Q

∣∣∣∣∣
2

φ−q−1
+ κ

(
τ∗ +

1

Nφq
divφ(φq−2V + Q)

)2

φq−1

− 2(8πρ(φ) + Λ)φq−1;

(6.12)
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• the momentum constraint

CM(σ, τ∗,V; φ, [W]Q,Q) =
1

2
L∗

1

2N
L[W]Q − P

[
κ div∗φ

(
1

N
divφ(φq−2V + Q)

)
+ 8π j

]
(6.13)

where P is the projection (6.11);

• the CKF compatability constraint

CC(σ, τ∗,V; φ, [W]Q,Q) = P 7→

∫
κ

1

N
divφ(φq−2V + Q) divφ(P) + 8π jaPa dVg, (6.14)

where P is an arbitrary conformal Killing field.

There is a semicolon appearing in the arguments of these maps to separate those variables that are prescribed,

the following spaces:

(σ, τ∗,V) ∈ [ker L∗ ⊆ Wk−1,p(M, S 2M)] × R × [Dg ⊆ Wk,p(M, T M)], (6.15)

versus those that must be solved for,

(φ, [W]Q,Q) ∈ W
k,p
+ (M) × (Wk,p(M, T M)/Q) × Q. (6.16)

The maps CH , CM , and CC take their values in Wk−2,p(M), Wk−2,p(M, T ∗M) ∩ Q⊥ and Q∗, respectively.

Lemma 6.3. A triple (φ,W,Q) solves the CED-V equations (5.15) for CED-V data (g, σ, τ∗,V; N) and

conformal matter distribution (ρ(·), j,Λ) if and only if

CH(φ, [W]Q,Q; σ, τ∗,V) = 0

CM(φ, [W]Q,Q; σ, τ∗,V) = 0

CC(φ, [W]Q,Q; σ, τ∗,V) = 0.

(6.17)

Proof. If the definition of CM were not to involve the projection P there would be nothing to do other than

to observe that the distinction between W and [W]Q is immaterial since W only appears as an argument to

L. Hence it suffices to show that if CC = 0 then CM = 0 is equivalent to

1

2
L∗

1

2N
L[W] − div∗φ

(
1

N
divφ(V + Q)

)
− 8π j = 0. (6.18)

Indeed, if CC = 0, then integration by parts shows that

− div∗φ

(
1

N
divφ V

)
− 8π j ∈ Q⊥. (6.19)

Hence

P

[
div∗φ

(
1

N
divφ(V + Q)

)
+ 8π j

]
= div∗φ

(
1

N
divφ(V + Q)

)
+ 8π j, (6.20)

which is (6.18).
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Theorem 6.4. Consider volumetric drift parameters (g, σ̂, τ̂∗, V̂; N) and and a conformal matter distribu-

tion (ρ(·), j,Λ) where g, N, and V̂ have Wk,p regularity, σ̂ is of class Wk−1,p, j is of class Wk−2,p, and where

ρ satisfies the energy scaling condition of Definition 5.1.

Suppose that V̂ ≡ 0 leads to a CMC solution of equations (5.15) and additionally that

i) The CMC solution metric does not admit any true Killing fields.

ii) κτ2
∗ ≥ 2Λ.

iii) Either κτ2
∗ > 2Λ, or σ . 0, or the solution is not vacuum.

Then there exists ǫ > 0 such that all conformal data (g, σ, τ∗,V; N) satisfying

||σ − σ̂||Wk−1,p + |τ∗ − τ̂∗| + ||V ||Wk,p < ǫ (6.21)

generate a solution of system (5.15), and the map from (σ, τ∗,V) to the associated solution of the constraint

equations is smooth and injective.

Remark 6.5. As we show below, in the absence of matter fields, hypothesis i) is satisfied generically in the

space of CMC solutions.

Proof. By conformal covariance of the CED-V equations, assume that the background metric g is the CMC

solution metric, which means that the solution of the CED-V equations is (φ̂, Ŵ, Q̂) with φ̂ ≡ 1. Moreover

Corollary 6.2 implies Q̂ must be a true Killing field, hence Q̂ ≡ 0. This simplifies various expressions later

in the proof. Although Ŵ does not have a simple expression, the momentum constraint implies

− L∗
1

2N
L Ŵ = j, (6.22)

which we also use in the sequel.

