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Abstract. We develop a discrete analogue of the Hamilton–Jacobi theory in the framework of the
discrete Hamiltonian mechanics. We first reinterpret the discrete Hamilton–Jacobi equation derived
by Elnatanov and Schiff in the language of discrete mechanics. The resulting discrete Hamilton–
Jacobi equation is discrete only in time, and is shown to recover the Hamilton–Jacobi equation
in the continuous-time limit. The correspondence between discrete and continuous Hamiltonian
mechanics naturally gives rise to a discrete analogue of Jacobi’s solution to the Hamilton–Jacobi
equation. We also prove a discrete analogue of the geometric Hamilton–Jacobi theorem of Abraham
and Marsden. These results are readily applied to discrete optimal control setting, and some
well-known results in discrete optimal control theory, such as the Bellman equation (discrete-time
Hamilton–Jacobi–Bellman equation) of dynamic programming, follow immediately. We also apply
the theory to discrete linear Hamiltonian systems, and show that the discrete Riccati equation
follows as a special case of the discrete Hamilton–Jacobi equation.

1. Introduction

1.1. Discrete Mechanics. Discrete mechanics, a discrete-time version of Lagrangian and Hamil-
tonian mechanics, provides not only a systematic view of structure-preserving integrators but also
a discrete-time counterpart to the theory of Lagrangian and Hamiltonian mechanics [see, e.g.,
22; 25; 26]. The main feature of discrete mechanics is its use of a discrete version of variational
principles. Namely discrete mechanics assumes that the dynamics is defined on discrete times from
the outset, formulates a discrete variational principle on such dynamics, and then derives a discrete
analogue of the Euler–Lagrange or Hamilton’s equations from it. In other words, discrete mechanics
is a reformulation of Lagrangian and Hamiltonian mechanics with discrete time, as opposed to a
discretization of the equations in the continuous-time theory.

The advantage of this construction is that it naturally gives rise to discrete analogues of the con-
cepts and ideas that share the same or similar properties with their continuous counterparts, such as
symplectic forms, the Legendre transformation, momentum maps, and Noether’s theorem [22]. This
in turn provides us with the discrete ingredients that facilitate further theoretical developments,
such as discrete analogues of the theories of complete integrability [see, e.g., 23; 25; 26] and also
those of reduction and connections [13; 18; 20]. Whereas the main topic in discrete mechanics is the
development of structure-preserving algorithms for Lagrangian and Hamiltonian systems [see, e.g.,
22], the theoretical aspects of it are interesting in their own rights, and furthermore give insights
into the numerical aspects as well.

Another notable feature of discrete mechanics, especially on the Hamiltonian side, is that it is a
generalization of (nonsingular) discrete optimal control problems. In fact, as stated in Marsden and
West [22], discrete mechanics is inspired by the formulations of discrete optimal control problems
(see, for example, Jordan and Polak [14] and Cadzow [5]).

1.2. Hamilton–Jacobi Theory. In classical mechanics [see, e.g., 3; 10; 17; 21], the Hamilton–
Jacobi equation is first introduced as a partial differential equation that the action integral satisfies.
Specifically, let Q be a configuration space and T ∗Q be its cotangent bundle, and suppose that
(q̂(s), p̂(s)) ∈ T ∗Q is a solution of Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.
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Then calculate the action integral along the solution starting from s = 0 and ending at s = t with
t > 0:

S(q, t) :=

∫ t

0

[
p̂(s) · ˙̂q(s)−H(q̂(s), p̂(s))

]
ds, (1.1)

where q := q̂(t) and we regard the resulting integral as a function of the endpoint (q, t) ∈ Q× R+,
where R+ is the set of positive real numbers. Then by taking variation of the endpoint (q, t), one
obtains a partial differential equation satisfied by S(q, t):

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0.

This is the Hamilton–Jacobi equation.
Conversely, it is shown that if S(q, t) is a solution of the Hamilton–Jacobi equation then S(q, t)

is a generating function of the canonical transformations (or symplectic flow) of the dynamics
defined by Hamilton’s equations. This result is the theory behind the powerful technique of exact
integration called separation of variables.

The idea of the Hamilton–Jacobi theory is also useful in optimal control theory [see, e.g., 15].
Namely the Hamilton–Jacobi equation turns into the Hamilton–Jacobi–Bellman equation, which
is a partial differential equation satisfied by the optimal cost function. It is also shown that the
costate of the optimal solution is related to the solution of the Hamilton–Jacobi–Bellman equation.

1.3. Discrete Hamilton–Jacobi Theory. The main objective of this paper is to present a dis-
crete analogue of the Hamilton–Jacobi theory using the framework of discrete Hamiltonian me-
chanics [16].

There are some previous works on discrete-time analogues of the Hamilton–Jacobi equation, such
as Elnatanov and Schiff [8] and Lall and West [16]. Specifically, Elnatanov and Schiff [8] derived an
equation for a generating function of a coordinate transformation that trivializes the dynamics. This
derivation is a discrete analogue of the conventional derivation of the continuous-time Hamilton–
Jacobi equation [see, e.g., 17, Chapter VIII]. Lall and West [16] formulated a discrete Lagrangian
analogue of the Hamilton–Jacobi equation as a separable optimization problem.

1.4. Main Results. Our work was inspired by the result of Elnatanov and Schiff [8] and starts from
a reinterpretation of their result in the language of discrete mechanics. This paper further extends
the result by developing discrete analogues of results in the (continuous-time) Hamilton–Jacobi
theory. Namely, we formulate a discrete analogue of Jacobi’s solution, which relates the discrete
action integral with a solution of the discrete Hamilton–Jacobi equation. This also provides a very
simple derivation of the discrete Hamilton–Jacobi equation and exhibits a natural correspondence
with the continuous-time theory. Another important result in this paper is a discrete analogue of
the Hamilton–Jacobi theorem, which relates the solution of the discrete Hamilton–Jacobi equation
with the solution of the discrete Hamilton’s equations.

We also show that the discrete Hamilton–Jacobi equation is a generalization of the discrete
Riccati equation and the Bellman equation (discrete Hamilton–Jacobi–Bellman equation). (See
Fig. 1.) Specifically, we show that the discrete Hamilton–Jacobi equation applied to linear discrete
Hamiltonian systems reduces to the discrete Riccati equation. This is again a discrete analogue
of the well-known result that the Hamilton–Jacobi equation applied to linear Hamiltonian systems
reduces to the Riccati equation [see, e.g., 15, p. 421]. Also we establish a link with discrete-time
optimal control theory, and show that the Bellman equation of dynamic programming follows. This
link makes it possible to interpret discrete analogues of Jacobi’s solution and the Hamilton–Jacobi
theorem in the optimal control setting. Namely we show that these results reduce to two well-known
results in optimal control theory that relate the Bellman equation with the optimal solution.
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Figure 1. Discrete evolution equations (left) and corresponding discrete Hamilton–
Jacobi-type equations (right). Dashed lines are the links established in the paper.

1.5. Outline of the Paper. We first present a brief review of discrete Lagrangian and Hamiltonian
mechanics in Section 2. In Section 3 we describe a reinterpretation of the result of Elnatanov and
Schiff [8] in the language of discrete mechanics and a discrete analogue of Jacobi’s solution to
the discrete Hamilton–Jacobi equation. The remainder of Section 3 is devoted to more detailed
studies of the discrete Hamilton–Jacobi equation: its left and right variants, more explicit forms
of them, and also a digression on the Lagrangian side. In Section 4 we prove a discrete version
of the Hamilton–Jacobi theorem. Section 5 establishes the link with the discrete-time optimal
control problem setting and show what the results in the preceding sections imply in this setting.
In Section 6 we apply the theory to linear discrete Hamiltonian systems, and show that the discrete
Riccati equation follows from the discrete Hamilton–Jacobi equation. We then take a harmonic
oscillator as a simple physical example, and solve the discrete Hamilton–Jacobi equation explicitly.
Finally, Section 7 discusses the continuous-time limit of the theory.

2. Discrete Mechanics

This section briefly reviews some key results of discrete mechanics following Marsden and West
[22] and Lall and West [16].

