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Unconstrained optimization and eigenvalue computing

Quadratic Optimization

q(x) = gTx+
1

2
xTAx, x ∈ Rn

Eigenvalue Problem

Ax = λx, x ∈ Rn\{0}

Yu-Hong Dai (LSEC, CAS) Computing Several Extreme Eigenpairs UCSD, May 23, 2014 4 / 39



A relation between gradient method and power method

Consider the gradient method for quadratic optimization

xk+1 = xk − αkgk

gk = g +Axk

It follows that gk+1 = (I − αk A)gk. If αk ≡ α, we have that

gk+1

‖gk+1‖
=

(I − αA)kg1
‖(I − αA)kg1‖

The value gTk Agk/‖gk‖2 will return some eigenvalue of A under suitable
assumptions. Therefore the gradient method with constant stepsizes can be
regarded as a shifted power method. On the other hand, the (ordinary) power
method can be treated as the gradient iteration with infinite stepsizes.
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Finite termination property of the gradient method

For the gradient method, we generally have

gk+1 = gk − αkAgk
= (I − αkA)gk

=

[∏k
j=1(1− αjA)

]
g1

Assuming that
λ(A) = {λ1, λ2, ..., λn}

we have by the Caylay-Hamilton theorem that gn+1 = 0 if{
αk : k = 1, ..., n

}
=
{
λ−1k : k = 1, ..., n

}
This result was due to Yan-Lian Lai (1983).
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The Barzilai-Borwein method

Two-point stepsize gradient method [Barzilai & Borwein, 1988]
Ask αkI or α−1k I to have certain quasi-Newton property and solve

min
αk
‖sk−1 − αkyk−1‖2 or min

αk
‖α−1k sk−1 − yk−1‖2,

where sk−1 = xk − xk−1, yk−1 = gk − gk−1.

The large and short BB stepsizes are respectively defined as

αLBB
k =

‖sk−1‖22
sTk−1yk−1

and αSBB
k =

sTk−1yk−1
‖yk−1‖22

.

Remark that for quadratic optimization, the stepsize αLBB
k reduces to

αk =
gTk−1gk−1

gTk−1Agk−1
,

which is exactly the inverse of Reighley quotient of A with respect to
−gk−1.
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Superlinear results for BB-like gradient methods

[Barzilai & Borwein, 1988]
n = 2, R-superlinear(
α−1ki1

→ λ1, α−1ki2
→ λ2

)
[Dai & Fletcher, 2005]

n = 3, R-superlinear

[Dai & Fletcher, 2005]
Cyclic SD method (αmk+i = αSDmk+1, 1 ≤ i ≤ m),

m ≥ n

2
+ 1, R-superlinear

(αki → λ−1i for i = 1, 2, · · · , n)
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Unconstrained optimization model for the smallest
eigenpair

General unconstrained optimization [Auchmuty, 1989]

min
x∈Rn

E(x) = Φ

(
1

2
‖x‖2

)
+ Ψ

(
1

2
xTAx

)

Unconstrained quartic model [Auchmuty, 1991; Mongeau & Torki, 2004]

min
x∈Rn

E4(x) =
1

4
‖x‖4 +

1

2
xTAx (1.1)

Noticing that gk = Axk + ‖xk‖3xk, we may consider some special gradient
method (see [Gao, Dai & Tong, 2012])
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Eigenvalue decomposition of real symmetric matrices

A ∈ Rn×n is real symmetric matrix

Eigenvalue decomposition
A = QΛQT

The r-truncated decomposition (r largest/smallest eigenpairs)

AQ(r) = Q(r)Λ(r)

– M(r) stands for the first r columns of M
– Q(r) ∈ Rn×r with orthonormal columns; r � n
– Λ(r) is diagonal with largest/smallest r eigenvalues

Many applications
N A is large and sparse

N Compute a big portion of specturm
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Application 1: Principal component analysis (PCA)

Data analysis in many fields

– pattern recognition (computer science)

– chemical component analysis

Given: A ∈ RI×J with I observations and J variables

A =


a11 a12 · · · a1J
a21 a22 · · · a2J
...

...
. . .