Define F = (CH ,CM ,CC). By Lemma 4.7 there is a neighborhood Φ of 1 in W
k,p
+ (M) such that V 7→

[φ2−qV]drift
φq−2ĝ

, from Dĝ to Driftφq−2ĝ, is an isomorphism for any φ ∈ Φ. We restrict the domain of F to these

conformal factors; it remains an open set in the Banach space (6.15), (6.16).

The map F is continuously differentiable and its derivative with respect to (φ, [W]Q,Q) at

(σ̂, τ̂∗, V̂; φ̂, [Ŵ]Q, Q̂) = (σ̂, τ̂∗, 0; 1, [Ŵ]Q, 0) (6.23)

can be written as

DF(δφ, δ[W]Q, δQ) =



−a∆+A −2
〈
σ + 1

2N
L Ŵ, 1

2N
L(·)

〉
2κτ∗

1
N

div(·)

0 1
2

L∗
(

1
2N

L(·)
)

κP(div∗
(

1
N

div(·)
)
)

0 0 P 7→ κ
∫

1
N

div(·) div(P) dV




δφ

δ[W]Q
δQ



(6.24)

where

A = (q + 2)

∣∣∣∣∣σ +
1

2N
L Ŵ

∣∣∣∣∣
2

+ (q − 2)[κτ2
∗ − 2Λ] − 16π[ρ′(1) + (q − 2)ρ(1)]. (6.25)
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Note that we have used the Hamiltonian constraint

R −

∣∣∣∣∣σ +
1

2N
L Ŵ

∣∣∣∣∣
2

+ κτ2
∗ = 16πρ(1) + 2Λ (6.26)

to replace the scalar curvature that would otherwise have appeared in the expression for A. From the block

upper-triangular form of the matrix we conclude that DF is invertible if each diagonal block is, and we treat

each in turn.

The operator

− a∆+A : Wk,p(M)→ Wk−2,p(M), (6.27)

is invertible if A ≥ 0, A . 0. Looking at the expression (6.25) we have three terms to consider. First,

(q − 2)[κτ2
∗ − 2Λ] ≥ 0 (6.28)

since q > 2 (for any n ≥ 3) and since κτ2
∗ ≥ 2Λ by hypothesis. Next,

[ρ′(1) + (q − 2)ρ(1)] (6.29)

is the linearization of

φ 7→ φq−2ρ(φ) (6.30)

evaluated at φ ≡ 1. By Definition 5.1, this is non-positive and hence −16π[ρ′(1)+ (q− 2)ρ(1)] ≥ 0. The final

summand of A is ∣∣∣∣∣σ +
1

2N
L Ŵ

∣∣∣∣∣
2

, (6.31)

which is obviously nonnegative. Moreover, multiplying expression (6.31) by N and integrating yields

∫
N

∣∣∣∣∣σ +
1

2N
L Ŵ

∣∣∣∣∣
2

=

∫
N|σ|2 +

1

4N
|L Ŵ |2, (6.32)

using that transverse-traceless tensors are L2 orthogonal to the image of L. Altogether, A ≡ 0 means that

κτ2
∗ = 2Λ, σ ≡ 0, Ŵ ≡ 0, and ρ′(1) + (q − 2)ρ(1) ≡ 0 (6.33)

Equation (6.22) shows that Ŵ ≡ 0 implies j ≡ 0; by Definition 5.1, if ρ′(1) + (q − 2)ρ(1) ≡ 0 then ρ(·) ≡ 0.

From these we get that κτ2
∗ = 2Λ, σ ≡ 0 and the solution is vacuum. Hypothesis 6.4 thus ensures that A . 0.

The middle block of the matrix in (6.24) is invertible by the discussion around (6.10).

Finally, for the last block, the symmetric bilinear form

B : Q × Q → R, B(Q, P) =

∫
1

N
div Q div P dVg (6.34)

is nonnegative, and positive definite so long as Q contains no true Killing fields, which are precisely the

divergence free elements in Q. This too holds under our assumptions. Therefore, the map

Q 7→

∫
1

N
div Q div(·) dVg (6.35)
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is an isomorphism from Q to Q∗.

Taking Lemma 6.3 into account, the implicit function theorem now provides the existence of the solution

map for (σ, τ∗,V) sufficiently near (σ̂, τ̂∗, V̂ = 0) in Wk,p × R × Dg. It remains to establish the global

injectivity.