2.1. Discrete Lagrangian Mechanics. A discrete Lagrangian flow {qk} for k = 0, 1, . . . , N on a
n-dimensional differentiable manifold Q can be described based on the following discrete variational
principle. Let SNd be the following action sum of the discrete Lagrangian Ld : Q×Q→ R:

SNd ({qk}Nk=0) :=
N−1∑
k=0

Ld(qk, qk+1) ≈
∫ tN

0
L(q(t), q̇(t)) dt, (2.1)

which is an approximation of the action integral as shown above.
Consider discrete variations qk 7→ qk + δqk for k = 0, 1, . . . , N with δq0 = δqN = 0. Then the

discrete variational principle δSNd = 0 gives the discrete Euler–Lagrange equations:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0. (2.2)

This determines the discrete flow FLd
: Q×Q→ Q×Q:

FLd
: (qk−1, qk) 7→ (qk, qk+1), (2.3)

and this flow preserves the discrete Lagrangian symplectic one-forms Θ±Ld
: Q × Q → T ∗(Q × Q)

defined by

Θ+
Ld

: (qk, qk+1) 7→ D2Ld(qk, qk+1) dqk+1, (2.4a)

Θ−Ld
: (qk, qk+1) 7→ −D1Ld(qk, qk+1) dqk. (2.4b)



4 TOMOKI OHSAWA, ANTHONY M. BLOCH AND MELVIN LEOK

and hence it also preserves the discrete Lagrangian symplectic form

ΩLd
(qk, qk+1) := dΘ+

Ld
= dΘ−Ld

= D1D2Ld(qk, qk+1) dqk ∧ dqk+1. (2.5)

Specifically, we have

(FLd
)∗ΩLd

= ΩLd
. (2.6)

2.2. Discrete Hamiltonian Mechanics. Introduce the right and left discrete Legendre trans-
forms FL±d : Q×Q→ T ∗Q by

FL+
d : (qk, qk+1) 7→ (qk+1, D2Ld(qk, qk+1)), (2.7a)

FL−d : (qk, qk+1) 7→ (qk,−D1Ld(qk, qk+1)). (2.7b)

Then we find that the discrete Lagrangian symplectic forms Eq. (2.4) and (2.5) are pull-backs by
these maps of the standard symplectic form on T ∗Q:

Θ±Ld
= (FL±d )∗Θ, Ω±Ld

= (FL±d )∗Ω. (2.8)

Let us define the momenta

p−k,k+1 := −D1Ld(qk, qk+1), p+k,k+1 := D2Ld(qk, qk+1). (2.9)

Then the discrete Euler–Lagrange equations (2.2) becomes simply p+k−1,k = p−k,k+1. So defining

pk := p+k−1,k = p−k,k+1, (2.10)

one can rewrite the discrete Euler–Lagrange equations (2.2) as follows:

pk = −D1Ld(qk, qk+1),

pk+1 = D2Ld(qk, qk+1).
(2.11)

Furthermore, define the discrete Hamiltonian map F̃Ld
: T ∗Q→ T ∗Q by

F̃Ld
: (qk, pk) 7→ (qk+1, pk+1). (2.12)

One may relate this map with the discrete Legendre transforms in Eq. (2.7) as follows:

F̃Ld
= FL+

d ◦ (FL−d )−1. (2.13)

Furthermore one can also show that this map is symplectic, i.e.,

(F̃Ld
)∗Ω = Ω. (2.14)

This is the Hamiltonian description of the dynamics defined by the discrete Euler–Lagrange equa-
tion (2.2) introduced by Marsden and West [22]. However, notice that no discrete analogue of
Hamilton’s equations is introduced here, although the flow is now in the cotangent bundle T ∗Q.

Lall and West [16] pushed this idea further to give discrete analogues of Hamilton’s equations:
From the point of view that a discrete Lagrangian is essentially a generating function of the first
kind, we can apply Legendre transforms to the discrete Lagrangian to find the corresponding
generating function of type two or three [10]. In fact, they turn out to be a natural Hamiltonian
counterpart to the discrete Lagrangian mechanics described above. Specifically, with the discrete
Legendre transform

pk+1 = FL+
d (qk, qk+1) = D2Ld(qk, qk+1), (2.15)

we can define the following right discrete Hamiltonian:

H+
d (qk, pk+1) = pk+1 · qk+1 − Ld(qk, qk+1). (2.16)
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Then the discrete Hamiltonian map F̃Ld
: (qk, pk) 7→ (qk+1, pk+1) is defined implicitly by the right

discrete Hamilton’s equations

qk+1 = D2H
+
d (qk, pk+1), (2.17a)

pk = D1H
+
d (qk, pk+1). (2.17b)

Similarly, with the discrete Legendre transform

pk = FL−d (qk, qk+1) = −D1Ld(qk, qk+1), (2.18)

we can define the following left discrete Hamiltonian:

H−d (pk, qk+1) = −pk · qk − Ld(qk, qk+1). (2.19)

Then we have the left discrete Hamilton’s equations

qk = −D1H
−
d (pk, qk+1), (2.20a)

pk+1 = −D2H
−
d (pk, qk+1). (2.20b)

3. Discrete Hamilton–Jacobi Equation

3.1. Derivation by Elnatanov and Schiff. Elnatanov and Schiff [8] derived a discrete Hamilton–
Jacobi equation based on the idea that the Hamilton–Jacobi equation is an equation for a symplectic
change of coordinates under which the dynamics becomes trivial. In this section we would like to
reinterpret their derivation in the framework of discrete Hamiltonian mechanics reviewed above.

Theorem 3.1. Suppose that the discrete dynamics {(qk, pk)}Nk=0 is governed by the right discrete
Hamilton’s equations (2.17). Consider the symplectic coordinate transformation (qk, pk) 7→ (q̂k, p̂k)
that satisfies the following:

(i) The old and new coordinates are related by the type-1 generating function1 Sk : Rn×Rn → R:

p̂k = −D1S
k(q̂k, qk),

pk = D2S
k(q̂k, qk);

(3.1)

(ii) the dynamics in the new coordinates {(q̂k, p̂k)}Nk=0 is rendered trivial, i.e., (q̂k+1, p̂k+1) =
(q̂k, p̂k).

Then the set of functions {Sk}Nk=1 satisfies the discrete Hamilton–Jacobi equation:

Sk+1(q̂0, qk+1)− Sk(q̂0, qk)−D2S
k+1(q̂0, qk+1) · qk+1 +H+

d

(
qk, D2S

k+1(q̂0, qk+1)
)

= 0, (3.2)

or, with the shorthand notation Skd(qk) := Sk(q̂0, qk),

Sk+1
d (qk+1)− Skd(qk)−DSk+1

d (qk+1) · qk+1 +H+
d

(
qk, DS

k+1
d (qk+1)

)
= 0. (3.3)

Proof. The key ingredient in the proof is the right discrete Hamiltonian in the new coordinates,
i.e., a function Ĥ+

d (q̂k, p̂k+1) that satisfies

q̂k+1 = D2Ĥ
+
d (q̂k, p̂k+1),

p̂k = D1Ĥ
+
d (q̂k, p̂k+1),

(3.4)

or equivalently,

p̂k dq̂k + q̂k+1 dp̂k+1 = dĤ+
d (q̂k, p̂k+1). (3.5)

1This is essentially the same as Eq. (2.11) in the sense that they are both transformations defined by generating
functions of type one: Replace (qk, pk, qk+1, pk+1, Ld) by (q̂k, p̂k, qk, pk, S

k). However they have different interpreta-
tions: Eq. (2.11) describes the dynamics or time evolution whereas Eq. (3.1) is a change of coordinates.
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Let us first write Ĥ+
d in terms of the original right discrete Hamiltonian H+

d and the generating

function Sk. For that purpose, first rewrite Eqs. (2.17) and (3.1) as follows:

pk dqk = −qk+1 dpk+1 + dH+
d (qk, pk+1)

and

p̂k dq̂k = pk dqk − dSk(q̂k, qk),
respectively. Then, using the above relations, we have

p̂k dq̂k + q̂k+1 dp̂k+1 = p̂k dq̂k + d(p̂k+1 · q̂k+1)− p̂k+1 dq̂k+1

= pk dqk − dSk(q̂k, qk) + d(p̂k+1 · q̂k+1)− pk+1 dqk+1 + dSk+1(q̂k+1, qk+1)

= −qk+1 dpk+1 + dH+
d (qk, pk+1)

− dSk(q̂k, qk) + d(p̂k+1q̂k+1)− pk+1 dqk+1 + dSk+1(q̂k+1, qk+1)

= d
(
H+

d (qk, pk+1) + p̂k+1 · q̂k+1 − pk+1 · qk+1 + Sk+1(q̂k+1, qk+1)− Sk(q̂k, qk)
)
.

