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Radiation therapy

• Treatment of cancer by radiation therapy means that the patient is subject
to radiation by a particle beam (photon beam or proton beam in our case).

• The main parts of a treatment unit are:
• the particle accelerator, which creates the beam;
• beam optical components, which direct the beam;
• the supporting gantry, which gives the beam angle of incidence;
• the treatment head, which modulates the intensity of the beam.
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Radiation treatment unit
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Radiation therapy

• Closely related optimization problem

minimize f (x)

subject to x ∈ IRn,

where f is a smooth convex function.
• Optimal solution x∗ given by ∇f (x∗) = 0.
• Problem structure highly important.
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Radiation treatment
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Radiation treatment, cont.
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Aim of radiation therapy

• The aim of radiation therapy is typically to give a treatment that leads to a
desirable dose distribution in the patient.

• Typically, high dose is desired in the tumor cells, and low dose in the
other cells.

• In particular, certain organs are very sensitive to radiation and must have
a low dose level, e.g., the spine.

• Hence, requirements on the desired dose distribution can be specified,
and the question is how to achieve this distribution.

• This is an inverse problem in that the desired result of the radiation is
known, but the treatment plan has to be designed.
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Formulation of optimization problem

• A radiation treatment is typically given as a series of radiations.
• For an individual treatment, the performance depends on

• the beam angle of incidence, which is governed by the supporting gantry;
and

• the intensity modulation of the beam, which is governed by the treatment
head.

• One may now formulate an optimization problem, where the variables are
the beam angles of incidence and the intensity modulations of the beams.

• Referred to as intensity-modulated radiation therapy (IMRT).
• In this talk, we assume that the beam angles of incidence are fixed.
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Characteristics of the optimization problem

• The resulting optimization problem is a large-scale nonlinear optimization
problem, typically with a large number of degrees of freedom at the
solution.

• Many different objective functions have been proposed. The above
problem characteristics hold.

• Many conflicting goals. May form a weighted sum of different optimization
functions, e.g., quadratic penalties of dose deviations.
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Choice of optimization problem

Fundamental optimization problem.

• Fluence map optimization.
• Variables given by the beam intensities.
• Requires a post-processing step to obtain machine parameter settings.

• Direct machine-parameter optimization.
• Outcome of optimization problem is a deliverable plan.
• Increased complexity of optimization problem.

More advanced aspects.

• Handling of conflicting treatment goals.
• Handling of uncertainty.
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Solution method for fluence map optimization problem

Related to the fluence map optimization problem, a simplified
bound-constrained problem may be posed as

minimize
x∈IRn

f (x)

subject to l ≤ x ≤ u.

• Large-scale problem solved in few (∼20) iterations using a quasi-Newton
SQP method.

• Difficulty: “Jagged” solutions for more accurate plans.
• Idea: Use second-derivatives and an interior method to obtain fast

convergence and smooth solutions.
• Good news: Faster convergence.
• Bad news: Increased jaggedness.

• Not following the folklore.
• Better idea: Utilize problem structure.
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Radiation therapy and the conjugate-gradient method

• Why does a quasi-Newton sequential quadratic programming method do
so well on these problems?

• The answer lies in the problem structure.
• Related to the conjugate-gradient method.
• The conjugate-gradient method minimizes in directions corresponding to

large eigenvalues first.
• Our simplified problem has few large eigenvalues, corresponding to

smooth solutions.
• Many small eigenvalues that correspond to jagged solutions.
• The conjugate-gradient method takes a desirable path to the solution.

Known as iterative regularization.
• Additional properties of the solution, not seen in the formulation, are

important.
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Direct machine parameter optimization

Characteristics of direct machine parameter optimization.

• Solution to optimization problem is a deliverable plan.
• The optimization problem is harder to solve.

A dynamic approach is one option.

