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Outline

@ Unconstrained optimization and eigenvalue computing




Unconstrained optimization and eigenvalue computing

Quadratic Optimization

1
qz) = g7z + ixTAx, x eR?

Eigenvalue Problem

Az = Az, z € R™"\{0}
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A relation between gradient method and power method

Consider the gradient method for quadratic optimization
Tk+1 = Tk — Gk
g = g+ Az
It follows that gx+1 = (I — o A)gr. If a; = o, we have that

Ok+1 (I—aA)g

lgeall (7 = ad)ra]

The value g} Agr/||gk||? will return some eigenvalue of A under suitable
assumptions. Therefore the gradient method with constant stepsizes can be
regarded as a shifted power method. On the other hand, the (ordinary) power
method can be treated as the gradient iteration with infinite stepsizes.
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Finite termination property of the gradient method

For the gradient method, we generally have

Jk+1 = gk — orAgy
= (I - OékA)gk

= [H;?_l(l —aj4)

g1

Assuming that
AMA) = {1, A, ., A}

we have by the Caylay-Hamilton theorem that g,41 =0 if

{ak k= 1,...,n} = {)\;1 k= 1,...,n}

This result was due to Yan-Lian Lai (1983).
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The Barzilai-Borwein method

e Two-point stepsize gradient method [Barzilai & Borwein, 1988|
Ask agl or a;lf to have certain quasi-Newton property and solve

min [|lsg—1 — aryr-1llz or  minlla; s,y = ye-1ll2,
ap (o775
where s—1 = T — Tk—1, Yp—1 = gk — Gk—1-

@ The large and short BB stepsizes are respectively defined as

2 T
Sk—1 Sp—1Yk—
oLBB _ ||T 13 and BB = k—1Yk 21_
Sk—1Yk—1 lyk—1ll3
o Remark that for quadratic optimization, the stepsize a%BB reduces to
T
o 9r—19k—-1
k= —7F 7 >
gk71A9k71

which is exactly the inverse of Reighley quotient of A with respect to
—G9k—1-
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Superlinear results for BB-like gradient methods

o [Barzilai & Borwein, 1988]
n = 2, R-superlinear

(04,;1 — )\1, Oél;i — )\2)
e [Dai & Fletcher, 2005]
n = 3, R-superlinear
e [Dai & Fletcher, 2005]
Cyclic SD method (amk4i = afji“, 1<i<m),
m > % + 1, R-superlinear

(o, — At fori=1,2,--- n)
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Unconstrained optimization model for the smallest

eigenpair

e General unconstrained optimization [Auchmuty, 1989]

. B L2 L T
min E(xz)=9® (2||x|| ) + U (296 Am)

e Unconstrained quartic model [Auchmuty, 1991; Mongeau & Torki, 2004]

1 1
in E =—|lz||* + =2TA 1.1
min Ey(x) = o] + 52" Aa (L.1)

Noticing that g, = Axy + ||zk|[>zk, we may consider some special gradient
method (see [Gao, Dai & Tong, 2012])
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Eigenvalue decomposition of real symmetric matrices

A € R™" is real symmetric matrix

e Eigenvalue decomposition

A=QAQT

@ The r-truncated decomposition (r largest/smallest eigenpairs)

AQ(r) = QA

— M,y stands for the first r columns of M
- Qu € R™*" with orthonormal columns; r < n
~ A, is diagonal with largest /smallest r eigenvalues

Many applications
A A is large and sparse

A Compute a big portion of specturm
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Application 1: Prit

cipal component analysis (PCA)

e Data analysis in many fields
pattern recognition (computer science)

— chemical component analysis

e Given: A € R™*Y with I observations and .J variables

aip a2 airj
a21 Q22 a2

A= .
arr  ar2 arg

o Goal: extract r principal components

X[T] c RIXT'

Yu-Hong Dai (LSEC, CAS)

Computing Several Extreme Eigenp

UCSD, May 23, 2014



Application 1: Principal component analysis (Cont’d)

@ Principal component score matrix

Xy = argranlf?}(?)g ; (aij —25)° = [|A = X1 |

e Low-rank matrix recovery

i1 L12 o Tir

To21 X22 v T2p
X = QA =

T rr2 o ITpp

— xy; is the score of sample ¢ on the principal j
— Apq and Q) are the r largest singularpairs of A

Normally, X is the covariance matrix of real data, so it is symmetric.