Thus in view of Eq. (3.5), we obtain

Ĥ+
d (q̂k, p̂k+1) = H+

d (qk, pk+1) + p̂k+1 · q̂k+1 − pk+1 · qk+1 + Sk+1(q̂k+1, qk+1)− Sk(q̂k, qk). (3.6)

Now consider the choice of the new right discrete Hamiltonian Ĥ+
d that renders the dynamics

trivial, i.e., (q̂k+1, p̂k+1) = (q̂k, p̂k). It is clear from Eq. (3.4) that we can set

Ĥ+
d (q̂k, p̂k+1) = p̂k+1 · q̂k. (3.7)

Then Eq. (3.6) becomes

p̂k+1 · q̂k = H+
d (qk, pk+1) + p̂k+1 · q̂k+1 − pk+1 · qk+1 + Sk+1(q̂k+1, qk+1)− Sk(q̂k, qk),

and since q̂k+1 = q̂k = · · · = q̂0 we have

0 = H+
d (qk, pk+1)− pk+1 · qk+1 + Sk+1(q̂0, qk+1)− Sk(q̂0, qk)

Eliminating pk+1 by using Eq. (3.1), we obtain Eq. (3.2). �

Remark 3.2. What Elnatanov and Schiff [8] refer to the Hamilton–Jacobi difference equation is the
following:

Sk+1(q̂0, qk+1)− Sk(q̂0, qk)−D2S
k+1(q̂0, qk+1) ·D2H

+
d (qk, pk+1) +H+

d (qk, pk+1) = 0. (3.8)

It is clear that this is equivalent to Eq. (3.2) in view of Eq. (2.17)

3.2. Discrete Analogue of Jacobi’s Solution. This section shows a discrete analogue of Jacobi’s
solution. This also gives an alternative derivation of the discrete Hamilton–Jacobi equation that is
much simpler than the one shown above.

Theorem 3.3. Consider the action sums Eq. (2.1) written in terms of the right discrete Hamil-
tonian, Eq. (2.16):

Skd(qk) :=
k−1∑
l=0

[
pl+1 · ql+1 −H+

d (ql, pl+1)
]

(3.9)

evaluated along a solution of the right discrete Hamilton’s equations (2.17); each Skd(qk) is seen as
a function of the end point coordinates qk and the discrete end time k. Then these action sums
satisfy the discrete Hamilton–Jacobi equation (3.3).
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Proof. From Eq. (3.9), we have

Sk+1
d (qk+1)− Skd(qk) = pk+1 · qk+1 −H+

d (qk, pk+1), (3.10)

where pk+1 is considered to be a function of qk and qk+1, i.e., pk+1 = pk+1(qk, qk+1). Taking the
derivative of both sides with respect to qk+1, we have

DSk+1
d (qk+1) = pk+1 +

∂pk+1

∂qk+1
·
[
qk+1 −D2H

+
d (qk, pk+1)

]
.

However, the term in the brackets vanish because the right discrete Hamilton’s equations (2.17)
are assumed to be satisfied. Thus we have

pk+1 = DSk+1
d (qk+1). (3.11)

Substituting this into Eq. (3.10) gives Eq. (3.3). �

A couple of remarks are in order.

Remark 3.4. Recall that, in the derivation of the continuous Hamilton–Jacobi equation [see, e.g.,
9, Section 23], we consider the variation of the action integral Eq. (1.1) with respect to the end
point (q, t) and find

dS = p dq −H(q, p) dt. (3.12)

This gives
∂S

∂t
= −H(q, p), p =

∂S

∂q
, (3.13)

and hence the Hamilton–Jacobi equation

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0. (3.14)

In the above derivation of the discrete Hamilton–Jacobi equation (3.3), the difference in two action
sums Eq. (3.10) is a natural discrete counterpart to the variation dS in Eq. (3.12). Notice also
that Eq. (3.10) plays the same essential role as Eq. (3.12) does in deriving the Hamilton–Jacobi
equation.

The table below summarizes the correspondence between the ingredients in the continuous and
discrete theories (See also Remark 3.4):

3.3. The Right and Left Discrete Hamilton–Jacobi Equations. Recall that, in Eq. (3.9),
we wrote the action sum Eq. (2.1) in terms of the right discrete Hamiltonian Eq. (2.16). We can
also write it in terms of the left discrete Hamiltonian Eq. (2.19) as follows:

Skd(qk) =

k−1∑
l=0

[
−pl · ql −H−d (pl, ql+1)

]
. (3.15)

Then we can proceed as in the proof of Theorem 3.3: First we have

Sk+1
d (qk+1)− Skd(qk) = −pk · qk −H−d (pk, qk+1). (3.16)

where pk is considered to be a function of qk and qk+1, i.e., pk = pk(qk, qk+1). Taking the derivative
of both sides with respect to qk, we have

−DSkd(qk) = −pk −
∂pk
∂qk
·
[
qk +D1H

−
d (pk, qk+1)

]
.

However, the term in the brackets vanish because the left discrete Hamilton’s equations (2.20) are
assumed to be satisfied. Thus we have

pk = DSkd(qk). (3.17)
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Table 1. Correspondence between ingredients in continuous and discrete theories;
N0 is the set of non-negative integers and R≥0 is the set of non-negative real numbers.

Continuous Discrete

(q, t) ∈ Q× R≥0 (qk, k) ∈ Q× N0

q̇ = ∂H/∂p, qk+1 = D2H
+
d (qk, pk+1),

ṗ = −∂H/∂q pk = D1H
+
d (qk, pk+1)

S(q, t) :=

∫ t

0

[p(s) · q̇(s)−H(q(s), p(s))] ds Sk
d(qk) :=

k−1∑
l=0

[
pl+1 · ql+1 −H+

d (ql, pl+1)
]

dS =
∂S

∂q
dq +

∂S

∂t
dt Sk+1

d (qk+1)− Sk
d(qk)

p dq −H(q, p) dt pk+1 · qk+1 −H+
d (qk, pk+1)

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0

Sk+1
d (qk+1)− Sk

d(qk)−DSk+1
d (qk+1) · qk+1

+H+
d

(
qk, D2S

k+1
d (qk+1)

)
= 0

Substituting this into Eq. (3.16) gives the discrete Hamilton–Jacobi equation with the left discrete
Hamiltonian:

Sk+1
d (qk+1)− Skd(qk) +DSkd(qk) · qk +H−d

(
DSkd(qk), qk+1

)
= 0. (3.18)

We refer to Eqs. (3.3) and (3.18) as the right and left discrete Hamilton–Jacobi equations, respec-
tively.

As mentioned above, Eqs. (3.9) and (3.15) are the same action sum Eq.(2.1) expressed in different
ways. Therefore we may summarize the above argument as follows:

Proposition 3.5. The action sums, Eq. (3.9) or equivalently Eq. (3.15), satisfy both the right and
left discrete Hamilton–Jacobi equations (3.3) and (3.18).

3.4. Explicit Forms of the Discrete Hamilton–Jacobi Equations. The expressions of the
right and left discrete Hamilton–Jacobi equations in Eqs. (3.3) and (3.18) are implicit in the sense
that they contain two spatial variables qk and qk+1. However Theorem 3.3 suggests that qk and
qk+1 may be considered to be related by the dynamics defined by either Eq. (2.17) or (2.20), or

equivalently, the discrete Hamiltonian map F̃Ld
: (qk, pk) 7→ (qk+1, pk+1) defined in Eq. (2.12).

More specifically, we may write qk+1 in terms of qk. This results in explicit forms of the discrete
Hamilton–Jacobi equations, and we shall define the discrete Hamilton–Jacobi equations by the
resulting explicit forms. We will see later in Section 5 that the explicit form is compatible with the
formulation of the well-known Bellman equation.