• Discretize the set of leaf positions.
• Generate plans “as needed” in a column generation framework.
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Segment generation

Segments are generated in a dynamic fashion.
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Adjustable leaves approach

In the adjustable leaves approach, direct step-and-shoot optimization is
included.
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Adjustable leaves approach

Change of segment shapes by direct step-and-shoot optimization.
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Adjustable leaves approach

• The dynamic approach gives a sequence of plans of improving quality.
• The number of segments is adjusted dynamically.
• Allows tradeoff between delivery time and plan quality.
• Column generation covers “big changes”, direct step-and-shoot

optimization gives “fine tuning”.
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Intensity modulated radiation therapy (IMRT)
• Delivery. Ionizing radiation field generated by a linear accelerator

equipped with a rotating gantry.
• Fluence modulation. Superposition in time of collimated fields with

uniform intensity.
• Treatment goal. Deliver a highly conformal dose to the tumor volume

while sparing surrounding healthy tissues.

Figure : Five-field treatment of head-and-neck cancer case.
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The inverse treatment planning problem
Find the machine parameters that best achieve the treatment goals within the
limitations of the delivery method.

Multi-objective programming formulation

(MOP)
minimize

x
f (x) = (f1(x), . . . , fn(x))T

subject to x ∈ X = {x : c(x) ≤ 0} ,

where

• f : IRm → IRn vector of treatment objectives.
• c : IRm → IRk vector of planning and delivery constraints.
• x ∈ IRm incident energy fluence.

Assumptions

• X nonempty.
• f , c convex and bounded on X .
• n ∼ 3–15.
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Solving the treatment planning problem
Conventional approach

1 Assign vector of weights w ∈ IRn
+ and solve

(SUM(w))
minimize

x

∑n
i=1 wi fi (x)

subject to x ∈ X .

2 Refine problem formulation and re-optimize until
satisfactory solution has been found.

Multi-criteria approach
1 Generate discrete representation of the Pareto optimal

set P by solving SUM(w) for varying w .

x∗ Pareto optimal⇔ (f (x∗)− IRn
+ \ {0}) ∩ Z = ∅

2 Evaluate possible treatment options by forming convex
combinations between the pre-computed Pareto optimal
solutions.
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Sandwich algorithm for approximating convex sets

• (MOP) convex⇒ Z+ = f (X ) + IRn
+ convex, P connected.

An iteration in the algorithm
1 Construct inner and outer polyhedral approximations of the Pareto

optimal set.
2 Calculate the maximum distance between the inner and outer

approximations.
3 Take w to be normal to the inner approximation at the point where the

maximum distance is attained.

(a) Iteration 1 (b) Iteration 3 (c) Iteration 7

Figure : Approximation of a convex function generated by the sandwich algorithm.
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Polyhedral approximations of the Pareto optimal set

Let P be a discrete set of Pareto optimal points generated by a set of
weighting vectors W .

Inner approximation (Zin ⊆ Z+)
Setwise sum between convex hull of P and IRn

+, i.e.,

Zin =
{

PTλ+ µ : λ, µ ≥ 0,eTλ = 1
}
.

Outer approximation (Zout ⊇ Z+)

Intersection of positive halfspaces associated with supporting hyperplanes to
P at points in P, i.e.,

Zout = {z : Wz ≥ r} ,

where r is the vector of pairwise scalar products between elements in P and
W .
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Quantifying the approximation error

Approximation error
Minimum ε such that for any z∗ ∈ P, ∃ z ∈ Zin : z∗ ∈ z + (IRn

+ − εe).

Upper bound on the approximation error

Hausdorff distance

h(Zin,Zout) = max
z∈Zout

min
z′∈Zin

d(z, z ′),

with respect to the one-sided distance function

d(z, z ′) = max
i∈{1,...,n}

(z ′i − zi )+.

SCOD14 A. Forsgren: Optimization of radiation therapy 28 / 56



Calculating the upper bound

The distance h(Zin,Zout) can be calculated by solving the linear-bilevel
program

maximize
z


minimize
η, λ, µ

η

subject to ηe ≥ PTλ+ µ− z,
eTλ = 1,
η, λ, µ ≥ 0,


subject to Wz ≥ r ,

which amounts to maximizing a convex function over a polyhedral set, i.e., a
nonconvex optimization problem.