» Compute r largest eigenpairs or singularpairs

UCSD, May 23, 2014 13 / 39
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Low-rank matrix recovery with missing values

Netflix: Given A € R™*™ whose values are known on the set

@ Recovery the rank r matrix A

min > (ay —wiy)? = A Xk
rank(X)<r =
(@.5)ek

@ Nuclear norm regularization
min A = X[ + Xl

< X =Udiag((oy —2\)¢,..., (0, —2)\) VT,
where U and V is from the SVD A = Udiag(cy,...,0,)V7T

» Compute singular values greater than 2\
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Application 2: Electronic structure of material

e Density functional theory + local density approximation =

The Kohn-Sham equation [Kohn & Sham, 1965]

2
(_VQ +Vn(r)+ Va(r) + Vazc[n(T)]) $i(r) = Eqi(r)

where
— 1;(r) and E; are the i-th electron wave function and energy level
n(r) = > _9°" | (r)|? is the electron density distribution
— Vn(r) is the ionic pseudopotential

~ Vu(r) = [ 2 df is the Hartree potential

[r—7

Vae(r) = ‘SE"(") is the exchange-correlation potential
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Application 2: Electronic structure of material (Cont’d)

—7 + VN(T) + VH(T') + ch[n(T)} ’(/}1'(7‘) = Eﬂ/)i(’l“)

Figure: Solving the Kohn-Sham equation by iterating to self-consistency

/ trial-charge p;, and trial-wavevectors ]

‘ set up Hamiltonian H(p;,) ‘ & two subproblems

optimization of {1/, } and py,

[ iterative refinements of wavefunctions {y,} | e refinement of density:

DIIS algorithm
l new charge density p,, =3, /”\\y”(r)ll ‘ P. Pulay, Chem. Phys. Lett. 73,
393 (1980).

‘ refinement of density pjn, Pour = new pi, ‘ o refinement of wavefunctions:

DIIS or Davidson algorithm

no <‘W

[ calculate forces, update ions |
T

» Compute the occupied eigenpairs every iteration




Application 3: Three dimensional photonic crystals

o Maxwell equation + discreting with FCC lattice vector =
Ax = \Bz,

where A € C37*3" js Hermitian positive semi-definite, B is positive and
diagonal.

e Difficulties

— n of the eigenvalues are zeros

— to find k& (k = 10) smallest positive eigenpairs

@ Some existing methods

— explicit matrix representation of the double-curl operator [Hwang, 2012]

— project out of the null space [Hwang, 2013]
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Some existing methods

e Numerical algebraic methods

— Lanczos algorithm [Lanczos, 1951]
Davidson’s method [Davidson, 1975]
— LOBPCG [Knyazev, 2001]

o Optimization methods
the Rayleigh quotient minimization [Longsine & McCormick, 1980]

min  tr (XTAX(XTX)’I)

XeRnXr

— the trace minimization [Sameh & Wisniewski, 1982]

min  tr(XTAX) st. XTX =1,
X eRnXr

A A feasible framework on the Stiefel manifold [Jiang & Dai, 2012]

Y(r,X)= XR(r) + WN(r)

value space  null space

— what’s more?
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Several new block unconstrained models

@ Block unconstrained quartic model

. 1 1
Juin P(X) = Ztr (XTXXTX) + Str (XTAX) (3.1)

@ Block unconstrained -order model
L 0, ot 2 1 -
min P(X;p5.60) = | XTX[|p + 5tr (XA - pl)X) - (32)

XeRnXT

@ The general model

. 1 T 1 T
— - Ztr( Xt AX .
g}g}}xr GX)=2 <2||X X||F> + U (2‘51"( )) (3.3)

