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Overview: Distributed online optimization

Distributed optimization Online optimization

Case study: medical diagnosis
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Distributed online optimization

Why distributed?

information is distributed across group of agents
need to interact to optimize performance

Why online?

information becomes incrementally available
need adaptive solution
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Machine learning in healthcare

Medical findings, symptoms:
age factor
amnesia before impact
deterioration in GCS score
open skull fracture
loss of consciousness
vomiting

Any acute brain finding revealed on Computerized Tomography?

(-1 = not present, 1 = present)

“The Canadian CT Head Rule for patients with minor head injury”
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Binary classification

feature vector of patient s:
ws = ((ws)1, ..., (ws)d−1)

true diagnosis: ys ∈ {−1, 1}
wanted weights: x = (x1, ..., xd)

predictor: h(x ,ws) = x>(ws , 1)

margin: ms(x) = ys h(x ,ws)

Given the data set {ws}Ps=1, estimate x ∈ Rd by solving

min
x∈Rd

f (x) = min
x∈Rd

P∑

s=1

l(ms(x))

where the loss function l : R→ R is decreasing and convex
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Review of
distributed convex optimization
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In the diagnosis example

Health center i ∈ {1, . . . ,N} manages a set of patients P i

f (x) =
N∑

i=1

∑

s∈P i

l(ysh(x ,ws)) =
N∑

i=1

f i (x)

Goal: best predicting model w 7→ h(x ,w)

min
x∈Rd

N∑

i=1

f i (x)

using “local information”
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What do we mean by “using local information”?

Agent i maintains an estimate x i
t of

x∗ ∈ arg min
x∈Rd

N∑

i=1

f i (x)

Agent i has access to f i

Agent i can share its estimate x i
t with “neighboring” agents

f 1 f 2

f 3 f 4

f 5

A =




a13 a14
a21 a25
a31 a32
a41

a52




Application to distributed estimation in wireless sensor networks and
beyond... sensor is any channel for the machine to “learn”
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How do agents agree on the optimizer?

? Spreading of information
(gossip, time-varying topologies, B-joint connectivity)

? Relation between consensus & local minimization

A. Nedić and A. Ozdaglar, TAC, 09

z i
k+1 =

N∑

j=1

aij ,k z j
k − ηtg , x i

k+1 = ΠX (z i
k+1),

where Ak = (aij ,k) is doubly stochastic and g ∈ ∂f i (x i
k)

J. C. Duchi, A. Agarwal, and M. J. Wainwright, TAC, 12
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Saddle-point dynamics

The minimization problem can be regarded as

min
x∈Rd

N∑

i=1

f i (x) = min
x1,...,xN∈Rd

x1=...=xN

N∑

i=1

f i (x i ) = min
x∈(Rd )N

Lx=0

N∑

i=1

f i (x i ),

where (Lx)i =
∑N

j=1 aij(x i − x j)

The augmented Lagrangian when L is symmetric is

F (x, z) := f̃ (x) + a
2 x>L x + z>L x,

which is convex-concave, and the saddle-point dynamics

ẋ = − ∂F (x, z)

∂x
= −∇f̃ (x)− a Lx− Lz

ż =
∂F (x, z)

∂z
= Lx
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Weight-balanced digraphs

ẋ =∇f̃ (x)− a Lx− Lz

ż = Lx

Lagrangian F (x, z) , f̃ (x) + a
2 x>L x + z>L x, f̃ (x) =

∑N
i=1 f i (x i )

ẋ = − ∂F (x, z)

∂x
= −∇f̃ (x)− a 1

2

(
L + L>

)
x− L>z (Non distributed!)

changed to −∇f̃ (x)− a Lx− Lz

ż =
∂F (x, z)

∂z
= Lx
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ż = Lx

Lagrangian F (x, z) , f̃ (x) + a
2 x>L x + z>L x, f̃ (x) =

∑N
i=1 f i (x i )
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Weight-balanced digraphs

ẋ =∇f̃ (x)− a Lx− Lz

ż = Lx

Lagrangian F (x, z) , f̃ (x) + a
2 x>L x + z>L x, f̃ (x) =

∑N
i=1 f i (x i )

ẋ = − ∂F (x, z)

∂x
= −∇f̃ (x)− a 1

2

(
L + L>

)
x− L>z (Non distributed!)