Proposition
At least one vertex of the feasible set is an optimal solution.
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Solution by vertex enumeration
Solve the primal-dual pair of linear programs

(PLP(v))

minimize
η, λ, µ

η

subject to ηe ≥ PTλ+ µ− v ,
eTλ = 1,
η, λ, µ ≥ 0,

(DLP(v))

maximize
π, ρ

ρ− vTπ

subject to Pπ ≥ ρe,
eTπ ≤ 1,
π ≥ 0.

over all vertices v of the feasible set.

(a) Primal

(b) Dual

Proposition
Let (η, λ, µ, π, ρ) be a primal-dual optimal solution to PLP(v) and DLP(v).
Then {z : πT z = ρ} is a supporting hyperplane to Zin at PTλ+ µ with normal
vector π ∈ IRn

+.

SCOD14 A. Forsgren: Optimization of radiation therapy 30 / 56



Reducing the number of subproblems to be solved

The number of linear programming problems that needs to be solved can be
reduced by upper-bounding the optimal value of some of the subproblems.

Proposition
Let V denote the vertex set of Zout in a given iteration and let the
corresponding notation with superscript “+” apply to the subsequent iteration.
Then, for any v in V +, it holds that

optval(PLP+(v)) ≤
{

optval(PLP(v)) if v ∈ V +

maxv̄∈E optval(PLP(v̄)) otherwise ,

where E denotes the extreme point set of the edge of Zout that contains v.
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Comparison with algorithms in the literature
Related algorithms

• Solanki et al. (1993) Approximating the noninferior set in multiobjective linear programming
problems. European Journal of Operational Research 68(3), 356–373.

• Craft et al. (2006) Approximating convex Pareto surfaces in multiobjective radiotherapy planning.
Medical Physics 33(9), 3399–3407.

• Rennen et al. (2011) Enhancement of Sandwich Algorithms for Approximating
Higher-Dimensional Convex Pareto Sets. INFORMS Journal on Computing 23(4), 493–517.

(a) Solanki et al. (b) Craft et al. (c) Rennen et al.

Figure : Pareto surface approximations generated by sandwich algorithms in the
literature. Adapted from Rennen et al. (2011).
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Computational complexity
McMullen’s Upper-Bound Theorem gives

Vertex enumeration Facet enumeration
O(pϕ(2n + p + 1,n)) O(pϕ((p + 1)(n + 1),n))

where p is the total number of iterations and

ϕ(k ,n) =

(
k − b n+1

2 c
k − n

)
+

(
k − b n+2

2 c
k − n

)
.
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Figure : Upper bound on number of linear programming solves as a function of number
of objectives and total number of iterations.
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Computational study
• The vertex enumerative algorithm and the facet enumerative algorithm

were interfaced to CPLEX and SNOPT.

Test problems (scalable in the number of objectives n)

1 Test problem from Rennen et al. (2011) (QCLP).
2 IMRT problem for head-and-neck cancer case (QP).
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Figure : Pareto surface representation at n = 3 and p = 50.
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Numerical results (Problem 2)
• Vertex enumeration + bookkeeping reduces number of linear

programming solves by ∼ 10 for n ≥ 2 and by ∼ 102 for n ≥ 5.
• Maximum problem dimension tractable at times in the order of minutes

increases from about six to eleven.
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Figure : Numerical results of applying 50 sandwich algorithm iterations to Problem 2.
All depicted quantities are summed over 50 iterations.
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Summary and conclusion

• The vertex enumerative approach generates equivalent output to the
facet enumerative approach while solving fewer subproblems.

• Both the vertex and the facet enumerative approach can be enhanced
with an upper bounding procedure for reducing the number of
subproblems.

• The combined effect of the proposed enhancement increases the number
of tractable problem dimensions from about six to eleven.
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Intensity modulated proton therapy (IMPT)

• The patient is irradiated with proton
beams.

• Variable energy and fluence over the
beam cross-sections are used to conform
the dose to the shape of the target.

• The treatment is divided into a number of
treatment fractions.

• Goal: eradicate all clonogenic tumor cells
while sparing healthy tissues.
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Intensity modulated proton therapy (IMPT)

• Protons interact with impeding particles.
• The dose depositions increase as the protons slow down.
• Bragg peaks and depth modulation allow for conformal dose.
• Steep beam dose gradients and stopping power sensitivity make IMPT

sensitive to errors.
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Optimization problem

Objective: minimize the difference between delivered dose d and the
reference dose d ref.