V¥ They seem to be ordinary, however - - -
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Advantage of proposed models

@ Main work
XTX, X(xTXx), AXx

whose cost is 3nr? 4+ 2Nr, where N is number of nonzero elements in A
e No orth(X) == parallelize
e An independent model by Wen, Yang, Liu & Zhang (2012):

.1 7
“tr(XTAX) + S| XTX — 1|2
(n o r( )+ 4|| %
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Stationary points of model (3.1)

: _1 T T 1 T
minP(X) = r (X XX X) + St (X AX)
Vv The stationary points are related to the eigenpairs of A.

Lemma 3.1
Any stationary point of (3.1) is of the thin SVD form

X =Qps (-0, PV,

where p is the rank of X, Q, s consists of the ji,--- ,jp columns of Q with

1< <. <9, <s:=argmax?
S s Sp S g)\i<07

A, =diag()j,, -+, A;,), and V, € R™*P is any matriz orthonormal columns.

v

Proof: The stationary point satisfies

VP(X) = XXTX+AX=0

X = U5 VT } = AU =Uh(-2)
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Global minimizer of model (3.1)

min P(X) = itr (XTXXTX) + %tr (XTAX)

XeRnXr

V¥ The global minimizer is related to the smallest r eigenpairs of A.

Theorem 3.2
Problem (3.1) has a rank-r stationary point if and only if A, < 0.
Furthermore, the global minimizer X* of (3.1) is of the thin SVD form

X* = Q) (ul — A)/2VE

T
and the global minimum is P* = —% > A2.
i=1

(3.4)

Proof:
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No undesired local minimizers

v Either saddle point or global minimizer = numerical a big merit

Theorem 3.3
If A <0, then

(i) any nonzero stationary point of problem (3.1) is either a saddle point or

a global minimizer defined in (3.4).

(ii) Further, if A, <0 < Apq1), where Ajp417 is the smallest eigenvalue

strictly greater than A\, all the rank-r stationary points are global

minimaizers.
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Model 2: Block unconstrained S-order model

~ B
min P(X;u,[,0) = %HXTXHI? + %tr (XT(AprIn)X) , >2,0>0

XeRnXr

v All the three properties for the quartic model hold

Theorem 3.4

Problem (3.2) has a rank-r stationary point if and only if p > Ar. Furthermore, there
hold the following properties

. . . p—lg 1/2
(i) the stationary point X has the form X = Qp,s {cp 207 (ul, — Ap)] VL.

(ii) f p > Ar, the global minimizer X* of (3.2) is of the thin SVD form

1/2
X' = Qe [ 507wl - A)] VT,

2
~ ~B=3 B
and the global minimum is P} g ¢ = —%ﬁ(ﬁ_m (i, (= X)) 22 .

(iii) 4f p > Ar, any nonzero stationary point of problem (3.2) is either a saddle point

or a global minimizer.
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Model 3: General unconstrained model

min  G(X)=® (%HXTXHF) . (%tr(XTAX))

XeRnXr

V¥ The stationary points are related to the eigenpairs of A.

Theorem 3.5

Under some assumptions, any nonzero stationary point of (3.3) can be expressed by
X =Qpy%1V, .

Moreover, there holds

1 Al _
Ay =¥ (Guria,=h) o (Gl ) Itk

The global minimizer is related to the specific formulation.
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[Fletcher, 2005], “On the Barzilai-Borwein method”:

Au=—f uel0,1?
f=z(x—-1Dyly—Dz(z — Dw(x,y, 2)

w :exp<f 39 ((z —a)®+ (y*ﬂ)2+(zf’7)2)>
Au=0b, n = 108

(<:> min %uTAu - bTu>

u; = 0, llgklly < 107%]ga]l,
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Numerical Results
(o, a, B, 7) BB CG
(20,0.5,0.5,0.5) double 543(859)  162(178)

single  462(964)  254(387)
(50,0.4,0.7,0.5) double 640(1009) 285(306)
single  310(645) 290(443)