...
aI1 aI2 · · · aIJ


Goal: extract r principal components

X[r] ∈ RI×r
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Application 1: Principal component analysis (Cont’d)

Principal component score matrix

X[r] = arg min
rank(X1)≤r

∑
ij

(aij − xij)2 = ‖A−X1‖2F


Low-rank matrix recovery

X[r] = Q[r]∆[r] =


x11 x12 · · · x1r
x21 x22 · · · x2r

...
...

. . .
...

xI1 xI2 · · · xIr


– xij is the score of sample i on the principal j
– ∆[r] and Q[r] are the r largest singularpairs of A

Normally, X is the covariance matrix of real data, so it is symmetric.

I Compute r largest eigenpairs or singularpairs

Yu-Hong Dai (LSEC, CAS) Computing Several Extreme Eigenpairs UCSD, May 23, 2014 13 / 39



Low-rank matrix recovery with missing values

Netflix: Given A ∈ Rn×n whose values are known on the set K
Recovery the rank r matrix A

min
rank(X)≤r

 ∑
(i,j)∈K

(aij − xij)2 = ‖A−X‖2K


Nuclear norm regularization

min
X

‖A−X‖2K + λ‖X‖∗

⇐⇒ X = U diag((σ1 − 2λ)+, . . . , (σn − 2λ)+)V T,

where U and V is from the SVD A0 = Udiag(σ1, . . . , σn)V T

I Compute singular values greater than 2λ
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Application 2: Electronic structure of material

Density functional theory + local density approximation ⇒
The Kohn-Sham equation [Kohn & Sham, 1965](

−∇
2

2
+ VN (r) + VH(r) + Vxc[n(r)]

)
ψi(r) = Eiψi(r)

where

– ψi(r) and Ei are the i-th electron wave function and energy level

– n(r) =
∑occup
i=1 |ψi(r)|

2 is the electron density distribution

– VN (r) is the ionic pseudopotential

– VH(r) =
∫ n(r)
|r−r̂|dr̂ is the Hartree potential

– Vxc(r) = δExc(n)
δn(r)

is the exchange-correlation potential
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Application 2: Electronic structure of material (Cont’d)

(
−∇

2

2
+ VN (r) + VH(r) + Vxc[n(r)]

)
ψi(r) = Eiψi(r)

Figure: Solving the Kohn-Sham equation by iterating to self-consistency

I Compute the occupied eigenpairs every iteration
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Application 3: Three dimensional photonic crystals

Maxwell equation + discreting with FCC lattice vector ⇒

Ax = λBx,

where A ∈ C3n×3n is Hermitian positive semi-definite, B is positive and
diagonal.

Difficulties

– n of the eigenvalues are zeros

– to find k (k = 10) smallest positive eigenpairs

Some existing methods

– explicit matrix representation of the double-curl operator [Hwang, 2012]

– project out of the null space [Hwang, 2013]
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Some existing methods

Numerical algebraic methods

– Lanczos algorithm [Lanczos, 1951]

– Davidson’s method [Davidson, 1975]

– LOBPCG [Knyazev, 2001]

Optimization methods

– the Rayleigh quotient minimization [Longsine & McCormick, 1980]

min
X∈Rn×r

tr
(
XTAX(XTX)−1

)
– the trace minimization [Sameh & Wisniewski, 1982]

min
X∈Rn×r

tr(XTAX) s.t. XTX = Ir

N A feasible framework on the Stiefel manifold [Jiang & Dai, 2012]

Y (τ,X) = XR(τ)︸ ︷︷ ︸
value space

+ WN(τ)︸ ︷︷ ︸
null space

– what’s more?
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Several new block unconstrained models

1 Block unconstrained quartic model

min
X∈Rn×r

P (X) =
1

4
tr
(
XTXXTX

)
+

1

2
tr
(
XTAX

)
(3.1)

2 Block unconstrained β-order model

min
X∈Rn×r

P̂ (X;µ, β, θ) =
θ

β
‖XTX‖

β
2

F +
1

2
tr
(
XT(A− µIn)X

)
(3.2)

3 The general model

min
X∈Rn×r

G(X) = Φ

(
1

2
‖XTX‖F

)
+ Ψ

(
1

2
tr(XTAX)

)
(3.3)

H They seem to be ordinary, however · · ·
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Advantage of proposed models

Main work
XTX, X(XTX), AX

whose cost is 3nr2 + 2Nr, where N is number of nonzero elements in A

No orth(X) =⇒ parallelize

An independent model by Wen, Yang, Liu & Zhang (2012):

min
X∈Rn×r

1

2
tr(XTAX) +

µ

4
‖XTX − I‖2F
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Stationary points of model (3.1)

min
X∈Rn×r

P (X) =
1

4
tr
(
XTXXTX

)
+

1

2
tr
(
XTAX

)
H The stationary points are related to the eigenpairs of A.