For the right discrete Hamilton–Jacobi equation (3.3), we first define the map f+k : Q → Q as

follows: Replace pk+1 in Eq. (2.17a) by DSk+1
d (qk+1) as suggested by Eq. (3.11):

qk+1 = D2H
+
d

(
qk, DS

k+1
d (qk+1)

)
. (3.19)

Assuming this equation is solvable for qk+1, we define f+k : Q→ Q by the resulting qk+1, i.e., f+k is
implicitly defined by

f+k (qk) = D2H
+
d

(
qk, DS

k+1
d (f+k (qk))

)
. (3.20)
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We may now identify qk+1 with f+k (qk) in the implicit form of the right Hamilton–Jacobi equa-
tion (3.3):

Sk+1
d (f+k (q))− Skd(q)−DSk+1

d (f+k (q)) · f+k (q) +H+
d

(
q,DSk+1

d (f+k (q))
)

= 0, (3.21)

where we suppressed the subscript k of qk since it is now clear that qk is an independent variable
as opposed to a function of the discrete time k. We define Eq. (3.21) to be the right discrete
Hamilton–Jacobi equation. Notice that these are differential-difference equations defined on Q×N,
with the spatial variable q and the discrete time k.

For the left discrete Hamilton–Jacobi equation (3.18), we define the map f−k : Q→ Q as follows:

f−k (qk) := πQ ◦ F̃Ld

(
dSkd(qk)

)
, (3.22)

where πQ : T ∗Q → Q is the cotangent bundle projection; equivalently, f−k is defined so that the
diagram below commutes.

T ∗Q
F̃Ld // T ∗Q

πQ

��
Q

dSk
d

OO

f−k

//______ Q

dSkd(qk)
� // F̃Ld

(
dSkd(qk)

)
_

��
qk

_

OO

� //______ f−k (qk)

(3.23)

Notice also that, since the map F̃Ld
: (qk, pk) 7→ (qk+1, pk+1) is defined by Eq. (2.20), f−k is defined

implicitly by

qk = −D1H
−
d

(
DSkd(qk), f

−
k (qk)

)
. (3.24)

In other words, replace pk in Eq. (2.20a) by DSkd(qk) as suggested by Eq. (3.17), and define f−k (qk)
as the qk+1 in the resulting equation.

We may now identify qk+1 with f−k (qk) in Eq. (3.18):

Sk+1
d (f−k (q))− Skd(q) +DSkd(q) · q +H−d

(
DSkd(q), f−k (q)

)
= 0, (3.25)

where we again suppressed the subscript k of qk. We define Eqs. (3.21) and (3.25) to be the right and
left discrete Hamilton–Jacobi equations, respectively. Notice that these are differential-difference
equations defined on Q× N, with the spatial variable q and the discrete time k.

Remark 3.6. That the discrete Hamilton–Jacobi equation is a differential-difference equation defined
on Q × N corresponds to the fact that the continuous-time Hamilton–Jacobi equation (3.14) is a
partial differential equation defined on Q× R+.

Remark 3.7. Notice that the right discrete Hamilton–Jacobi equation (3.21) is more complicated
than the left one (3.25), particularly because the map f+k appears more often than f−k does in

the latter; notice here that, as shown in Eq. (3.22), the maps f±k in the discrete Hamilton–Jacobi

equations (3.21) and (3.25) depend on the function Skd , which is the unknown one has to solve for.
However, it is possible to define an equally simple variant of the right discrete Hamilton–Jacobi

equation by writing qk−1 in terms of qk: Let us first define gk : Q→ Q by

gk(qk) := πQ ◦ F̃−1Ld

(
dSkd(qk)

)
, (3.26)
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or so that the diagram below commutes.

T ∗Q

πQ

��

T ∗Q
F̃−1
Ldoo

Q Q

dSk
d

OO

gk
oo_ _ _ _ _ _

F̃−1Ld

(
dSkd(qk)

)
_

��

dSkd(qk)
�oo

gk(qk) qk
_

OO

�oo_ _ _ _ _ _

(3.27)

Now, in Eq. (3.3), change the indices from (k, k + 1) to (k − 1, k) and identify qk−1 with gk(qk) to
obtain

Skd(q)− Sk−1d (gk(q))−DSkd(q) · q +H+
d

(
gk(q), DS

k
d(q)

)
= 0, (3.28)

where we again suppressed the subscript k of qk. This is as simple as the left discrete Hamilton–
Jacobi equation (3.25). However the map gk is, being backward in time, rather unnatural compared
to fk. Furthermore, as we shall see in Section 5, in the discrete optimal control setting, the map fk
is defined by a given function and thus the formulation with fk will turn out to be more convenient.

3.5. The discrete Hamilton–Jacobi Equation on the Lagrangian Side. First notice that
Eq. (2.1) gives

Sk+1
d (qk+1)− Skd(qk) = Ld(qk, qk+1). (3.29)

This is essentially the Lagrangian equivalent of the discrete Hamilton–Jacobi equation (3.21) as
Lall and West [16] suggest. Let us apply the same argument as above to obtain the explicit form
for Eq. (3.29). Taking the derivative of the above equation with respect to qk, we have

−D1Ld(qk, qk+1) dqk = dSkd(qk),

and hence from the definition of the left discrete Legendre transform Eq. (2.7b),

FL−d (qk, qk+1) = dSkd(qk).

Assuming that FL−d is invertible, we have

(qk, qk+1) = (FL−d )−1
(
dSkd(qk)

)
=: (qk, f

L
k (qk)), (3.30)

where we defined the map fLk : Q→ Q as follows:

fLk (qk) := pr2 ◦ (FL−d )−1
(
dSkd(qk)

)
, (3.31)

where pr2 : Q×Q→ Q is the projection to the second factor, i.e., pr2(q1, q2) = q2. Thus eliminating
qk+1 from Eq. (3.29), and then replacing qk by q, we obtain the discrete Hamilton–Jacobi equation
on the Lagrangian side:

Sk+1
d (fLk (q))− Skd(q) = Ld

(
q, fLk (q)

)
. (3.32)

The map fLk defined in Eq. (3.31) is identical to f−k defined above in Eq. (3.22) as the commutative
diagram below demonstrates:

T ∗Q
F̃Ld //

(FL−
d )−1

!!DDDDDDDDD
T ∗Q

πQ

��

Q×Q

FL+
d

==zzzzzzzzz

pr1
}}zzzzzzzzz

pr2
!!DDDDDDDDD

Q

dSk
d

OO

fLk ,f
−
k

//_________ Q

dSkd(qk)
� //

�

!!DDDDDDDD
F̃Ld

(
dSkd(qk)

)
_

��

(qk, f
L
k (qk))

:

==zzzzzzzz

:

}}zzzzzzzzz �

!!DDDDDDDD

qk
_

OO

� //________ fLk (qk)

(3.33)
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The commutativity of the square in the diagram defines the f−k as we saw earlier, whereas that

of the right-angled triangle on the lower left defines the fLk in Eq. (3.31); note the relation F̃Ld
=

FL+
d ◦ (FL−d )−1 from Eq. (2.13). Now fLk being identical to f−k implies that the discrete Hamilton–

Jacobi equations on the Hamiltonian and Lagrangian sides, Eqs. (3.25) and (3.32), are equivalent.

4. Discrete Hamilton–Jacobi Theorem

The following gives a discrete analogue of the geometric Hamilton–Jacobi theorem (Theorem 5.2.4)
by Abraham and Marsden [1]:

Theorem 4.1 (Discrete Hamilton–Jacobi). Suppose that Skd satisfies the right discrete Hamilton–

Jacobi equation (3.21), and let {ck}Nk=0 ⊂ Q be a set of points such that

ck+1 = f+k (ck) for k = 0, 1, . . . , N − 1. (4.1)

Then the set of points {(ck, pk)}Nk=0 ⊂ T ∗Q with

pk := DSkd(ck) (4.2)

is a solution of the right discrete Hamilton’s equations (2.17).
Similarly, suppose that Skd satisfies the left discrete Hamilton–Jacobi equation (3.25), and let

{ck}Nk=0 ⊂ Q be a set of points that satisfy

ck+1 = f−k (ck) for k = 0, 1, . . . , N − 1. (4.3)

Furthermore, assume that the Jacobian Df−k is invertible at each point ck. Then the set of points

{(ck, pk)}Nk=0 ⊂ T ∗Q with

pk := DSkd(ck) (4.4)

is a solution of the left discrete Hamilton’s equations (2.20).

