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A Trust-Funnel Algorithm Overview

The aim of this talk
Present an algorithm based on the trust-funnel concept for

min
x

f(x) s.t. c(x) ≤ 0

By introducing slacks, we have the problem

min
x, s

f(x) s.t. c(x, s) = 0, s ≥ 0

where c(x, s) := c(x) + s
We consider solving a sequence of barrier subproblems

min
x, s

f(x)− µ
∑

ln([s]i) =: f(x, s) s.t. c(x, s) = 0

The naive approach of applying the equality constrained algorithm
will not work because of the implicit constraint s > 0
In particular, we require fraction-to-the boundary constraints, a
slack reset procedure, and variable scaling
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A Trust-Funnel Algorithm Overview

The barrier subproblem

min
x, s

f(x)− µ
∑

ln([s]i) =: f(x, s) s.t. c(x, s) = 0

Basic subproblem:

min
d=(dx,ds)

mf
k(d) = f(xk, sk) +∇f(xk, sk)

Td + 1
2 dTHkd

subject to

c(xk, sk) + J(xk, sk)d = 0

‖P−1
k d‖2 ≤ δk

sk + ds ≥ κfbsk

where κfb ∈ (0, 1), J(x, s) := ∇c(x, s),

Pk =

(
I 0
0 Sk

)
and Hk :=

(
∇2

xxL(xk, yk) 0
0 YkS−1

k

)
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A Trust-Funnel Algorithm Overview

Normal step computation

Projected gradient step computation

Tangential step computation

y-iterations

f-iterations

v-iterations

s ≥ 0

(xk, sk)

δk

ck + Jkd = 0nk

(xk, sk) + nk

‖ck + Jkd‖22 ≤ νk

κfbsk

rk

tCk

−∇mf
k(nk)

tk

dk = (xk, sk) + nk + tk
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A Trust-Funnel Algorithm The normal step

The normal step nk

The idea
Aim to reduce v(x, s) = ‖c(x, s)‖2

How do we do this?
By computing an approximate solution to

min
n

mv
k(n) s.t. ‖P−1

k n‖ ≤ δv
k, sk + ns ≥ κfbsk

mv
k(n) = ‖c(xk, sk) + J(xk, sk)n‖2

κ ∈ (0, 1)
δv

k > 0 is a trust-region radius

Note: Assume that we know a value vmax
k such that v(xk, sk) ≤ vmax

k

trust-funnel SoCalOptDay2014 9 / 25



A Trust-Funnel Algorithm The normal step

The normal step nk

What do we mean by an
approximate solution?
We require that nk satisfies
‖P−1

k nk‖ ≤ δv
k

sk + ns
k ≥ κfbsk

mv
k(nk) ≤ mv

k(nC
k)

P−1
k nk ∈ range

(
PkJ(xk, sk)

T)
How can we guarantee this?

truncated preconditioned CG
dogleg approach

πv
k = ‖PkJ(xk, yk)

Tc(xk, sk)‖
Main diagram

s ≥ 0

(xk, sk)

δvk

c(xk, sk) + J(xk, sk)n = 0

nk

(xk, sk) + nk

κfbsk
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A Trust-Funnel Algorithm The projected gradient step

An approximate projected gradient rk

Define the approximate projected gradient as

rk = −P2
k
[
∇mf

k(nk) + J(xk, sk)
Tyk
]

where yk is an approximate solution to

min
y∈Rm

1
2‖Pk

[
∇mf

k(nk) + J(xk, sk)
Ty
]
‖2

that satisfies at least one of
1 π

f
k ≤ ε and vk ≤ ε (approximate KKT)

2 π
f
k ≤

1
2π

v
k (do not compute a tangential step)

3 χ
f
k ≥

1
2π

f
k (descent direction)

where

π
f
k = ‖Pk

[
∇mf

k(nk) + J(xk, sk)
Tyk
]
‖ and χ

f
k = −

∇mf
k(nk)

Trk

π
f
k

Main diagram
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A Trust-Funnel Algorithm The tangential step

Relaxed SQP tangential step tk
Define the Cauchy point

tC
k := tC

k(α
C
T), where tC

k(α) :=

(
tC
k

x(α)
tC
k

s(α)

)
:= −α

(
rx

k
rs

k

)
= −αrk

and αC
T is the minimizer of

min
α≥0

mf
k
(
nk + tC

k(α)
)

s.t. ‖P−1
k
(
nk + tC

k(α)
)
‖ ≤ min{δv

k, δ
f
k}

sk + ns
k + tC

k
s(α) ≥ κfb(sk + ns

k)

Then, tk is a relaxed SQP tangential step if

mf
k(nk + tk) ≤ mf

k(nk + tC
k) (1a)

sk + ns
k + tsk ≥ κfb(sk + ns

k) (1b)