changed to −∇f̃ (x)− a Lx− Lz

ż =
∂F (x, z)

∂z
= Lx

B. Gharesifard and J. Cortés, CDC, 12

Note: a > 0; otherwise the linear part of the saddle-point dynamics is a
Hamiltonian system
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Weight-balanced digraphs

ẋ =∇f̃ (x)− a Lx− Lz

ż = Lx

Example: 4 agents in a directed cycle

0 2 4 6 8 10 12 14 16 18

−2.74

0

1.1

Evolution of the agents’s estimates

time, t

{[xi
1(t), x

i
2(t)]}

f1(x1, x2) = 1
2((x1 − 4)2 + (x2 − 3)2)

f2(x1, x2) = x1 + 3x2 − 2

f3(x1, x2) = log(ex1+3 + ex2+1)

f4(x1, x2) = (x1 + 2x2 + 5)2

+ (x1 − x2 − 4)2

convergence to a neighborhood of optimizer (1.10,−2.74)

size of the neighborhood depends on size of the noise [DMN-JC, 13]
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Review of
online convex optimization
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Different kind of optimization: sequential decision making

Resuming the diagnosis example:

Each round t ∈ {1, . . . ,T}
question (features, medical findings): wt

decision (about using CT): h(xt ,wt)
outcome (by CT findings/follow up of patient): yt
loss: l(yt h(xt ,wt))

Choose xt & Incur loss ft(xt) := l(yt h(xt ,wt))

Goal: sublinear regret

R(u,T ) :=
T∑

t=1

ft(xt)−
T∑

t=1

ft(u) ≤ o(T )

using “historical observations”
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Why regret?

If the regret is sublinear,

T∑

t=1

ft(xt) ≤
T∑

t=1

ft(u) + o(T ),

then,

1

T

T∑

t=1

ft(xt) ≤
1

T

T∑

t=1

ft(u) +
o(T )

T

In temporal average, online decisions {xt}Tt=1 perform as well as best
fixed decision in hindsight

“No regrets, my friend”

14 / 29



What about generalization error?

Sublinear regret does not imply xt+1 will do well with ft+1

No assumptions about sequence {ft}; it can

I follow an unknown stochastic or deterministic model,

I or be chosen adversarially

In our example, ft := l(yt h(xt ,wt)).

I If some model w 7→ h(x∗,w) explains reasonably the data in
hindsight,

I then the online models w 7→ h(xt ,w) perform just as well in average

Other applications:

portfolio selection

online advertisement placement

interactive learning
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Some classical results

Projected gradient descent:

xt+1 = ΠS(xt − ηt∇ft(xt)), (1)

where ΠS is a projection onto a compact set S ⊆ Rd , & ‖∇f ‖2 ≤ H

Follow-the-Regularized-Leader:

xt+1 = arg min
y∈S

( t∑

s=1

fs(y) + ψ(y)
)

Martin Zinkevich, 03
I (1) achieves O(

√
T ) regret under convexity with ηt = 1√

t

Elad Hazan, Amit Agarwal, and Satyen Kale, 07
I (1) achieves O(log T ) regret under p-strong convexity with ηt = 1

pt
I Others: Online Newton Step, Follow the Regularized Leader, etc.
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Our contribution:
Combining both aspects
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Back again to the diagnosis example:

Health center i ∈ {1, . . . ,N} takes care of a set of patients P i
t at time t

f i (x) =
T∑

t=1

∑

s∈P i
t

l(ysh(x ,ws)) =
T∑

t=1

f i
t (x)

Goal: sublinear agent regret

Rj(u,T ) :=
T∑

t=1

N∑

i=1

f i
t (x j

t )−
T∑

t=1

N∑

i=1

f i
t (u) ≤ o(T )

using “local information” & “historical observations”
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Challenge: Coordinate hospitals

f 1t f 2t

f 3t f 4t

f 5t

Need to design distributed online algorithms
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Previous work on consensus-based online algorithms

F. Yan, S. Sundaram, S. V. N. Vishwanathan and Y. Qi, TAC
Projected Subgradient Descent

I log(T ) regret (local strong convexity & bounded subgradients)
I
√

T regret (convexity & bounded subgradients)
I Both analysis require a projection onto a compact set

S. Hosseini, A. Chapman and M. Mesbahi, CDC, 13
Dual Averaging

I
√

T regret (convexity & bounded subgradients)
I General regularized projection onto a convex closed set.