Lemma 3.1

Any stationary point of (3.1) is of the thin SVD form

X = Qp,s (−Λp)
1/2
V T
p ,

where p is the rank of X, Qp,s consists of the j1, · · · , jp columns of Q with

1 ≤ j1 ≤ · · · ≤ jp ≤ s := arg max
λi<0

i,

Λp = diag(λj1 , · · · , λjp), and Vp ∈ Rr×p is any matrix orthonormal columns.

Proof: The stationary point satisfies

∇P (X) = XXTX +AX = 0
X = U1Σ1V

T
1

}
⇒ AU1 = U1(−Σ2

1)
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Global minimizer of model (3.1)

min
X∈Rn×r

P (X) =
1

4
tr
(
XTXXTX

)
+

1

2
tr
(
XTAX

)
H The global minimizer is related to the smallest r eigenpairs of A.

Theorem 3.2

Problem (3.1) has a rank-r stationary point if and only if λr < 0.

Furthermore, the global minimizer X∗ of (3.1) is of the thin SVD form

X∗ = Q(r) (µIr − Λr)
1/2
V T
r (3.4)

and the global minimum is P ∗ = − 1
4

r∑
i=1

λ2i .

Proof:

P (X) = −1

4

p∑
i=1

λ2
ji ≥ −

1

4

r∑
i=1

λ2
i = P (X∗)
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No undesired local minimizers

H Either saddle point or global minimizer =⇒ numerical a big merit

Theorem 3.3

If λr < 0, then

(i) any nonzero stationary point of problem (3.1) is either a saddle point or

a global minimizer defined in (3.4).

(ii) Further, if λr < 0 ≤ λ[r+1], where λ[r+1] is the smallest eigenvalue

strictly greater than λr, all the rank-r stationary points are global

minimizers.
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Model 2: Block unconstrained β-order model

min
X∈Rn×r

P̂ (X;µ, β, θ) =
θ

β
‖XTX‖

β
2
F +

1

2
tr
(
XT(A− µIn)X

)
, β > 2, θ > 0

H All the three properties for the quartic model hold

Theorem 3.4

Problem (3.2) has a rank-r stationary point if and only if µ > λr. Furthermore, there
hold the following properties

(i) the stationary point X has the form X = Qp,s

[
c
2− β

2
p θ−1(µIp − Λp)

]1/2
V T
p .

(ii) if µ > λr, the global minimizer X∗ of (3.2) is of the thin SVD form

X∗ = Q(r)

[
c2−

β
2 θ−1(µIr − Λr)

]1/2
V T
r ,

and the global minimum is P̂ ∗µ,β,θ = − θ
− 2
β−2 (β−2)

2β

(∑r
i=1(µ− λi)2

) β
2(β−2) .

(iii) if µ > λr, any nonzero stationary point of problem (3.2) is either a saddle point

or a global minimizer.
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Model 3: General unconstrained model

min
X∈Rn×r

G(X) = Φ

(
1

2
‖XTX‖F

)
+ Ψ

(
1

2
tr(XTAX)

)
H The stationary points are related to the eigenpairs of A.

Theorem 3.5

Under some assumptions, any nonzero stationary point of (3.3) can be expressed by

X = QpΣ1V
T
p .

Moreover, there holds

Λp = −Ψ′
(

1

2
tr(ΛpΣ

2
1)

)−1

Φ′
(

1

2
‖Σ2

1‖F
)
‖Σ2

1‖−1
F Σ2

1.

.