‖P−1
k (nk + tk)‖2 ≤ min{δv

k, δ
f
k} (1c)

mv
k(nk + tk) ≤ κtgmv

k(0) + (1− κtg)mv
k(nk) (1d)

Main diagram
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A Trust-Funnel Algorithm The tangential step

Very Relaxed SQP tangential step tk
Define the Cauchy point

tC
k = tC

k(α
C
T), where tC

k(α) :=

(
tC
k

x(α)
tC
k

s(α)

)
:= −α

(
rx

k
rs

k

)
= −αrk

and αC
T is the minimizer of

min
α≥0

mf
k
(
nk + tC

k(α)
)

s.t. ‖P−1
k
(
nk + tC

k(α)
)
‖ ≤ min{δv

k, δ
f
k, κvvmax

k }
sk + ns

k + tC
k

s(α) ≥ κfb(sk + ns
k)

Then, tk is a very relaxed SQP tangential step if

mf
k(nk)− mf

k(nk + tk) ≥ mf
k(nk)− mf

k(nk + tC
k) (2a)

sk + ns
k + tsk ≥ κfb(sk + ns

k) (2b)

‖P−1
k (nk + tk)‖ ≤ min{δv

k, δ
f
k, κvvmax

k } (2c)
mv

k(nk + tk) ≤ κttvmax
k (2d)

Main diagram
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A Trust-Funnel Algorithm Which steps to compute?

Normal step
Have to compute it: πv

k >
1
2π

f
k−1 or vk ≥ 0.9vmax

k

Option to compute: πv
k > 0

Do not compute: πv
k = 0

Projected gradient step
Compute it: ‖P−1

k nk‖ ≤ 0.9 min{δv
k, δ

f
k}

Option to compute it otherwise.

Tangential step
Compute iff a projected gradient was computed and πf

k >
1
2π

v
k
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A Trust-Funnel Algorithm Step classification and update strategy

Three types of steps:
y-iterations focus on better multiplier estimates
f -iterations focus on reducing the barrier function f
v-iterations focus on reducing infeasibility as measured by v

trust-funnel SoCalOptDay2014 19 / 25



A Trust-Funnel Algorithm Step classification and update strategy

Step computation diagram

Definition of a y-iteration
We classify the kth iteration as a y-iteration if nk = tk = 0.

Updates for a y-iteration
wk+1 ← wk

δ
f
k+1 ← δ

f
k, δv

k+1 ← δv
k

vmax
k+1 ← vmax

k

Notation: wk = (xk, sk) and wk+1 = (xk+1, sk+1)
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A Trust-Funnel Algorithm Step classification and update strategy

Step computation diagram

Definition of an f -iteration
We classify the kth iteration as an f -iteration if tk 6= 0

v(wk + dk) ≤ vmax
k (recall v(wk) ≤ vmax

k )

mf
k(wk)− mf

k(wk + dk) ≥ 1
2
[
mf

k(wk + nk)− mf
k(wk + dk)

]
Updates for an f -iteration
δv

k+1 ← δv
k, vmax

k+1 ← vmax
k

If f(wk)− f(wk + dk) ≥ 1
2
[
mf

k(wk)− mf
k(wk + dk)

]
then

wk+1 ← wk + dk

perform a slack reset
possibly increase δf

k

else
wk+1 ← wk

decrease δf
k
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A Trust-Funnel Algorithm Step classification and update strategy

Step computation diagram

Definition of a v-iteration
The kth iteration as a v-iteration if it is not a y- or an f -iteration.

Updates for a v-iteration

δ
f
k+1 ← δ

f
k

If nk 6= 0, mv
k(wk)− mv

k(wk + dk) ≥ 1
2
[
mv

k(wk)− mv
k(wk + nk)

]
, and

v(wk)− v(wk + dk) ≥ 1
2
[
mv

k(wk)− mv
k(wk + dk)

]
then

wk+1 ← wk + dk

perform a slack reset
possibly increase δv

k

decrease vmax
k

else
wk+1 ← wk, vmax

k+1 ← vmax
k , decrease δv

k
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A Trust-Funnel Algorithm Summary

Summary

Presented an inexact barrier-SQP algorithm for solving general
nonlinear optimization problems based on a trust-funnel approach.
Trial steps are composite steps formed from a normal step
(designed to improve feasibility) and a tangential step (designed to
decrease the barrier objective function).
The method is matrix free, i.e., all conditions may be obtained via
iterative methods.
Subsets of core calculations are performed during each iteration
based on appropriate criticality measures.
Effective preconditioning is a challenge.
Numerical results are in progress (part of GALAHAD)
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A Trust-Funnel Algorithm Summary
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