K. I. Tsianos and M. G. Rabbat, arXiv, 12
Projected Subgradient Descent

I Empirical risk as opposed to regret analysis

Communication digraph in all cases is fixed, strongly connected &
weight-balanced
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Our contributions (informally)

time-varying communication digraphs under B-joint connectivity &
weight-balanced

unconstrained optimization (no projection step onto a bounded set)

log T regret (local strong convexity & bounded subgradients)
√

T regret (convexity & bounded subgradients)
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Coordination algorithm

x i
t+1 = x i

t − ηt gx it

+ σ
(

a
N∑

j=1,j 6=i

aij ,t
(
x j
t − x i

t

)
+

N∑

j=1,j 6=i

aij ,t
(
z j
t − z i

t

))

z i
t+1 = z i

t − σ
N∑

j=1,j 6=i

aij ,t
(
x j
t − x i

t

)

Subgradient descent on previous local objectives, gx it ∈ ∂f i
t
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Coordination algorithm

x i
t+1 = x i

t − ηt gx it

+ σ
(
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Union of graphs over intervals of length B is strongly connected.

f 1
t f 2

t

f 3
t f 4

t

f 5
t

time t time t + 1

a14,t+1a41,t+1

time t + 2
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Compact representation

[
xt+1

zt+1

]
=

[
xt
zt

]
− σ

[
aLt Lt

−Lt 0

] [
xt
zt

]
− ηt

[
g̃xt

0

]

vt+1 = (I− σG ⊗ Lt)vt − ηtgt ,
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Our contributions

Theorem

Assume that

{f 1
t , ..., f

N
t }Tt=1 are convex functions in Rd

I with H-bounded subgradient sets,
I nonempty and uniformly bounded sets of minimizers, and
I p-strongly convex in a suff. large neighborhood of their minimizers

The sequence of weight-balanced communication digraphs is
I nondegenerate, and
I B-jointly-connected

G ∈ RK×K is diagonalizable with positive real eigenvalues

Then, taking learning rates ηt = 1
p t ,

Rj(u,T ) ≤ C (‖u‖22 + 1 + log T ),

for any j ∈ {1, . . . ,N} and u ∈ Rd
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The sequence of weight-balanced communication digraphs is
I nondegenerate, and
I B-jointly-connected

G ∈ RK×K is diagonalizable with positive real eigenvalues

Relaxing strong convexity to convexity and using the Doubling Trick
scheme (see S. Shalev-Shwartz) for the learning rates,

Rj(u,T ) ≤ C‖u‖22
√

T ,

for any j ∈ {1, . . . ,N} and u ∈ Rd
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Idea of the proof

Network regret

Rj(u,T ) :=
T∑

t=1

N∑

i=1

f i
t (x i

t)−
T∑

t=1

N∑

i=1

f i
t (u)

Disagreement dynamics under B-joint connectivity

Bound on the trajectories uniform in T
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Simulations:
acute brain finding revealed on Computerized Tomography
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Agents’ estimates

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

{ xi
t ,7}Ni=1

0 20 40 60 80 100 120 140 160 180 200

0

1

2

time, t

Centralized

Average regret

0 20 40 60 80 100 120 140 160 180 200

10
−3

10
−2

10
−1

10
0

10
1

time horizon, T

maxj 1/T Rj
(
x∗
T ,

{ ∑N
i f i

t

}T

t=1

)

 

 

Proport ional-Integral
disagreement feedback

Proport ional
disagreement feedback

Centralized

f i
t (x) =

∑

s∈P i
t

l(ysh(x ,ws)) + 1
10‖x‖22

where

l(m) = log
(
1 + e−2m

)
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Conclusions

Distributed online unconstrained convex optimization with sublinear
regret under B-joint connectivity

Relevant for regression & classification that play a crucial role in
machine learning, computer vision, etc.

Future work

Refine guarantees under model for evolution of objective functions

Enable agents to cooperatively select features that strike the
balance sensibility/specificity

Effect of noise on the performance
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Future horizons for distributed optimization in healthcare

Engage & detect disease before it happens
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Thank you for listening!
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