[Home]   [  News]   [  Events]   [  People]   [  Research]   [  Education]   [Visitor Info]   [UCSD Only]   [Admin]
Home > Events > CCoM > Abstract
Search this site:

Randolph E. Bank
Philip E. Gill
Michael Holst

Administrative Contact:
Jennifer Trefftzs

Office: AP&M 7409
Phone: (858)534-9056
Fax: (858)534-5273
E-mail: jtrefftzs@ucsd.edu
What is Bayesian inference, why is it useful in Earth science and why is it challenging to do numerically?

Matthias Morzfeld


I will first review Bayesian inference, which means to incorporate information from observations (data) into a numerical model, and will give some examples of applications in Earth science. The numerical solution of Bayesian inference problems is often based on sampling a posterior probability distribution. Sampling posterior distributions is difficult because these are usually high-dimensional (many parameters or states to estimate) and non-standard (e.g., not Gaussian). In particular a high-dimension causes numerical difficulties and slow convergence in many sampling algorithms. I will explain how ideas from numerical weather prediction can be leveraged to design Markov chain Monte Carlo (MCMC) samplers whose convergence rates are independent of the problem dimension for a well-defined class of problems.

Tuesday, February 25, 2020
11:00AM AP&M 2402