Proof. To prove the first assertion, first recall the implicit definition of f+k in Eq. (3.20):

f+k (q) = D2H
+
d

(
q,DSk+1

d (f+k (q))
)
. (4.5)

In particular, for q = ck, we have
ck+1 = D2H

+
d (ck, pk) , (4.6)

where we used Eq. (4.1) and (4.2). On the other hand, taking the derivative of Eq. (3.21) with
respect to q,

DSk+1
d (f+k (q)) ·Df+k (q)−DSkd(q)−Df+k (q) ·D2Sk+1

d (f+k (q)) · f+k (q)−DSk+1
d (f+k (q)) ·Df+k (q)

+D1H
+
d

(
q,DSk+1

d (f+k (q))
)

+D2H
+
d

(
q,DSk+1

d (f+k (q))
)
·D2Sk+1

d (f+k (q)) ·Df+k (q) = 0,

which reduces to

−DSkd(q) +D1H
+
d

(
q,DSk+1

d (f+k (q))
)

= 0,

due to Eq. (4.5). Then substitution q = ck gives

−DSkd(ck) +D1H
+
d

(
ck, DS

k+1
d (f+k (ck))

)
= 0,

Using Eqs. (4.1) and (4.2), we obtain

pk = D1H
+
d (ck, pk+1) . (4.7)

Eqs. (4.6) and (4.7) show that the sequence (ck, pk) satisfies the right discrete Hamilton’s equa-
tions (2.17).

Now let us prove the latter assertion. First recall the implicit definition of f−k in Eq. (3.24):

q = −D1H
−
d

(
DSkd(q), f−k (q)

)
(4.8)
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In particular, for q = ck, we have

ck = −D1H
−
d (pk, ck+1) , (4.9)

where we used Eq. (4.3) and (4.4). On the other hand, taking the derivative of Eq. (3.21) with
respect to q,

DSk+1
d (f−k (q)) ·Df−k (q)−DSkd(q) +D2Skd(q) · q +DSkd(q)

+D1H
−
d

(
DSkd(q), f−k (q)

)
·D2Skd(q) +D2H

−
d

(
DSkd(q), f−k (q)

)
·Df−k (q) = 0,

which reduces to [
DSk+1

d (f−k (q)) +D2H
−
d

(
DSkd(q), f−k (q)

)]
·Df−k (q) = 0.

due to Eq. (4.8). Then substitution q = ck gives

DSk+1
d (f−k (ck)) = −D2H

−
d

(
DSkd(ck), f

−
k (ck)

)
,

since Df−k (ck) is invertible by assumption. Then using Eqs. (4.3) and (4.4), we obtain

pk+1 = −D2H
−
d (pk, ck+1) . (4.10)

Eqs. (4.9) and (4.10) show that the sequence (ck, pk) satisfies the left discrete Hamilton’s equa-
tions (2.20). �

5. Relation to the Discrete-Time Hamilton–Jacobi–Bellman Equation

In this section we apply the above results to the optimal control setting. We will show that
the (right) discrete Hamilton–Jacobi equation (3.21) gives the Bellman equation (discrete-time
Hamilton–Jacobi–Bellman equation) as a special case.

5.1. Discrete Optimal Control Problem. Let {qk}Nk=0 be the state variables in a vector space

V ∼= Rn with q0 and qN fixed and ud := {uk}Nk=0 be controls in the set U ⊂ Rm. With a given
function Cd : V × U → R, define the cost functional

Jd :=
N−1∑
k=0

Cd(qk, uk). (5.1)

Then a typical discrete optimal control problem is formulated as follows [see, e.g., 4; 5; 11; 14]:

Problem 5.1. Minimize the cost functional, i.e.,

min
ud

Jd = min
ud

N−1∑
k=0

Cd(qk, uk) (5.2)

subject to the constraint

qk+1 = f(qk, uk). (5.3)
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5.2. Necessary Condition for Optimality and the Discrete-Time HJB Equation. We
would like to formulate the necessary condition for optimality. First introduce the augmented cost
functional:

Ĵkd (qd, pd, ud) :=
k−1∑
l=0

{Cd(ql, ul)− pl+1 · [ql+1 − f(ql, ul)]}

= −
k−1∑
l=0

[
pl+1 · ql+1 − Ĥ+

d (ql, pl+1, ul)
]

= −Ŝkd(qd, pd, ud),

where we defined the Hamiltonian

Ĥ+
d (ql, pl+1, ul) := pl+1 · f(ql, ul)− Cd(ql, ul), (5.4)

and the action sum

Ŝkd(qd, pd, ud) :=

k−1∑
l=0

[
pl+1 · ql+1 − Ĥ+

d (ql, pl+1, ul)
]
, (5.5)

with the shorthand notation qd := {ql}kl=0, pd := {pl}kl=1, and ud := {ul}k−1l=0 . Then the optimality
condition Eq. (5.2) is restated as

min
qd, pd,ud

Ĵkd (qd, pd, ud) = min
qd, pd,ud

{
−
k−1∑
l=0

[
pl+1 · ql+1 − Ĥ+

d (ql, pl+1, ul)
]}

, (5.6)

which is equivalent to

max
qd, pd, ud

Ŝkd(qd, pd, ud) = max
qd, pd, ud

k−1∑
l=0

[
pl+1 · ql+1 − Ĥ+

d (ql, pl+1, ul)
]
. (5.7)

In particular, extremality with respect to the control ud implies

D3Ĥ
+
d (ql, pl+1, ul) = 0, l = 0, 1, . . . , k − 1. (5.8)

Now we assume that Ĥ+
d is sufficiently regular so that the optimal control u∗d := {u∗l }

k−1
l=0 is deter-

mined by

D3Ĥ
+
d (ql, pl+1, u

∗
l ) = 0, l = 0, 1, . . . , k − 1. (5.9)

Therefore u∗l is a function of ql and pl+1, i.e., u∗l = u∗l (ql, pl+1).
Then we can eliminate ud in the maximization problem Eq. (5.7):

max
qd, pd

Sd(qd, pd) = max
qd, pd

k−1∑
l=0

[
pl+1 · ql+1 −H+

d (ql, pl+1)
]
, (5.10)

where we defined

H+
d (ql, pl+1) := Ĥ+

d (ql, pl+1, u
∗
l ) = pl+1 · f(ql, u

∗
l )− Cd(ql, u

∗
l ), (5.11)

and

Skd(qd, pd) := Ŝkd(qd, pd, u
∗
d) =

k−1∑
l=0

[
pl+1 · ql+1 −H+

d (ql, pl+1)
]
. (5.12)

So now the problem is reduced to the maximization of the action sum Eq. (5.12) that has exactly the
same form as the one in Eq. (3.9) formulated in the framework of discrete Hamiltonian mechanics.
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The corresponding right discrete Hamilton’s equations are, using the expression for the Hamil-
tonian in Eq. (5.11),

qk+1 = f(qk, u
∗
k),

pk = pk+1 ·D1f(qk, u
∗
k)−D1Cd(qk, u

∗
k).

(5.13)

Therefore Eq. (3.20) gives the implicit definition of f+k as follows:

f+k (qk) = f
(
qk, u

∗
k

(
qk, DS

k+1
d (f+k (qk))

))
. (5.14)

Hence the (right) discrete Hamilton–Jacobi equation (3.21) applied to this case gives

Sk+1
d (f(qk, u

∗
k))− Skd(qk)−DSk+1

d (f(qk, u
∗
k)) · f(qk, u

∗
k) +H+

d

(
qk, DS

k+1
d (f(qk, u

∗
k))
)

= 0, (5.15)

and again using the expression for the Hamiltonian in Eq. (5.11), we obtain

Sk+1
d (f(qk, u

∗
k))− Skd(qk)− Cd(qk, u

∗
k) = 0, (5.16)

or equivalently

max
uk

[
Sk+1
d (f(qk, uk))− Cd(qk, uk)

]
− Skd(qk) = 0, (5.17)

which is the discrete-time Hamilton–Jacobi–Bellman (HJB) equation or, in short, the Bellman
equation [see, e.g., 4].

