[Home]   [  News]   [  Events]   [  People]   [  Research]   [  Education]   [Visitor Info]   [UCSD Only]   [Admin]
Home > Research > Publications > Abstract
Search this site:


Directors:
Randolph E. Bank
Philip E. Gill
Michael Holst

Administrative Contact:
Terry Le

Office: AP&M 7431
Phone: (858)534-9813
Fax: (858)534-5273
E-mail: tele@ucsd.edu
Discrete Hamilton-Jacobi Theory

by Melvin Leok, A.M. Bloch, T. Ohsawa

Abstract:

We develop a discrete analogue of the Hamilton-Jacobi theory in the framework of the discrete Hamiltonian mechanics. We first reinterpret the discrete Hamilton-Jacobi equation derived by Elnatanov and Schiff in the language of discrete mechanics. The resulting discrete Hamilton-Jacobi equation is discrete only in time, and is shown to recover the Hamilton-Jacobi equation in the continuous-time limit. The correspondence between discrete and continuous Hamiltonian mechanics naturally gives rise to a discrete analogue of Jacobi's solution to the Hamilton-Jacobi equation. We also prove a discrete analogue of the geometric Hamilton-Jacobi theorem of Abraham and Marsden. These results are readily applied to discrete optimal control setting, and some well-known results in discrete optimal control theory, such as the Bellman equation (discrete-time Hamilton-Jacobi-Bellman equation) of dynamic programming, follow immediately. We also apply the theory to discrete linear Hamiltonian systems, and show that the discrete Riccati equation follows as a special case of the discrete Hamilton-Jacobi equation.

UCSD-CCoM-09-03.pdf   November 2009