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Distributed optimization Online optimization

Case study: medical diagnosis

Input Space Feature Space
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Distributed online optimization

%: % Why distributed?

e information s distributed across group of agents
@ need to interact to optimize performance

>
QA
v&@\?\ Why online?

o information becomes incrementally available
o need adaptive solution
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Medical findings, symptoms:
age factor

amnesia before impact
deterioration in GCS score
open skull fracture

loss of consciousness
vomiting

Any acute brain finding revealed on Computerized Tomography?

(-1 = not present, 1 = present)

“The Canadian CT Head Rule for patients with minor head injury”
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o feature vector of patient s:
ws = ((Ws)1, s (Ws)g-1) ¢
e true diagnosis: ys € {—1,1} i
e wanted weights: x = (x1, ..., Xg) O o.... ¢
e predictor: h(x, ws) = x"(ws, 1)
e margin: ms(x) = ys h(x, ws) Inpuf Space ladat
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Binary classification

o feature vector of patient s:
Ws = ((Ws)la Ry (Ws)d—l)

e true diagnosis: ys € {—1,1} —
e wanted weights: x = (x1, ..., Xq) . o....
e predictor: h(x,ws) = x"(ws, 1)

e margin: ms(x) = ys h(x, ws) i

Given the data set {ws}2_,, estimate x € RY by solving

min £(x) = min Y " I(ms(x))

xER4 xERd

where the loss function / : R — R is decreasing and convex

Feature Space
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Review of
distributed convex optimization
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ww wew | the diagnosis example
Health center i € {1,..., N} manages a set of patients P’

N

N
F) =D Iysh(x,we)) = > Fi(x)

i=1 sepi i=1
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wwe w0 the diagnosis example

Health center i € {1,..., N} manages a set of patients P’
N N
F(x) =D > lysh(x,we)) = > F'(x)
i=1 scpi i=1

Goal: best predicting model w — h(x, w)

N
min fi(x
x€R4 1 ( )

using “local information”
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Agent i maintains an estimate x| of

x* € arg min Zf(x

xcRd

e Agent i has access to '
@ Agent / can share its estimate x; with “neighboring” agents

G e‘@ a3 ais
TR
A= la31 azx
5
() () as

a5

8/29



What do we mean by “using local information”?

Agent i maintains an estimate x| of
N

x* € arg min fi(x
B 2 (x)

e Agent i has access to '
@ Agent i can share its estimate x; with “neighboring” agents

a13 ai4
azl 25
A= |a31 a3
d41
as2

Application to distributed estimation in wireless sensor networks
sensor is any channel for the machine to “learn”
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* Spreading of information
(gossip, time-varying topologies, B-joint connectivity)

* Relation between consensus & local minimization
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How do agents agree on the optimizer?

* Spreading of information
(gossip, time-varying topologies, B-joint connectivity)

* Relation between consensus & local minimization

@ A. Nedi¢ and A. Ozdaglar, TAC, 09
N .
ZII<+1 = Z ajj k z[]< — N8, XII<+1 = nX(ZII(Jrl)?
j=1

where Ay = (ajj «) is doubly stochastic and g € 9f'(x])

@ J. C. Duchi, A. Agarwal, and M. J. Wainwright, TAC, 12
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The minimization problem can be regarded as

N N
min f' = m n fFi(x') = min Fi(x' ,
xelleZ ) = i I %d Zl ) x€(RHN — )
X =...=X = Lx=0 =

where (Lx)’ = ZJN:1 ajj(x' — x)
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Saddle-point dynamics

The minimization problem can be regarded as

min f min f’ ’ =  min Fi(x",
xeRdZ x1,.x NERC’ Z xe(Rd)’Vz; )
sle =N Lx= !
where (Lx)" = YN | a;(x' — )
The augmented Lagrangian when L is symmetric is
F(x,z) :== f(x) + 2x"Lx + z'Lx,
which is convex-concave, and the
F .
x— -9 (g’; 2) _ _F(x)— alx— Lz
F
;- OF2) o

0z
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x =VF(x) —alx — Lz

z=Lx

Lagrangian F(x,z) £ f(x) + 3x"Lx+2z'Lx, Fix) =N, Fi(x)
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x =VF(x) —alx— Lz

z=Lx

Lagrangian F(x,z) £ f(x) + x'Lx+2z"Lx, f(x) = Z,N:l fi(x")
_ 9 g’; 2) _ _9F(x)— al(L+LT)x—L"z (Non distributed!)
. OF(x,z)
T

J. Wang and N. Elia (with L™ = L), Allerton, 10
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Weight-balanced digraphs

x =VF(x) —alx — Lz

z=NLx

F(x,2) 2 f(x) + 2x"Lx +2z'Lx, Fx) = SN, Fi(xh

. OF (x,2) -
X=——p — = ~Vf(x)—as(L+L")x—L'z

— Vf(x) —alx — Lz

OF(x,z)
0z

= Lx

N-
I

B. Gharesifard and J. Cortés, CDC, 12
a > 0; otherwise the linear part of the saddle-point dynamics is a
Hamiltonian system
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Weight-balanced digraphs

x =VF(x) —alx — Lz

z=Lx

e fibae) = 3H0a — 47 + be = 3)
f2(X]_,X2) =x1+3x0—2
fa(x1, x2) = log(e "3 + &™)
fa(x1,x2) = (x1 + 2x2 + 5)2
+ (X1 — Xp — 4)2