Suppose (σ, τ∗,V) determines a solution (φ,W,Q) of the CED-V equations, and thereby a solution (g,K) of

the constraint equations. We demonstrate injectivity by showing that we can recover (σ, τ∗,V) from (g,K)

under the hypothesis that φ ∈ Φ.

Setting N = φqN, apply Lemmas 2.2 and 4.1 to write

K = σ +
1

2N
Lg W +

τ

n
g, τ = τ∗ +

1

N
divg(V)

where σ is transverse-traceless with respect to g, τ∗ is constant, and V is a vector field. On the other hand

equations (4.20) and the conformal transformation laws for the divergence and conformal Killing operators

imply

K = φ−2σ +
1

2N
Lg W +

τ

n
g, τ = τ∗ +

1

N
divg(φ2−qV + Q).

Since φ−2σ is transverse-traceless with respect to g, the uniqueness clauses of Lemmas 2.2 and 4.1 imply

τ∗ = τ∗, σ = φ
2σ and that there is a g divergence-free vector field E such that

φ2−qV + Q + E = V .

But this shows that we have agreement of drifts

[φ2−qV]drift
g
= [V]drift

g
.

Since φ ∈ Φ, the map Dg → Driftg given by V 7→ [φ2−qV]drift
g

is an isomorphism and V ∈ Dg is uniquely

determined by V .

Proposition 3.1 shows that given a CMC solution of vacuum constraint equations with a metric conformal

to the round sphere, there exist inadmissible perturbations of the mean curvature. By contrast, Theorem

6.4 shows that, so long as the CMC solution has no Killing fields, arbitrary small perturbations of drift and

volumetric momentum produce nearby solutions. We now verify that this condition is generic among the

CMC solutions within a conformal class.

Proposition 6.6. In the space of all CMC solutions to the vacuum constraint equations, the subset of pairs

(g,K) for which there are no Killing fields is open and dense. In fact, this is true even within a conformal

class.

Proof. Let (g,K) be any CMC solution and denote byKg andQg the spaces of Killing and conformal Killing

vector fields for g, respectively; thus

Qg = {X : L X = 0} , and Kg =

{
X ∈ Qg : divg X = 0

}
;

of course Qg̃ = Qg for any metric g′ = φq−2g.
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We first show that if Kg = {0}, then the same is true for any metric g′ near to g in the Wk,p topology.

The second part is to prove that if Kg is nontrivial, then there exist metrics g′ arbitrarily near g in the Wk,p

topology such that Kg′ = {0}.

To begin, observe that the Kg is also characterized as the nullspace of the map

Tg : Qg −→ Qg, Tgξ = P ◦ div∗g ◦ divg,

where P is the L2 orthogonal projection from the space of symmetric two-tensors onto the finite dimensional

spaceQg; this follows easily from the identity 0 = 〈Tgξ, ξ〉 = || divg ξ||
2 if Tgξ = 0 and ξ ∈ Qg. We henceforth

identify Qg with RN for some N. Observe also that Tg depends in a real analytic way on g.

For the first assertion, simply note that if g admits no Killing fields, then ker Tg = {0}, and this is an open

condition in the space of all Wk,p metrics, hence also in the space of metrics g′ which appear in a pair (g′,K′)

of CMC solutions of the constraint equations.

As for the second assertion, suppose Kg0
is nontrivial for some metric g0 which appears in a CMC solution

pair (g0,K0 =
τ
n
g0 + σ0). Without loss of generality we can assume that τ , 0 and σ0 . 0, for otherwise

the CMC theory of the conformal method ensures we can perturb to a nearby solution of the constraint

equations satisfying this condition. We consider families of solutions which arise by varying σ in U =

Wk,p(M, S tt) \ {0}, but keeping the conformal class fixed. From the CMC theory of the conformal method,

since τ , 0, for σ ∈ U there is a well defined conformal factor φ(σ) obtained by solving the Lichnerowicz

equation

− a∆0φ + R0φ − |σ|
2
g0
φ−q−1

+ κτ2φq−1
= 0, (6.36)

and

(gσ,Kσ) =

(
φq−2g, φ−2σ +

τ

n
φq−2g

)
(6.37)

is a solution of the constraint equations. For simplicity, we write Tσ instead of Tgσ