Remark 5.2. Notice that the discrete HJB equation (5.17) is much simpler than the discrete
Hamilton–Jacobi equations (3.21) and (3.25) because of the special form of the control Hamil-
tonian Eq. (5.11). Also notice that, as shown in Eq. (5.14), the term f+k (qk) is written in terms of
the given function f . See Remark 3.7 for comparison.

5.3. Relation between the Discrete HJ and HJB Equations and its Consequences. Sum-
marizing the observation made above, we have

Proposition 5.3. The right discrete Hamilton–Jacobi equation (3.21) applied to the Hamiltonian
formulation of the discrete optimal control problem 5.1 gives the discrete-time Hamilton–Jacobi–
Bellman equation (5.17).

This observation leads to the following well-known facts:

Proposition 5.4. The optimal cost function satisfies the discrete-time Hamilton–Jacobi–Bellman
equation (5.17).

Proof. This follows from a reinterpretation of Theorem 3.3 through Proposition 5.3. �

Proposition 5.5. Let Skd(qk) be a solution to the discrete Hamilton–Jacobi–Bellman equation (5.17).
Then the costate pk in the discrete maximum principle is given as follows:

pk = DSkd(ck), (5.18)

where ck+1 = f(ck, u
∗
k) with the optimal control u∗k.

Proof. This follows from a reinterpretation of Theorem 4.1 through Proposition 5.3. �

6. Application To Discrete Linear Hamiltonian Systems

6.1. Discrete Linear Hamiltonian Systems and Matrix Riccati Equation.

Example 6.1 (Quadratic discrete Hamiltonian—discrete linear Hamiltonian systems). Consider a
discrete Hamiltonian system on T ∗Rn ∼= Rn × Rn (the configuration space is Q = Rn) defined by
the quadratic left discrete Hamiltonian

H−d (pk, qk+1) =
1

2
pTkM

−1pk + pTkLqk+1 +
1

2
qTk+1Kqk+1, (6.1)
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where M , K, and L are real n× n matrices; we assume that M and L are invertible and also that
M and K are symmetric. The left discrete Hamilton’s equations (2.20) are

qk = −(M−1pk + Lqk+1),

pk+1 = −(LT pk +Kqk+1),
(6.2)

or (
qk+1

pk+1

)
=

(
−L−1 −L−1M−1

KL−1 KL−1M−1 − LT

)(
qk

pk

)
. (6.3)

and hence are a discrete linear Hamiltonian system (see Section A.1).
Now let us solve the left discrete Hamilton–Jacobi equation (3.25) for this system. For that

purpose, we first generalize the problem to that with a set of initial points instead of a single initial
point (q0, p0). More specifically, consider the set of initial points that is a Lagrangian affine space

L̃(z0) (see Definition A.2) which contains the point z0 := (q0, p0). Then the dynamics is formally
written as, for any discrete time k ∈ N,

L̃k := (F̃Ld
)k
(
L̃(z0)

)
= F̃Ld

◦ · · · ◦ F̃Ld︸ ︷︷ ︸
k

(
L̃(z0)

)
,

where F̃Ld
: T ∗Q → T ∗Q is the discrete Hamiltonian map defined in Eq. (2.12). Since F̃Ld

is a

symplectic map, Proposition A.4 implies that L̃k is a Lagrangian affine space. Then, assuming that
L̃k is transversal to {0} ⊕ Q∗, Corollary A.6 implies that there exists a set of functions Skd of the
form

Skd(q) =
1

2
qTAkq + bTk q + ck (6.4)

such that L̃k = graph dSkd ; here Ak are symmetric n × n matrices, bk are elements in Rn, and ck
are in R.

Now that we know the form of the solution, we substitute the above expression into the discrete
Hamilton–Jacobi equation to find the equations for Ak, bk, and ck. Notice first that the map f−k is

given by the first half of Eq. (6.3) with pk replaced by DSkd(q):

f−k (q) = −L−1
(
q +M−1DSkd(q)

)
= −L−1(I +M−1Ak)q − L−1M−1bk. (6.5)

Then substituting Eq. (6.4) into the left-hand side of the left discrete Hamilton–Jacobi equa-
tion (3.25) yields the following recurrence relations for Ak, bk, and ck:

Ak+1 = LT (I +AkM
−1)−1AkL−K, (6.6a)

bk+1 = −LT (I +AkM
−1)−1bk, (6.6b)

ck+1 = ck −
1

2
bTk (M +Ak)

−1bk, (6.6c)

where we assumed that I +AkM
−1 is invertible.

Remark 6.2. We can rewrite Eq. (6.6a) as follows:

Ak+1 =
[
KL−1 + (KL−1M−1 − LT )Ak

]
(−L−1 − L−1M−1Ak)−1. (6.7)

Notice the exact correspondence between the coefficients in the above equation and the matrix
entries in the discrete linear Hamiltonian equations (6.3). In fact, this is the discrete Riccati
equation that corresponds to the iteration defined by Eq. (6.3). See Ammar and Martin [2] for
details on this correspondence.

To summarize the above observation, we have
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Proposition 6.3. The discrete Hamilton–Jacobi equation (3.25) applied to the discrete linear
Hamiltonian system (6.3) yields the discrete Riccati equation (6.7).

In other words, the discrete Hamilton–Jacobi equation is a nonlinear generalization of the discrete
Riccati equation.

A simple physical example that is described as a discrete linear Hamiltonian system is the
following:

Example 6.4 (Harmonic oscillator). Consider the one-dimensional harmonic oscillator with mass
M and spring constant K. The configuration space is a real line, i.e., Q = R, and the Lagrangian
L : TR→ R of the system is

L(q, q̇) =
M

2
q̇2 +

K

2
q2.

Introducing the angular frequency ω :=
√
K/M , we have

L(q, q̇) =
M

2

(
q̇2 + ω2q2

)
.

It is easy to solve the (continuous) Euler–Lagrange equation and calculate Jacobi’s solution explic-
itly:

S(q, t; q0) :=

∫ t

0
L(q(s), q̇(s)) ds =

1

2
Mω

[
(q20 + q2) cot(ωt)− 2q0q csc(ωt)

]
, (6.8)

where q0 is the initial position: q(0) = q0. This gives the exact discrete Lagrangian [22] with step
size h as follows:

Lex
d (qk, qk+1) = S(qk+1, h; qk) =

1

2
Mω

[
(q2k + q2k+1) cot(ωh)− 2qkqk+1 csc(ωh)

]
(6.9)

The corresponding left discrete Hamiltonian (See Eq. (2.19)), which we shall call the exact left
discrete Hamiltonian, is then

H−d,ex(pk, qk+1) =
1

2

[
p2k
Mω

tan(ωh)− 2pkqk+1 sec(ωh) +Mω q2k+1 tan(ωh)

]
. (6.10)

Comparing this with the general form of the quadratic Hamiltonian Eq. (6.1), we see that this is a
special case with n = 1 and

M−1 =
tan(ωh)

Mω
, L = − sec(ωh), K = Mω tan(ωh).

Note that M , L, and K are also scalars now. Thus Eq. (6.5) gives

f−k (q) := πR ◦ F̃Ld

(
dSkd(q)

)
=

(
cos(ωh) +

sin(ωh)

Mω
Ak

)
q +

sin(ωh)

Mω
bk. (6.11)

Now the recurrence relations Eq. (6.6) reduce to

Ak+1 =
Mω [Ak cos(ωh)−Mω sin(ωh)]

Mω cos(ωh) +Ak sin(ωh)
,

bk+1 =
Mω

Mω cos(ωh) +Ak sin(ωh)
bk,

ck+1 = ck −
b2k

Ak +Mω cot(ωh)
.