8 10 12 14 16 1g
time, ¢

@ convergence to a neighborhood of optimizer (1.10, —2.74)

@ size of the neighborhood depends on size of the noise [DMN-JC, 13]
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Review of
online convex optimization




Different kind of optimization: sequential decision making

wse s Resuming the diagnosis example:

Eachround t € {1,..., T}

question (features, medical findings): Wy

decision (about using CT): h(xe, we)
outcome (by CT findings/follow up of patient): y;

loss: I(ye h(x¢, wy))

Xt fe(xe) = 1(ye h(xz, wy))
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Different kind of optimization: sequential decision making

¢ 00
. b. J
. .

Input Space

- Resuming the diagnosis example:

Eachround t € {1,..., T}

question (features, medical findings): Wy

decision (about using CT): h(xe, we)

outcome (by CT findings/follow up of patient): y;

loss: I(ye h(x¢, wy))
Xt fe(xe) := I(ye h(xe, wt))

Goal: sublinear regret

T T
Ru, T) =Y filxe) = D feu) < o(T)
t=1 t=1

using “historical observations”
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Why regret?

If the regret is sublinear,

T T
th(xt) < Zﬂ(u)+o(T),
t=1 t=1
then,
1 < 1 - o(T
PO < T AW )

In temporal average, online decisions {x;}]_; perform as well as best
fixed decision in hindsight

“No regrets, my friend”
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What about generalization error?
@ Sublinear regret does not imply x;y1 will do well with f;;1

@ No assumptions about sequence {f;}; it can

follow an unknown stochastic or deterministic model,

or be chosen adversarially

@ In our example, f; := I(y: h(x¢, we)).

If some model w — h(x*, w) explains reasonably the data in
hindsight,

then the online models w — h(x;, w) perform just as well in average
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What about generalization error?
@ Sublinear regret does not imply x;y1 will do well with f;;1

@ No assumptions about sequence {f;}; it can

follow an unknown stochastic or deterministic model,

or be chosen adversarially

@ In our example, f; := I(y: h(x¢, we)).

If some model w — h(x*, w) explains reasonably the data in
hindsight,

then the online models w — h(x;, w) perform just as well in average

Other applications:

@ portfolio selection
@ online advertisement placement

@ interactive learning

15
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Projected gradient descent:
xer1 = Ns(xe — n:Vi(xt)), (1)

where Mg is a projection onto a compact set S C RY, & [|[Vf|j» < H

Follow-the-Regularized-Leader:

xern = argmin (3 A() + ()
s=1
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Some classical results

xep1 = Ns(xe — neV1ie(xt)), (1)

where MM is a projection onto a compact set S C RY, & ||[Vfl|[» < H

Xet1 = argmin (Z fs(y) + ¢(y))
s=1

@ Martin Zinkevich, 03

» (1) achieves O(+/T) regret under convexity with 7, = %

o Elad Hazan, Amit Agarwal, and Satyen Kale, 07
» (1) achieves O(log T) regret under p-strong convexity with 7, = %
» Others: Online Newton Step, Follow the Regularized Leader, etc.
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Our contribution:
Combining both aspects
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~w e Back again to the diagnosis example:

Health center i € {1,..., N} takes care of a set of patients P} at time ¢
T
=3 M) = D
t=1 sEPi t=1
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~w e Back again to the diagnosis example:

Health center i € {1,..., N} takes care of a set of patients P} at time t
T
Y ) =
t= ISE'P' t=1
Goal: sublinear agent regret
T N o T N ]
R, T)=3 > fld) =) > filu) <o(T)
t=1 i=1 t=1 =1

using “local information” & “historical observations”
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Challenge:

HB—®»  ©®

Need to design distributed online algorithms
y % «,.
GRS
%@ + &R
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Previous work on consensus-based online algorithms

@ F. Yan, S. Sundaram, S. V. N. Vishwanathan and Y. Qi, TAC

» log(T) regret (local strong convexity & bounded subgradients)
» /T regret (convexity & bounded subgradients)
» Both analysis require a projection onto a compact set

@ S. Hosseini, A. Chapman and M. Mesbahi, CDC, 13

» /T regret (convexity & bounded subgradients)
» General regularized projection onto a convex closed set.