Consider, for j = 0, . . . ,N, the subsets F j = {σ ∈ U : rank Tσ ≤ j}. We claim that since φ, and hence

g, depends real analytically on σ, each F j is an analytic subvariety of finite codimension in U. Indeed, σ

lies in F j if and only if the determinant of every ( j + 1)-by-( j + 1) minor of Tσ vanishes, and this is a finite

number of polynomial conditions. By analyticity again, if the set F o
j

:= F j \ F j−1 of TT tensors σ where

the rank of Tσ is exactly j has an interior point, then it is an open dense subset inU. Furthermore,U is the

union of the sets F j, hence some F o
k

must have interior, and hence is open and dense. The main conclusion

follows if we can show that k = N, since Tσ has full rank implies that its nullspace is trivial.

Suppose that this is not the case, so F o
k

is open and dense in U for some k < N. We first show that there

exists a submanifold in U with finite codimension such that the nullspace of Tσ is equal to the same k-

dimensional subspace for every σ in the submanifold. Indeed, consider the map G : F o
k
→ G(k,N) into the

Grassmanian of k-planes in RN , which sends σ to the nullspace of Tσ. Let R be the image ofU under G. By

construction, R is a subanalytic set in G(k,N), and hence itself admits a stratification, R = ⊔R j where each

R j is a smooth j-dimensional submanifold. Suppose that J is the maximal dimension of these strata, and let

U′ = G−1(RJ). This is an open dense set inU.

The point of these maneuvers is to obtain a map G′ = G|U′ with maximal rank and image in a smooth

manifold. We may now apply some familiar tools of differential topology. By the Sard-Smale theorem,

there exists a full measure set of regular values of G′, and hence we may choose a k-plane Π ⊂ RN such that
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Ẑ := (G′)−1(Π) is a smooth analytic submanifold of finite codimension inU′. In particular, the nullspace of

divgσ is the same k-dimensional subspace Π ⊂ Qg for all σ ∈ Ẑ.

Fix σ̂1 ∈ Ẑ and and write φ1 and g1 for the corresponding conformal factor and metric. Set Z = φ−2Ẑ, so

Z ⊆ Wk,p(M, S tt(g1)) is a submanifold with finite codimension, and σ1 = φ−2
1
σ ∈ Z. The Lichnerowicz

equation with g1 as background metric is then

− a∆1φ + R1φ − |σ|
2
g1
φ−q−1

+ κτ2φq−1
= 0. (6.38)

By solving (6.38) for φ, each σ ∈ Z determines a metric gσ = φq−2g1 and second fundamental form Kσ

solving the constraint equations. Moreover, let H denote the connected component of the identity in the

isometry group of (M, g1). This is a compact, connected Lie group of positive dimension, and the quotient

M/H is an orbifold of strictly smaller dimension than M. Each gσ with σ ∈ Z is invariant under H, or

equivalently, the conformal factor φ(σ) (where gσ = φq−2g1) is invariant under H. This follows since

TeH = Kg1
is actually constant as σ varies in Z. We show now that this leads to a contradiction.

Suppose that σ(ǫ) is a one-parameter family of TT tensors lying in Z with σ(0) = σ1 and set η = σ̇(0).

Differentiating the Lichnerowicz equation with respect to ǫ gives

Lφ̇ = 2〈σ1, η〉g1
(6.39)

where

L := −a∆1 + R1 + (q + 1)|σ1|
2
g1
+ (q − 1)κτ2

is the Frechet derivative of the Lichnerowicz equation at φ = 1. Next differentiate (6.39) with respect to

X ∈ K1 to obtain

LXφ′ = −[X, L]φ + 2X〈σ1, η〉g1

Setting σ = σ1 in equation (6.38), the solution is φ = 1 and hence R1 + κτ
2
= |σ1|

2
g1

. The left side of this last

relation is annihilated by any X ∈ K1, hence so is the right, so it follows that all the coefficient functions of

L are annihilated by X, and in particular [X, L] = 0. Hence

LXφ′ = 2X〈σ1, η〉g1
.

On the other hand, X(φ(σ)) = 0 for all σ ∈ Z and therefore Xφ′ = 0. Since R1 = |σ1|
2
g1
− κτ2 we can rewrite

L = −a∆1 + (q + 2)|σ1|
2
g1
+ (q − 2)κτ2

to see that L is invertible, and we conclude that the pointwise inner product 〈σ1, η〉g1
is constant along the

H-orbits for every η in the finite codimensional subspace Tσ1
Z ⊂ Wk,p(M, S tt(g1)).