The global minimizer is related to the specific formulation.
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BB vs CG

[Fletcher, 2005], “On the Barzilai-Borwein method”:

4u = −f, u ∈ [0, 1]3

f = x(x− 1)y(y − 1)z(z − 1)w(x, y, z)

w = exp
(
− 1

2
σ2
(
(x− α)

2
+ (y − β)

2
+ (z − γ)

2))
Au = b, n = 106(
⇔ min

1

2
uTAu− bTu

)
u1 = 0, ‖gk‖2 ≤ 10−6‖g1‖2

Yu-Hong Dai (LSEC, CAS) Computing Several Extreme Eigenpairs UCSD, May 23, 2014 28 / 39



BB vs CG

Numerical Results

(σ, α, β, γ) BB CG

(20, 0.5, 0.5, 0.5) double 543(859) 162(178)
single 462(964) 254(387)

(50, 0.4, 0.7, 0.5) double 640(1009) 285(306)
single 310(645) 290(443)

But SD: 2000, ‖g2000‖
‖g1‖ = 0.18 !

Scholar google BB:

704 times (by May 16, 2013)
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Nonmonotone performance of BB

A Typical Nonmonotone Performance of BB

For any dimensional strictly convex quadratics

[Raydan,1993]: global convergence

[Dai & Liao, (2002)]: R-linear convergence

Implication: The BB stepsize can be asymptotically accepted by the
nonmonotone line search in the context of unconstrained optimization
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ABB stepsize

Let Sk−1 = Xk −Xk−1, Yk−1 = ∇P (Xk)−∇P (Xk−1). The large and
short BB stepsizes are respectively defined as

τLBB
k =

tr(ST
k−1Sk−1)

|tr(ST
k−1Yk−1)|

and τSBB
k =

|tr(ST
k−1Yk−1)|

tr(Y T
k−1Yk−1)

.

We used the alternative BB (ABB) stepsize [Dai & Fletcher, 2005]

τABB
k =

{
τSBB
k , for odd k;
τLBB
k , for even k.

(4.1)
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Adaptive nonmonotone line search strategy

Armijo line search + adaptive nonmonotone strategy [Dai & Zhang, 2001]

P (Xk − γikτ (1)k ∇P (Xk)) ≤ Pr − δγikτ (1)k ‖∇P (Xk)‖2F ,

where Pr is reference value.

Algorithm 1: Adaptive nonmonotone line search strategy

if Pk+1 < Pbest then
Pbest = Pk+1, Pc = Pk+1, l = 0
else

Pc = max{Pc, Pk+1}, l = l + 1
if l = L, then

Pr = Pc, Pc = Pk+1, l = 0
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ABB algorithm

Algorithm 2: Adaptive ABB Method

Step 0 Give a starting point and initialize the parameters.

Step 1 If ‖∇Pµ(Xk)‖F ≤ tol, return approximated eigenparis via RR
procedure and stop.

Step 2 Find the least nonnegative integer ik satisfying

P (Xk − γikτ (1)k ∇Pµ(Xk)) ≤ Pr − δγikτ (1)k ‖∇µP (Xk)‖2F

and set τk = γikτ
(1)
k .

Step 3 Xk+1 = Xk − τk∇Pµ(Xk), Pk+1 = P (Xk+1), and update Pr by
Algorithm 1.

Step 4 Calculate τ0k by ABB (4.1) and set τ
(1)
k = max{τmin,min{τ (0)k , τmax}}.

Step 5 k := k + 1. Go to Step 1.
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Global convergence

Lemma 4.1

{Xk, k > 0} is the sequence generated by above Algorithm 2 when tol = 0.
Then, either ‖∇P (Xk)‖F = 0 for some finite k, or

lim
k→∞

‖∇P (Xk)‖F = 0.

Denote Y (X) = orth(X), R(X) = AY (X)− Y (X)
(
Y (X)TAY (X)

)
.

♣ Y (X) spans the eigenspace of A ⇐⇒ R(X) = 0.

Theorem 4.2

For any rank-r matrix X, we have

‖R(X)‖F ≤ σ1(X)−1‖∇P (X)‖F .

I ‖∇P (X)‖F ≤ tol =⇒ R(X) ≈ 0.
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Numerical experiments: EigUncABB

Test matrix: 3D negative Laplacian on a rectangular finite-difference grid

Guard vectors [Liu, 2012]: set r̄ = r + 5

The parameters

tol = 10−3, γ = 0.5, δ = 0.001, τmin = 10−20, τmax = 1020, L = 4

µ =

{
1.01× λr(XT

0 AX0), if λr(X
T
0 AX0) > 0

0.99× λr(XT
0 AX0), otherwise
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Comparison of EIGS, LOBPCG and EigUncABB