But SD: 2000, lgzocol

=0.18!
llgxl

Scholar google BB:
704 times (by May 16, 2013)

Yu-Hong Dai (LSEC, CAS) Computing Several Extreme Eigenpairs UCSD, May 23, 2014 29 / 39



Nonmonotone performance of BB

A Typical Nonmonotone Performance of BB

10° r —
107 | \ ‘ | [I | Bl
.n‘--ldl*\l".nl \.;_ \‘I | I\ ‘ |

| S, | o]

T b i B
g ! "_JL " | |” IR IJ!- !‘ I| N

Ml 1‘|\ i

o ‘Lul“ 1 I

500
iteration number

For any dimensional strictly convex quadratics
e [Raydan,1993]: global convergence
e [Dai & Liao, (2002)]: R-linear convergence

Implication: The BB stepsize can be asymptotically accepted by the
nonmonotone line search in the context of unconstrained optimization

UCSD, May 23, 2014 30 / 39
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ABB stepsize

o Let Sp_1 = Xy — X1, Y1 = VP(Xi) — VP(Xg—1). The large and
short BB stepsizes are respectively defined as

LBB _ tr(Sl?ASk—l)

|tI‘(SkT_1Yk_1)|

and T = .
k tr(Y,T Vi 1)

o We used the alternative BB (ABB) stepsize [Dai & Fletcher, 2005]

ABB { TEBB, for odd k;

Tk = LBB

o0, for even k. (4.1)
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Adaptive nonmonotone line search strategy

e Armijo line search 4+ adaptive nonmonotone strategy [Dai & Zhang, 2001]
P(Xy. =77 VP(X))) < P, = 677 |VP(X0) |7,

where P, is reference value.

Algorithm 1: Adaptive nonmonotone line search strategy

if Pk+1 < Ppest then
Ppest = Peq1, Po=Ppq1, [ =0

else
P.=max{P., Ppt1},l=1+1
if [ = L, then

LPr:Pw Pc:Pk+17 =0
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ABB algorithm

Algorithm 2: Adaptive ABB Method

Step 0 Give a starting point and initialize the parameters.

Step 1 If || VP, (Xk)||F < tol, return approximated eigenparis via RR
procedure and stop.

Step 2 Find the least nonnegative integer iy satisfying

P(X, — v 1 IV B(X)) < P — 677 ||V, P(X3) %

and set 7, = 'k 7',51).

Step 3 Xi41 = X — VP (Xk), Pry1 = P(Xp41), and update P, by
Algorithm 1.

Step 4 Calculate 70 by ABB (4.1) and set T,E ) = max{Tmin,min{Tlgo)JmaX}}.
Step 5 k:=k+ 1. Go to Step 1.
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Global convergence

{ Xk, k > 0} is the sequence generated by above Algorithm 2 when tol = 0.
Then, either ||VP(Xy)||r = 0 for some finite k, or

lim |VP(Xy)|[r = 0.
k—oco

Denote Y (X) = orth(X), R(X) = AY(X) — Y/(X) (Y (X)TAY (X)).
& Y (X) spans the eigenspace of A < R(X) =0.

For any rank-r matriz X, we have

IRX)|F < 01(X) [ VP(X)]|p-

b [VP(X)|F < tol = R(X) ~0.
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Numerical experiments: EigUnc

o Test matrix: 3D negative Laplacian on a rectangular finite-difference grid
e Guard vectors [Liu, 2012]: set ¥ =r +5
o The parameters

tol =103, v =0.5, § = 0.001, Timin = 1072°, Ty = 10%°, L =4

101 x M (XFAXp), if A (XTAXp) >0
H=1 0.99 x A (XTAXp), otherwise
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Comparison of EIGS, LOBPCG and EigUr