We now show that this last conclusion is absurd. To this end, we use a construction presented in a neat

and general form in [De12], but in fact in fact in this finite regularity setting also following from [Ma91].

Namely, we claim that there exist η ∈ Wk,p(M, S tt(g1)) with arbitrarily small support. The basic principle

is that the operator divg is left-elliptic, and under a certain hypothesis can be shown to be surjective acting

between symmetric trace-free two-tensors and vector fields (or 1-forms) which vanish to some high order

at the boundary of some domain O. (This is proved in [De12] using a weight function which vanishes

exponentially in the distance to ∂O, but follows from [Ma91] if one is content with weight functions which

vanish at any polynomial rate.) We show how to apply this principle: suppose that χ ∈ C∞
0

equals 1 on an

open setO′ which has closure contained inO and which vanishes outsideO. Denote byΩ the annular domain
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O \ O′. If ξ ∈ Wk,p(M, S tt(g1)) is arbitrary, then divg1
(χξ) = ι(∇χ)ξ ∈ Wk−1,p has compact support in Ω. By

[De12, Ma91], there exists a symmetric trace-free Wk,p two-tensor γ supported in Ω with divg1
γ = divg1

(χξ)

if and only if ι(∇χ)ξ is L2 orthogonal to every Y ∈ Qg, i.e.,
∫

M
ξ(∇χ, Y) dVg1

= 0. To show that this is

satisfied here, observe that since Y is conformal Killing and ξ is trace-free,

divg1
(χ ι(Y)ξ) = −∇a

g1
(χξabYb) = −ξ(∇χ, Y) + χξab 1

n
(δg1

Y)(g1)ab = −ξ(∇χ, Y)

Integrating over M yields the desired orthogonality. Hence χξ− γ ∈ Wk,p(M, S tt(g1)) agrees with ξ inU and

has support in O.

Now choose disjoint open sets O′
j
, j = 1, . . . , ℓ such that

• ℓ is larger than the codimension of Z,

• σ1 , 0 throughout each O′
j
(this is possible since σ1 . 0),

• no integral curve of X is contained in O′
j
.

We can then apply the above construction to η = σ1 on each O′
j
to obtain localizations σ1 j. Since ℓ is larger

than the codimension of Z there is a nontrivial linear combination

η =
∑

j

b jσ1 j = 0 mod Tσ1
Z.

That is, η ∈ Tσ1
Z. Picking some j such that b j , 0, there is an integral curve of X which contains a point in

O′
j
where η = σ1 , 0. But this same integral curve is not contained in O′

j
and hence also contains a point on

∂O′
j
where η = 0. It is then obvious that 〈σ, η〉g1

is not constant along the integral curve.

This is the contradiction we desired. The proof is complete.

6.2 Rescaling CED-V Conformal Parameters

In [GN14], the authors observe that the far-from CMC solutions of the constraints constructed in [HNT09]

and [Ma09] can be considered as perturbations of solutions with τ ≡ 0, together with rescaling. In this

section we examine how these arguments translate to the CED-V setting.

Starting from a pair (g,K), consider a length L > 0 and a rescaled pair (ĝ, K̂) = (L2g, L K). If (g,K) solves

the constraints with physical matter distribution (ρ, j,Λ), then (ĝ, K̂) solves the constraints with physical

matter distribution

(ρ̂, ĵ, Λ̂) = (L−2ρ, L−1 ja, L
−2
Λ). (6.40)

A straightforward computation establishes how this homothety scaling extends to CED-V parameters.

Lemma 6.7. Suppose (φ,W,Q) is a solution of the CED-V equations (5.15) for conformal data (g, σ, τ∗,V; N)

and conformal matter distribution (ρ(·), j,Λ). For any L > 0,

(L
n
2
−1φ, Ln−1W, Ln−1Q) (6.41)
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is a solution of system (5.15) for conformal data

(g, Ln−1σ, L−1τ∗, L
n−1V; N) (6.42)

and conformal matter distribution

(L−2ρ(L1− n
2 ·), Ln−1 j, L−2

Λ). (6.43)