Table: Comparison of EIGS, LOBPCG and EigUncABB, n = 16000, r̄ = r + 5

EIGS LOBPCG EigUncABB
r err nAx resi time err iter resi time err nfe resi time
20 4.37e-15 1220 2.31e-14 5.7 5.51e-07 106 7.79e-04 9.4 5.92e-13 242 1.75e-06 4.7
50 4.45e-15 1433 2.47e-14 12.5 1.32e-06 96 8.76e-04 18.2 3.58e-09 233 7.20e-05 9.8
100 5.75e-15 1757 2.53e-14 25.9 8.67e-07 112 8.31e-04 37.1 1.60e-12 316 7.42e-07 27.9
150 8.22e-15 2144 2.72e-14 45.3 2.20e-06 155 9.73e-04 50.9 5.06e-07 184 1.31e-04 26.3
200 1.40e-14 2543 2.61e-14 70.2 1.01e-06 231 6.41e-04 122.4 4.41e-08 342 2.45e-05 69.8
250 1.18e-14 2700 3.18e-14 91.3 7.82e-07 255 6.67e-04 101.1 3.16e-09 249 7.91e-06 66.3
300 1.47e-14 3015 3.54e-14 122.7 2.10e-06 305 8.56e-04 211.9 5.79e-09 350 2.01e-05 125.5
350 1.98e-14 3105 3.19e-14 142.8 1.39e-06 355 7.47e-04 253.2 3.57e-10 312 1.18e-05 135.1
400 1.54e-14 3480 3.20e-14 184.9 1.08e-06 405 6.32e-04 326.0 1.43e-10 345 1.09e-05 184.9
450 1.37e-14 3662 3.16e-14 217.1 1.03e-06 455 6.47e-04 312.0 4.84e-09 367 6.26e-05 228.6
500 1.83e-14 4008 3.65e-14 266.7 1.03e-06 505 5.42e-04 397.0 2.63e-06 383 1.48e-04 288.5

−→ best −→ worst
I competitive with LOBPCG

compared with EIGS, sometimes find a lower accuracy solution in less time
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Comparison of different β

Table: Comparison of different β’s in model (3.2) by using EigUncABB

β = 3 β = 4 β = 5

r err nfe resi time err nfe resi time err nfe resi time

20 1.41e-08 208 5.49e-05 3.7 5.92e-13 242 1.75e-06 4.3 7.55e-10 261 2.92e-05 4.7
50 5.69e-09 241 4.26e-05 9.9 3.58e-09 233 7.20e-05 9.6 2.77e-08 272 3.49e-05 11.2
100 6.96e-09 270 2.27e-05 23.4 1.60e-12 316 7.42e-07 27.2 1.07e-07 304 9.45e-05 26.7
150 1.55e-08 228 2.04e-05 32.6 5.06e-07 184 1.31e-04 26.8 4.58e-07 240 1.18e-04 34.3
200 6.02e-07 295 5.49e-05 61.0 4.41e-08 342 2.45e-05 70.2 5.58e-07 462 6.12e-05 94.4
250 4.99e-07 232 1.03e-04 61.0 3.16e-09 249 7.91e-06 64.9 8.04e-09 314 1.19e-05 81.5
300 1.89e-08 307 4.43e-05 106.5 5.79e-09 350 2.01e-05 125.4 1.70e-09 397 3.17e-05 142.6
350 2.40e-07 281 7.16e-05 119.8 3.57e-10 312 1.18e-05 136.8 8.03e-10 394 3.49e-06 174.0
400 3.26e-10 297 1.38e-05 160.4 1.43e-10 345 1.09e-05 180.1 6.85e-09 643 7.06e-05 333.1
450 5.77e-10 287 3.04e-06 180.2 4.84e-09 367 6.26e-05 235.5 4.81e-10 328 8.25e-06 203.0
500 1.57e-10 442 3.41e-06 327.0 2.63e-06 383 1.48e-04 283.6 9.19e-09 495 5.48e-05 366.5

I the 5-order (quintic) model is worst
the 3-order (cubic) and 4-order (quartic) models is similar
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Discussions and future work

1 Our unconstrained models can easily be parallelized. How to

design faster algorithms taking advantage of parallelization

2 Faster gradient algorithms using more approximated
eigenvalues

Yu-Hong Dai (LSEC, CAS) Computing Several Extreme Eigenpairs UCSD, May 23, 2014 38 / 39



Thank you!
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