(6.12)

We impose the “initial condition” S1
d(q1) = Lex

d (q0, q1), which follows from Eq. (3.9) or (3.15) for
k = 1. This gives

A1 = Mω cot(ωh), b1 = −Mωq0 csc(ωh), c1 = Mωq20 cot(ωh). (6.13)
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Solving the above recurrence relations using Mathematica, we obtain

Ak = Mω cot(ωkh), bk = −Mωq0 csc(ωkh), ck = Mωq20 cot(ωkh), (6.14)

and hence the solution of the left discrete Hamilton–Jacobi equation

Skd(q) =
1

2
Mω

[
(q20 + q2) cot(ωkh)− 2q0q csc(ωkh)

]
. (6.15)

Remark 6.5. Notice that, in the above example, we have Skd(q) = S(q, kh; q0) from the explicit
expression for Jacobi’s solution Eq. (6.8) under the assumption that q = qk. This is because we
started with the exact discrete Lagrangian and hence the corresponding discrete dynamics is exact.
Specifically, the exact discrete Lagrangian satisfies, by definition,

Lex
d (ql, ql+1) =

∫ (l+1)h

lh
L(q(t), q̇(t)) dt, l ∈ {0, 1, . . . , k − 1} (6.16)

where q(t) satisfies the continuous dynamics and the boundary conditions q(lh) = ql and q((l +
1)h) = ql+1. Hence

Skd(q) :=
k−1∑
l=0

Lex
d (ql, ql+1) =

∫ kh

0
L(q(t), q̇(t)) dt =: S(q, kh; q0), (6.17)

which says that the discrete analogue of Jacobi’s solution Eq. (3.9) is identical to Jacobi’s solu-
tion Eq. (6.8) calculated using the continuous dynamics.

6.2. Application of the Hamilton–Jacobi Theorem. We illustrate how Theorem 4.1 works
using the same example. Here we would like to see if we can “generate” the dynamics using the
solution of the discrete Hamilton–Jacobi equations as in Theorem 4.1.

Example 6.6 (Harmonic oscillator). Let us start from the solution obtained in Example 6.4:

Skd(q) =
1

2
Mω

[
(q20 + q2) cot(ωkh)− 2q0q csc(ωkh)

]
. (6.18)

Notice that the expression for the right-hand side of Eq. (4.3) was already given in Eq. (6.11):

πQ ◦ F̃Ld

(
dSkd(qk)

)
= qk cos(ωh) +

1

Mω
DSkd(qk) sin(ωh)

Hence substituting Eq. (6.18) into Eq. (4.3) yields

qk+1 = csc(ωkh) {qk sin [ω(k + 1)h]− q0 sin(ωh)} (6.19)

Then Eq. (4.4) gives

pk = DSkd(qk) = Mω csc(ωkh) [qk cos(ωkh)− q0] . (6.20)

It is easy to check these equations satisfy the left discrete Hamilton’s equations (2.17) as Theo-
rem 4.1 claims.

7. Continuous Limit

This section shows that the right and left discrete Hamilton–Jacobi equations (3.21) and (3.25)
recover the original Hamilton–Jacobi equation (3.14) in the continuous-time limit. We reproduce
the result of Elnatanov and Schiff [8] on the continuous limit of the right discrete Hamilton–Jacobi
equation, applying the same argument simultaneously to the left discrete Hamilton–Jacobi equation.
The main purpose of doing so here is to make it clear how the discrete ingredients are related to
the corresponding continuous ones in our notation.
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7.1. Continuous Limit of Discrete Hamilton Equations. Let us first look at the continuous-
time limit of the right and left discrete Hamilton’s equations (2.17) and (2.20). This makes it clear
how the discrete and continuous Hamiltonians are related in the limit. First recall from Section 2.3
of Marsden and West [22] that the discrete Lagrangian Ld(qk, qk+1) is consistent if it satisfies

Ld(qk, qk+1) =

∫ tk+1

tk

L(q(t), q̇(t)) dt+O(h2)

=

∫ tk+1

tk

[p(t) · q̇(t)−H(q(t), p(t))] dt+O(h2). (7.1)

where tk = kh, and the (q(t), p(t)) in the integrand is the flow defined by the continuous Lagrangian
or Hamiltonian with q(tk) = qk and q(tk+1) = qk. Consistency of a discrete Lagrangian implies
that of the corresponding discrete flow, hence the terminology.

Lemma 7.1. The right and left discrete Hamiltonians H+
d (qk, pk+1) and H−d (pk, qk+1) defined as

in Eq. (2.16) and (2.19) with a consistent discrete Lagrangian satisfies the following relations with
the continuous Hamiltonian:

H(qk, pk) = lim
h→0

1

h

[
H+

d (qk, pk+1)− pk+1 · qk
]

= lim
h→0

1

h

[
H−d (pk, qk+1) + pk · qk+1

]
. (7.2)

Proof. Simple calculations with Eqs. (2.16) and (2.19) with Eq. (7.1) show

1

h

[
H+

d (qk, pk+1)− pk+1 · qk
]

= pk+1 ·
qk+1 − qk

h
− 1

h

∫ tk+h

tk

[p(t) · q̇(t)−H(q(t), p(t))] dt+O(h)

and

1

h

[
H−d (pk, qk+1) + pk · qk+1

]
= pk ·

qk+1 − qk
h

− 1

h

∫ tk+h

tk

[p(t) · q̇(t)−H(q(t), p(t))] dt+O(h)

Taking the limit as h→ 0 on both sides in each of the above equations gives the result. �

Definition 7.2. We shall say that a right/left discrete Hamiltonian H±d is consistent if it satisfies
Eq. (7.2).

Proposition 7.3. With consistent discrete Hamiltonians, the right and left discrete Hamilton’s
equations (2.17) and (2.20) recover the continuous-time Hamilton’s equations in the continuous
limit.

Proof. Simple calculations with Eqs. (2.17) and (2.20) show

qk+1 − qk
h

=
∂

∂pk

{
1

h

[
H+

d (qk, pk+1)− pk+1 · qk
]}

,

pk+1 − pk
h

= − ∂

∂qk+1

{
1

h

[
H+

d (qk, pk+1)− pk+1 · qk
]}

and
qk+1 − qk

h
=

∂

∂pk+1

{
1

h

[
H−d (pk, qk+1) + pk · qk+1

]}
,

pk+1 − pk
h

= − ∂

∂qk

{
1

h

[
H−d (pk, qk+1) + pk · qk+1

]}
.

Taking the limit as h→ 0 on both sides in each of the above equations gives, with Eq. 7.2,

q̇(tk) =
∂H

∂p
(q(tk), p(tk)), ṗ(tk) = −∂H

∂q
(q(tk), p(tk)). �
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7.2. Continuous Limit of Discrete Hamilton–Jacobi Equations. Now we are ready to dis-
cuss the continuous limit of the right and left discrete Hamilton–Jacobi equations.

Proposition 7.4. With consistent discrete Hamiltonians, the right and left discrete Hamilton–
Jacobi equations (3.3) and (3.18) recover the continuous-time Hamilton–Jacobi equation.

Proof. First define S : Q× R→ R that satisfies S(qk, tk) = Skd(qk). Simple calculations with (3.3)
and (3.18) yield

1

h

[
S(qk+1, tk+1)− S(qk, tk)−

∂S

∂q
(qk+1, tk+1) · (qk+1 − qk)

]
+

1

h

[
H+

d

(
qk,

∂S

∂q
(qk+1, tk+1)

)
− ∂S

∂q
(qk+1, tk+1) · qk

]
= 0 (7.3)

and

1

h

[
S(qk+1, tk+1)− S(qk, tk)−

∂S

∂q
(qk+1, tk+1) · (qk+1 − qk)

]
+

1

h

[
H−d

(
∂S

∂q
(qk, tk), qk+1

)
+
∂S

∂q
(qk, tk) · qk+1

]
= 0. (7.4)

The first group of the terms in brackets is common to both of the above equations. Taylor expansion
of the terms gives

1

h

[
S(qk+1, tk+1)− S(qk, tk)−

∂S

∂q
(qk+1, tk+1) · (qk+1 − qk)

]
=
∂S

∂t
(qk, tk) +

[
∂S

∂q
(qk, tk)−

∂S

∂q
(qk+1, tk+1)

]
· qk+1 − qk

h
+O(h)→ ∂S

∂t
(qk, tk)

as h→ 0. On the other hand, by Lemma 7.1, the limit as h→ 0 of the second group of the terms
in each of Eqs. (7.3) and (7.4) is

lim
h→0

1

h

[
H+

d

(
qk,

∂S

∂q
(qk+1, tk+1)

)
− ∂S

∂q
(qk+1, tk+1) · qk

]
= H

(
qk,

∂S

∂q
(qk, tk)

)
,

and

lim
h→0

1

h

[
H−d

(
∂S

∂q
(qk, tk), qk+1

)
+
∂S

∂q
(qk, tk) · qk+1

]
= H

(
qk,

∂S

∂q
(qk, tk)

)
.