Lemma 6.7 should be compared with the analogous result for the CTS-H equations, where a solution (φ,W)

for conformal data (σ, τ; N) scales to a solution (L
n
2
−1φ, Ln−1W) for conformal data (Ln−1σ, L−1τ; N). So for

the CTS-H equations, we can effectively trade small τ for large σ or vice-versa. Furthermore, if a solution

with τ ≡ 0 can be found, then nearby perturbatios and rescalings allow for arbitrary mean curvature. The

situation is more complicated for the CED-V equations because there is an additional parameter involved,

but the principle is the same. If we can find a solution with a parameter equal to zero, then we may hope to

perturb off of it and rescale to obtain any value of the chosen parameter. In the CMC case, volumetric drift

is zero, and hence we can obtain any desired volumetric drift.

Corollary 6.8. Let L > 0 be a constant and consider drift conformal data (g, Ln−1σ, L−1τ∗,V; N) with

conformal matter distribution (L−2ρ(L
n
2
−1 ·), Ln−1 j, L−2

Λ), all with the regularity hypotheses considered in

Theorem 6.4. There exists a solution of the CED-V equations (5.15) for this data if L is sufficiently large and

if all of the following hold:

• There exists a solution for the the CMC conformal data (g, σ, τ∗, 0; N) with matter distribution

(ρ(·), j,Λ).

• There are no true Killing fields for the metric at the CMC solution.

• κτ2
∗ ≥ Λ

• Either κτ2
∗ > Λ, or σ . 0, or the matter distribution is not vacuum.

Proof. Consider the rescaled conformal data (g, σ, τ∗, L
−1−nV; N) with conformal matter distribution (ρ(·), j,Λ).

From the stated assumptions we can apply Theorem 6.4 to conclude that if L is sufficiently large (and hence

L−1−nV is sufficiently small) there exists a solution (φ,W,Q) of system (5.15) for this data. Let

(φ̂, Ŵ, Q̂) = (L
n
2
−1φ, Ln−1W, Ln−1Q̂) (6.44)

Lemma 6.7 implies (φ̂, Ŵ, Q̂) is a solution of system (5.15) for conformal data (g, Ln−1σ, L−1τ∗,V; N) with

matter distribution (L−2ρ(L1− n
2 ·), Ln−1 j, L−2

Λ).

In effect, Corollary 6.8 provides a weak notion of the idea that we can obtain any volumetric drift we please

so long as we take the conformal momentum sufficiently large and the volumetric momentum sufficiently

small. For maximal CMC solutions (τ∗ = 0) an analogous procedure shows that we can perturb to an arbi-

trary volumetric momentum at the penalty of shrinking both the conformal momentum and the volumetric

drift.

Corollary 6.9. Under the same regularity hypotheses as Theorem 6.4 suppose:
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• There exists a solution for the maximal slice conformal data (g, σ, 0, 0; N) with matter distribution

(ρ(·), j,Λ).

• There are no true Killing fields for the metric at the CMC solution.

• κτ2
∗ ≥ Λ

• Either κτ2
∗ > Λ, or σ . 0, or the matter distribution is not vacuum.

If L > 0 is sufficiently small, then there exists a solution of the CED-V equations (5.15) with prescribed

conformal data (g, Ln−1σ, τ∗, L
n+2V; N) and matter distribution (L−2ρ(L

n
2
−1 ·), Ln−1 j, L−2

Λ).

Proof. Consider the rescaled conformal data (g, σ, Lτ∗, LV; N) with matter distribution (ρ(·), j,Λ). Since

we have assumed that there exists a solution for the maximal slice data (g, σ, 0, 0; N), Theorem 6.4 im-

plies that if L is sufficiently small there exists a solution (φ,W,Q) of system (5.15) for this data. Rescal-

ing as in the the proof of Corollary 6.8, we then find that that there exists a solution for conformal data

(g, Ln−1σ, L−1τ∗, L
n+2V; N) and matter distribution (L−2ρ(L1− n

2 ·), Ln−1 j, L−2
Λ).

7 Extension to the AE and AH settings

In this brief final section we indicate the modifications necessary to carry these results over to the two main

noncompact settings common in this field, namely to sets of data which are asymptotically Euclidean (AE)

or asymptotically hyperbolic (AH), respectively. (Extensions to other cases of interest, such as to compact

manifolds with boundary, may be established by following the same overall approach.)

