[Home]   [  News]   [  Events]   [  People]   [  Research]   [  Education]   [Visitor Info]   [UCSD Only]   [Admin]
Home > Events > CCoM > Abstract
Search this site:

On the Continuity of Exterior Differentiation Between Sobolev-Slobodeckij Spaces of Sections of Tensor Bundles on Compact Manifolds

Ali Behzadan


Suppose Ω is a nonempty open set with Lipschitz continuous boundary in \mathbbRn. There are certain exponents e ∈ R and q ∈ (1,∞) for which [(∂)/(∂xj)]: We,q(Ω)→ We−1,q(Ω) is NOT a well-defined continuous operator. Now suppose M is a compact smooth manifold. In this talk we will try to discuss the following questions:

1. How are Sobolev spaces of sections of vector bundles on M defined?

2. Is it possible to extend d: C(M)→ C(T*M) to a continuous linear map from We,q(M) to We−1,q(T*M) for all e ∈ R and q ∈ (1,∞)?

3. Why are we interested in the above question?

Tuesday, May 9, 2017
11:00AM AP&M 2402