@ K. I. Tsianos and M. G. Rabbat, arXiv, 12
» Empirical risk as opposed to regret analysis

Communication digraph in all cases is fixed, strongly connected &
weight-balanced
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Our contributions (informally)

e time-varying communication digraphs under B-joint connectivity &
weight-balanced

@ unconstrained optimization (no projection step onto a bounded set)
@ log T regret (local strong convexity & bounded subgradients)

@ /T regret (convexity & bounded subgradients)
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i i _
Xep1 = Xe — Nt 8xi

e Subgradient descent on previous local objectives, 8, € of]
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P _
Xe+1 = X — Nt 8y
N

—i—a(a Z a,-j,t(x{ —x{)

J=L#i

e Proportional (linear) feedback on disagreement with neighbors
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— .
Xe+1 = X — Nt 8y

N N
—i—a(a Z a,-j,t(x,{—XZ)—F Z a,-j,t(z{—z{))
J=Lj#i J=L1#i
. . N . .
Zp=z —0 ) aji(xd—x)
ST

o Integral (linear) feedback on disagreement with neighbors
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— .
Xe+1 = X — Nt 8y

N N
—i—a(a Z a,-j,t(x,{—XZ)—l— Z a,-j,t(zé—zz))
J=Lj#i J=L1#i
. . N H .
Zp=z -0 ) aj(xd—x)
J=1#i

@ Union of graphs over intervals of length B is strongly connected.

f5
O o O AL_©
a4l e+ a14,t+1
O O
time t 41 time t 4 2
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i _
Xep1 = Xp — Ne 8yi

N N
to(a > and—x)+ Y aje(d - 20)
J=10# J=Lj#i
. . N . .
Zn=2 -0 ) aje(d—x)
J=Lj#i

e Compact representation
Xer1| | Xt . aLt Lt Xt . éxt
e R B vl IR B ]
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i i _
Xep1 = Xe — Nt 8xi

N N
—i—a(a Z ajje(xt —xt) + Z a,-j,t(zé—zz))
J=Llj#i J=Lj#i
. . N H .
Zya=z —0 Y aj(xd—x)
ST

e Compact representation & generalization

X¢41 _ X¢ . al—t Lt Xt . EXt
Zeq1 z; —L. 0] [z] "o
Vitl = (I —oG® Lt)vt — Nt8t,
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Our contributions

Theorem

Assume that
o {f} ..., fN}I_, are convex functions in RY

with H-bounded subgradient sets,
nonempty and uniformly bounded sets of minimizers, and
p-strongly convex in a suff. large neighborhood of their minimizers

@ The sequence of weight-balanced communication digraphs is

nondegenerate, and
B-jointly-connected

o G € RK*K s diagonalizable with positive real eigenvalues

Then, taking learning rates n; = %,
RI(u, T) < C(||ul3 +1+log T),

forany j € {1,...,N} and u € RY
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Our contributions

Theorem
Assume that
1 NYT :  d
o {f;, ..., f"}/_4 are convex functions in R
with H-bounded subgradient sets,

nonempty and uniformly bounded sets of minimizers, and
p-strongly convex in a suff. large neighborhood of their minimizers

@ The sequence of weight-balanced communication digraphs is

nondegenerate, and
B-jointly-connected

o G € RK*K s diagonalizable with positive real eigenvalues

Relaxing strong convexity to convexity and using the Doubling Trick
scheme (see S. Shalev-Shwartz) for the learning rates,

Ri(u, T) < Cllul3VT,

forany j € {1,...,N} and u € RY



o Network regret

' T N T N
O ED B ACIEDBPAT)

t=1 j=1 t=1 j=1

@ Disagreement dynamics under B-joint connectivity

@ Bound on the trajectories uniform in T
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Simulations:
acute brain finding revealed on Computerized Tomography

Yl

Input Space

Feature Space

25/29



Agents’ estimates

Average regret

N
! G x
10 max; 1/TR (1 {SHH }'71)
10°
P ‘
; !
| | v Mw ! "‘, u ',,' m I T
B, 107" G LI I
3 1 [

| l’ruportional-lnugl(\l e i RN
disagreement feedback | " | 5’ .

0 20 40 60 80 100 120 140 160 180 200 2 ] 1 1 i
. . : : . . . , . . 10°F|  Proportional | El
disagreement feedback i ;

s Centralized b

e I - -Centralized
O ~1me v - ittt - 10° !
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 120 140 160 180 200
time, t time hotuou T
fi 1 || | 2
2 (%) g I(ysh(x, ws)) + iollx112

seP}
where

I(m) = log (1 + e_2m)
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@ Distributed online unconstrained convex optimization with sublinear
regret under B-joint connectivity

@ Relevant for regression & classification that play a crucial role in
machine learning, computer vision, etc.

Future work

@ Refine guarantees under model for evolution of objective functions

@ Enable agents to cooperatively select features that strike the
balance sensibility /specificity

o Effect of noise on the performance



Future horizons for distributed optimization in healthcare

TODAY

NOVEMBER 21ST

(]
9520 43

James

TODAY

NOVEMBER 21ST

GamlF ication h é m

Engage & detect disease before it happens

TURNING SCIENCE FICTION

INTO SCIENCE REALITY ( )
QuAI.COAMA m /

TRICORDER

LEARN MORE

N
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Thank you for listening!
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