As is well known, in either of these cases, we may take advantage of known solvability results for the various

linear operators which appear in this paper, acting between appropriate weighted Sobolev spaces. Our intent

here is not to be complete, but rather just to briefly describe those parts of the arguments above that can be

modified without further effort. In fact, there are no nontrivial conformal Killing fields vanishing at infinity

in these settings, so the situation is somewhat simpler. On the other hand, this absence of conformal Killing

fields implies both the standard conformal method and the drift method have perfectly adequate near-CMC

theories for AE and AH initial data, and any potential advantages of the drift method is these cases would

have to arise for far-from CMC data. In the AH setting there are additional deeper questions concerning the

‘shear-free’ condition (see, e.g., [AC94]) but these have not been previously addressed even for the standard

conformal method and we leave their resolution for elsewhere.

Asymptotically Euclidean Data:

We say that (M, g,K) is an asymptotically Euclidean data set if there exists a compact region K ⊂ M such

that each of the finitely many components E of M \ K is diffeomorphic to Rn \ BR(0) for some R > 0, and

using this diffeomorphism to give coordinates on each end, g|E = δ + h where δ is the Euclidean metric

and hi j = O(|x|−1), along with corresponding estimates for the derivatives up to order 2 + α. At the same

time, Ki j = O(|x|−2) along with derivatives. It is equally easy from an analytic standpoint to include the

somewhat more general case of asymptotically conic data. Here M \K is a finite union of ends E where each

E is diffeomorphic to the ‘large end’ of a Riemannian cone C(Y), with metric dr2
+ r2kY , where (Y, kY) is a
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compact Riemannian manifold, and so that the corresponding estimates as above hold with this conic metric

in place of the Euclidean metric. In either case, we also impose suitable decay conditions on matter fields.

The results that need to be modified in this new geometric setting are those which concern the global solv-

ability of certain elliptic problems. The particular results that require different proofs are the York splitting

Lemmas 2.2 and 4.1, and our main Theorem 6.4. In Theorem 6.4, we decompose the conformal factor

φ = 1 + u, and because there are no conformal Killing fields vanishing at infinity the map F no longer

involves the variable Q. Its linearization from equation (6.24) becomes

DF(δu, δW) =


−a∆+A −2

〈
σ + 1

2N
L Ŵ, 1

2N
L(·)

〉

0 1
2

L∗
(

1
2N

L(·)
)


(
δu

δW

)
(7.1)

where, in vacuum,

A = (q + 2)

∣∣∣∣∣σ +
1

2N
L Ŵ

∣∣∣∣∣
2

≥ 0. (7.2)

For all of these adjustments we require the basic Fredholm properties of elliptic operators on asymptotically

conic spaces, which appears, for example, in [Ma91] (and many other places). The main observation is that

one needs to let such an operator act between spaces which are weighted by powers of |x| at infinity. This

theory is well-known, the elliptic operators involved in our application indeed invertible, and there are no

unexpected issues.

Asymptotically Hyperbolic Data

Another main setting in relativity is the asymptotically hyperbolic case; this generalizes the spacelike hy-

perboloid in Minkowski space, or equivalently, hyperbolic space. The natural generalization of this is the

class of conformally compact asymptotically hyperbolic spaces. We say that (M, g,K) is an asymptotically

hyperbolic data set if the following holds. First, M is the interior of a smooth compact manifold with bound-

ary M. The metric g is of the form g/ρ2, where g is a metric smooth and nondegenerate up to ∂M, and

ρ is a boundary defining function for the boundary which satisfies |∇gρ|g = 1 at ρ = 0. The tensor K is

again smooth up to ∂M, and if we write K = σ + (τ/n)g, then τ converges to a constant at ρ = 0. It is

straightforward to relax the regularity assumptions on the metric and second fundamental form.

Here too there is a rich and well-developed analytic theory, again to be found in [Ma91] (parts of which

again appear in many other places as well). We let the relevant operators act on function spaces which are

weighted by powers of ρ, or equivalently, by powers of e−d, where d is the Riemannian distance function on

M, e.g. distance to some fixed compact set in the interior. We again observe that Laplace-type operators are

Fredholm when acting between weighted Sobolev spaces and that the three main results mentioned above

hold in this geometric setting as well. The monograph [Le06] works out the indicial roots for the relevant

elliptic operators in this setting; these indicial roots determine the precise ranges of weights on the function

spaces.
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