As a result, both the right and left discrete Hamilton–Jacobi equations give, in the limit as h→ 0,

∂S

∂t
(qk, tk) +H

(
qk,

∂S

∂q
(qk, tk)

)
= 0,

which is the continuous-time Hamilton–Jacobi equation. �

8. Conclusion and Future Work

We developed a discrete-time analogue of the Hamilton–Jacobi theory starting from the discrete
variational Hamilton equations formulated by Lall and West [16]. We reinterpreted and extended
the discrete Hamilton–Jacobi equation given by Elnatanov and Schiff [8] to show that it possesses
theoretical significance in discrete mechanics that is equivalent to that of the (continuous-time)
Hamilton–Jacobi equation in Hamiltonian mechanics. Furthermore, we showed that the discrete
Hamilton–Jacobi equation reduces to the discrete Riccati equation with a quadratic Hamiltonian,
and also that it specializes to the Bellman equation of dynamic programming if applied to discrete
optimal control problems. This again gives discrete analogues of the corresponding known results in
the continuous-time theory. Application to discrete optimal control also revealed that Theorems 3.3
and 4.1 specialize to two well-known results in discrete optimal control theory.
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We are interested in the following topics for future work:

• Application to integrable discrete systems. Theorem 4.1 gives a discrete analogue of the
theory behind the technique of solution by separation of variables in the sense that the the-
orem relates a solution of the discrete Hamilton–Jacobi equations with that of the discrete
Hamilton’s equations. An interesting question then is whether or not separation of variables
applies to integrable discrete systems, e.g., discrete rigid bodies of Moser and Veselov [23]
and various others discussed by Suris [25, 26].

• Development of numerical methods based on the discrete Hamilton–Jacobi equation. Hamilton–
Jacobi-based numerical methods made seminal contributions to the development of struc-
tured integrators for Hamiltonian systems [see, e,g., 6, and also references therein]. The
present theory, being intrinsically discrete in time, potentially provides a variant of such
numerical methods.

• Extension to discrete nonholonomic and Dirac mechanics. The present work is concerned
only with unconstrained systems. Extensions to nonholonomic and Dirac mechanics, more
specifically discrete-time versions of the nonholonomic Hamilton–Jacobi theory [7; 12; 24]
and Dirac Hamilton–Jacobi theory [19], are another direction of future research.

• Relation to the power method and iterations on the Grassmannian manifold. Ammar and
Martin [2] established links between the power method, iterations on the Grassmannian
manifold, and the Riccati equation. The discussion on iterations of Lagrangian subspaces
and its relation to the Riccati equation in Sections 6.1 and A.2 is a special case of such links.
On the other hand, Proposition 6.3 suggests that the discrete Hamilton–Jacobi equation is
a generalization of the Riccati equation. We are interested in seeing possible further links
implied by the generalization.
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Appendix A. Discrete Linear Hamiltonian Systems

A.1. Discrete Linear Hamiltonian Systems. Suppose that the configuration space Q is an n-
dimensional vector space, and that the discrete Hamiltonian H+

d or H−d is quadratic as in Eq. (6.1).

Also assume that the corresponding discrete Hamiltonian map F̃Ld
: (qk, pk) 7→ (qk+1, pk+1) is

invertible. Then the discrete Hamilton’s equations (2.17) or (2.20) reduce to the discrete linear
Hamiltonian system

zk+1 = ALd
zk, (A.1)

where zk ∈ R2n is a coordinate expression for (qk, pk) ∈ Q × Q∗ and ALd
: Q × Q∗ → Q × Q∗ is

the matrix representation of the map F̃Ld
under the same basis. Since F̃Ld

is symplectic, ALd
is an

2n× 2n symplectic matrix, i.e.,

ATLd
JALd

= J, (A.2)

where the matrix J is defined by

J :=

(
0 I
−I 0

)
with I the n× n identity matrix.
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A.2. Lagrangian Subspaces and Lagrangian Affine Spaces. First recall the definition of a
Lagrangian subspace:

Definition A.1. Let V be a symplectic vector space with the symplectic form Ω. A subspace L
of V is said to be Lagrangian if Ω(v, w) = 0 for any v, w ∈ L and dimL = dimV/2.

We introduce the following definition for later convenience:

Definition A.2. A subset L̃(b) of a symplectic vector space V is called a Lagrangian affine space

if L̃(b) = b+ L for some element b ∈ V and a Lagrangian subspace L ⊂ V .

The following fact is well-known [see, e.g., 15, Theorem 6 on p. 417]:

Proposition A.3. Let L be a Lagrangian subspace of V and A : V → V be a symplectic transfor-
mation. Then Ak(L) is also a Lagrangian subspace of V for any k ∈ N.

A similar result holds for Lagrangian affine spaces:

Proposition A.4. Let L̃(b) = b + L be a Lagrangian affine space of V and A : V → V be a

symplectic transformation. Then Ak
(
L̃(b)

)
is also a Lagrangian affine space of V for any k ∈ N.

More explicitly, we have

Ak
(
L̃(b)

)
= Akb+Ak(L).

Proof. Follows from a straightforward calculation. �

A.3. Generating Functions. Now consider the case where V = Q ⊕ Q∗. This is a symplectic
vector space with the symplectic form Ω : (Q⊕Q∗)× (Q⊕Q∗)→ R defined by

Ω : (v, w) 7→ vT Jw.
The key result here regarding Lagrangian subspaces on Q⊕Q∗ is the following:

Proposition A.5. A Lagrangian subspace of Q ⊕Q∗ that is transversal to {0} ⊕Q∗ is the graph
of an exact one-form, i.e., L = graph dS for some function S : Q→ R which has the form

S(q) =
1

2
〈Aq, q〉+ C (A.3)

with some symmetric linear map A : Q→ Q∗ and an arbitrary real scalar constant C. Moreover, the
correspondence between the Lagrangian subspaces and such functions (modulo the constant term)
is one-to-one.

Proof. First recall that a Lagrangian submanifold of T ∗Q that projects diffeomorphically onto Q is
the graph of a closed one-forms on Q [See 1, Proposition 5.3.15 and the subsequent paragraph on
p. 410]. In our case, Q is a vector space, and so the cotangent bundle T ∗Q is identified with the
direct sum Q⊕Q∗. Now a Lagrangian subspace of Q⊕Q∗ that is transversal to {0}⊕Q∗ projects
diffeomorphically onto Q, and so is the graph of a closed one-form. Then by the Poincaré lemma,
it follows that any such Lagrangian subspace L is identified with the graph of an exact one-form
dS with some function S on Q, i.e., L = graph dS.

However, as shown in, e.g., Jurdjevic [15, Theorem 3 on p. 233], the space of Lagrangian subspaces
that are transversal to {0} ⊕ Q∗ is in one-to-one correspondence with the space of all symmetric
maps A : Q→ Q∗, with the correspondence given by L = graphA. Hence graph dS = graphA, or
more specifically,

dS(q) = Aijq
j dqi.

This implies that S has the form

S(q) =
1

2
Aijq

iqj + C,

with an arbitrary real scalar constant C. �
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Corollary A.6. Let L̃(z0) = z0 +L be a Lagrangian affine space, where z0 = (q0, p0) is an element

in Q⊕Q∗ and L is a Lagrangian subspace of Q⊕Q∗ that is transversal to {0} ⊕Q∗. Then L̃(z0)

is the graph of an exact one-form dS̃ with a function S̃ : Q→ R of the form

S̃(q) =
1

2
〈Aq, q〉+ 〈p0 −Aq0, q〉+ C,

with an arbitrary real scalar constant C.

Proof. From the above proposition, there exists a function S : Q → R of the form Eq. (A.3) such

that L = graph dS. Let S̃ : Q→ R be defined by S̃(q) := S(q − q0) + 〈p0, q〉. Then

dS̃(q) = A(q − q0) + p0. (A.4)

and thus

graph dS̃ = {(q, dS̃(q)) | q ∈ Q}
= {(q, A(q − q0) + p0) | q ∈ Q}
= (q0, p0) + {(q − q0, A(q − q0)) | q ∈ Q}
= z0 + L

= L̃(z0).

The form Eq. (A.4) follows from a direct calculation. �
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