Table: Comparison of EIGS, LOBPCG and EigUncABB, n = 16000,7 =r + 5

EIGS

LOBPCG

EigUncABB

err nAx  resi time

err iter resi time

err nfe  resi time

20
50
100
150
200
250
300
350
400
450
500

4.37e-15 1220 2.31e-14
4.45e-15 1433 2.47e-14
5.75e-15 1757 2.53e-14
8.22e-15 2144 2.72e-14
1.40e-14 2543 2.61e-14 70.2
1.18e-14 2700 3.18e-14 91.3
1.47e-14 3015 3.54e-14 122.7
1.98e-14 3105 3.19e-14 142.8
1.54e-14 3480 3.20e-14 184.9
1.37e-14 3662 3.16e-14 217.1
1.83e-14 4008 3.65e-14 266.7

5.7
12.5
25.9
45.3

5.51e-07 106 7.79e-04
1.32e-06 96 8.76e-04
8.67e-07 112 8.31e-04 37.1
2.20e-06 155 9.73e-04 50.9
1.01e-06 231 6.41e-04 122.4
7.82e-07 255 6.67e-04 101.1
2.10e-06 305 8.56e-04 211.9
1.39e-06 355 7.47e-04 253.2
1.08e-06 405 6.32e-04 326.0
1.03e-06 455 6.47e-04 312.0
1.03e-06 505 5.42e-04 397.0

9.4
18.2

5.92e-13 242 1.75e-06
3.58e-09 233 7.20e-05
1.60e-12 316 7.42e-07
5.06e-07 184 1.31e-04
4.41e-08 342 2.45e-05 69.8
3.16e-09 249 7.91e-06 66.3
5.79e-09 350 2.01e-05 125.5)
3.57e-10 312 1.18e-05 135.1
1.43e-10 345 1.09e-05 184.9
4.84e-09 367 6.26e-05 228.6
2.63e-06 383 1.48e-04 288.5)

4.7
9.8
27.9
26.3

— best

— worst

» competitive with LOBPCG
compared with EIGS, sometimes find a lower accuracy solution in less time
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Comparison of different 3

Table: Comparison of different 3’s in model (3.2) by using EigUncABB

3=3

B=1

B=5

T

err nfe resi time

err  nfe resi time

err nfe resi time

20
50
100
150
200
250
300
350
400
450
500

1.41e-08 208 5.49¢-05 3.7
5.69e-09 241 4.26e-05 9.9
6.96e-09 270 2.27e-05 23.4
1.55e-08 228 2.04e-05 32.6
6.02e-07 295 5.49e-05 61.0
4.99e-07 232 1.03e-04 61.0
1.89e-08 307 4.43e-05106.5
2.40e-07 281 7.16e-05119.8
3.26e-10 297 1.38e-05160.4
5.77e-10 287 3.04e-06 180.2
1.57e-10 442 3.41e-06 327.0

5.92e-13 242 1.75e-06
3.58e-09 233 7.20e-05
1.60e-12 316 7.42e-07
5.06e-07 184 1.31e-04
4.41e-08 342 2.45e-05 70.2
3.16e-09 249 7.91e-06 64.9
5.79e-09 350 2.01e-05 125.4
3.57e-10 312 1.18e-05 136.8
1.43e-10 345 1.09e-05 180.1
4.84e-09 367 6.26e-05 235.5
2.63e-06 383 1.48e-04 283.6

4.3
9.6
27.2
26.8

7.55e-10 261 2.92e-05
2.77e-08 272 3.49e-05
1.07e-07 304 9.45e-05
4.58e-07 240 1.18e-04
5.58e-07 462 6.12e-05 94.4
8.04e-09 314 1.19e-05 81.5
1.70e-09 397 3.17e-05 142.6
8.03e-10 394 3.49e-06 174.0
6.85e-09 643 7.06e-05 333.1
4.81e-10 328 8.25e-06 203.0
9.19e-09 495 5.48e-05 366.5

4.7
11.2
26.7|
34.3)

» the 5-order (quintic) model is worst
the 3-order (cubic) and 4-order (quartic) models is similar
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Discussions and future work

@ Our unconstrained models can easily be parallelized. How to
design faster algorithms taking advantage of parallelization

@ Faster gradient algorithms using more approximated
eigenvalues
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Thank you!
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