• The patient volume is discretized into m
cubic voxels.

• The beams are discretized into n spots.
• The dose is given by d(x) = Px where

x ∈ IRn is the spot weight vector and
P ∈ IRm×n is a matrix mapping spot
weights to dose.

• Typically, m ∼ 106 and n ∼ 104.
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Considered uncertainties

Three influencial uncertainties are considered:

• Range of beams
• Setup of patient
• Organ motion

When the density of the treatment volume is heterogeneous, the resulting
errors distort the dose distribution heavily.
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Effects of the errors

(a) Nominal setup (b) Nominal density (c) Nominal tumor posi-
tion

(d) Shifted setup (e) Scaled density (f) Shifted organ position

Figure : Dose distributions of a single spot in nominal plans and plans after setup
error, density error, and organ motion realizations.
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Conventional methods for handling uncertainties

IMPT + margin

• Sensitive to errors due to interplay effects between beams
• No protection against steep dose gradients close to OARs
• A margin in a low density volume (e.g., lung) amounts to just a slight

margin in radiological depth

Figure : Conventional margin (blue)
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Conventional methods for handling uncertainties
Single field uniform dose (SFUD) + margin

• Enforce uniform beam doses

(a) Beam 1
+

(b) Beam 2
=

(c) Total dose

SFUD + material override (MO) + margin
• Plan as if margin in low density volume were of tumor tissue

(d) Margin (e) Material override
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Robust method

Conventional methods⇒ heuristic restrictions.
Instead: Utilize more information.

• Instead of margins, specify uncertainties
• The optimizer locates where to deposit dose
• “Inverse planning of margins”
• Error realizations are discretized into a number of

scenarios
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Robust method

Minimax optimization
minimize

x≥0
max
s∈S

f (ds(x)).

• S – scenarios
• x – spot weights
• ds – dose in scenario s ∈ S
• f – objective function

Scenarios are selected to cover 95% of the realizations of errors.
The problems are solved using an in-house quasi-Newton SQP method.
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Scenario dose computation
During the optimization, approximate scenario doses by shifting spot weights
in spot grid:

• Setup shifts: lateral interpolation
• Density scalings: longitudinal interpolation
• Organ motion: lateral and longitudinal interpolation (or using multiple

images)

Approximate scenario dose ds(x) = PTsx , where Ts is a transformation matrix
for scenario s ∈ S.

Figure : The spot grid
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Evaluation of robustness

To evaluate the methods, scenario doses are calculated as exactly as
possible.

• Shift beam isocenters
• Scale patient density
• Move organs using deformable registration (or using multiple images)

The evaluation scenarios are selected randomly from the ellipsoids
corresponding to the accounted for errors.
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Lung case

The conventional and robust method is applied to
a lung case.

• Setup uncertainty: 3 mm isotropically
• Density uncertainty: 3 %
• Organ motion: 5 mm inferiorly-superiorly, 2

mm in the other directions.

Figure : The lung case

The margin used for conventional planning is 8 mm inferiorly-superiorly and 5
mm in the other directions.
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Results – lung case

Margin or SFUD with margin are insufficient for robust target coverage.

(a) Nominal with margin (b) SFUD with margin

Figure : IMPT plan in 50 scenarios
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Results – lung case

(a) SFUD with MO and margin (b) Robust method

Figure : DVHs for 50 randomly sampled scenarios.
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Conclusion

• For complicated cases, conventional margins may be insufficient for
providing robust target coverage.

• Material override and robust optimization can yield robust target
coverage.

• By utilizing more information in the optimization, the dose to healthy
tissues can be reduced.
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Summary

• Optimization is an indispensible part of radiation therapy.
• Good knowledge of methods is not sufficient.
• Close interaction with experts in the field is vital.
• Increased level of sophistication through the projects.
• Very rewarding application and environment.
• Close connection to fundamental methodological questions.

Two new graduate students started in September 2013:
Michelle Böck and Lovisa Engberg.
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