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Wave Energy Converters (WECs)

Pros
Green and emission-free

Abundant and widely available

Reliable and predictable

Cons
High installation and
maintenance costs

Impact on the marine
ecosystem
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Dynamic model of a point-absorber wave energy
converter

Dynamic equations

ma(t)+ r v(t)+k p(t) = FR(t)+FD(t)+u(t)+FE (t)

Remarks

m and r and the mass and viscous dissipation of the device and
mooring system

k is the hydrodynamic stiffness due to to the buoyancy force
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Dynamic model of a point-absorber wave energy
converter

Dynamic equations

ma(t)+ r v(t)+k p(t) = FR(t)+FD(t)+u(t)+FE (t)

Radiation Force

Remarks

m and r and the mass and viscous dissipation of the device and
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k is the hydrodynamic stiffness due to to the buoyancy force
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Dynamic model of a point-absorber wave energy
converter

Dynamic equations

ma(t)+ r v(t)+k p(t) = FR(t)+FD(t)+u(t)+FE (t)

Nonlinear Drag Force

Remarks

m and r and the mass and viscous dissipation of the device and
mooring system

k is the hydrodynamic stiffness due to to the buoyancy force
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Dynamic model of a point-absorber wave energy
converter

Dynamic equations

ma(t)+ r v(t)+k p(t) = FR(t)+FD(t)+u(t)+FE (t)

Machinery Force

Remarks

m and r and the mass and viscous dissipation of the device and
mooring system

k is the hydrodynamic stiffness due to to the buoyancy force
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Dynamic model of a point-absorber wave energy
converter

Dynamic equations

ma(t)+ r v(t)+k p(t) = FR(t)+FD(t)+u(t)+FE (t)

Excitation Force

Remarks

m and r and the mass and viscous dissipation of the device and
mooring system

k is the hydrodynamic stiffness due to to the buoyancy force
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Hydrodynamic forces

FR(t) =−m∞ a(t)−
∫ t

−∞
kR(t −τ)v(τ)dτ=−m∞ a(t)−Fr(t)

FD(t) =−1

2
CDρS (v(t))2 sgn(v(t))

FE (t) =
∫ +∞

−∞
kE (t −τ)η(τ)dτ

Remarks

FD(t) is a nonlinear and non-smooth function of the device velocity

m∞ is the added mass, kR(t) is the causal radiation kernel

kE (t) is the noncausal excitation kernel, η(t) is the wave elevation at
the device location
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State-space model

State-space realization of Fr(t)

ż(t) = Ap z(t)+Bp v(t)

Fr(t) = Cp z(t)+DP v(t)

State-space WEC model

ẋ = Ax(t)+ fD(x(t))+Bu(t)+E FE (t)

Remarks

u(t) is the control variable

FE (t) is supposed to be known in advance or predicted through
estimation techniques
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MPC formulation

The goal is optimizing the WEC power take-off by maximizing the energy
absorption over the interval [t0, t0 +T ]:

maxEa = max−
∫ t0+T

t0

v(t)u(t)dt

subject to mechanical and dynamics constraints.
This reduces to the solution of the following nonlinear optimization
problem:

min
1

2

∫ t0+T

t0

xT ST
v u+uT Svx dt

subject to

x(t0) = x̄0

ẋ(t) = Ax(t)+ fD(x(t))+Bu(t)+E FE (t), t ∈ [t0, t0 +T ]

d(x(t), u(t)) ≥ 0, t ∈ [t0, t0 +T ]
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Problem discretization

The time interval is divided into N shooting intervals. In each interval, the
following conditions must be imposed:

uk(t) = uk, t ∈ [tk, tk+1]

FE k(t) = FE k, t ∈ [tk, tk+1]

ẋk(t) = Axk(t)+ fD(xk(t))+Buk +E FE k(t), t ∈ [tk, tk+1]

xk(tk+1) = xk+1

d(xk, uk) ≥ 0

The nonlinear dynamic equations are discretized using an explicit
fourth-order Runge-Kutta scheme
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Nonlinear Constrained Programming (1/2)

The discretized problem now appears as

min
1

2

N−1∑
k=0

xT
k ST

v uk +uT
k Svxk

subject to

x0 = x̄0

xk +∆t
s∑

i=1
bi K RK

i −xk+1 = 0, k ∈ [0, N −1]

K RK
i = A

(
xk +∆t

i−1∑
j=1

ai j K RK
j

)
+fD

(
xk +∆t

i−1∑
j=1

ai j K RK
j

)
+Buk +E FE k

d(xk, uk) ≥ 0, k ∈ [0, N −1]
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Nonlinear Constrained Programming (2/2)

Define:
w = [uT xT ]T

The optimization problem becomes:

min J(w) = min
1

2
wT Hw

subject to

C(w)+Λx̄0 = 0

D(w) ≥ 0

where:

H =
[

0 S̄v

S̄T
v 0

]
The bar sign accounts for the discretization of the time integral
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Sequential Quadratic Programming (SQP)

Define an initial guess for the optimization variable and the Lagrange
multipliers (w0, λ0, µ0)
At each iteration k, starting from (wk, λk, µk), solve the following
quadratic programming problem (QP):

min
∆w,λ,µ

1

2
∆wT Bk∆w+bT

k∆w

subject to

∇C|wk∆w+C|wk = 0

∇D|wk∆w+D|wk ≥ 0

where bk =∇J(w)|wk is the gradient of the cost function and Bk is the
Hessian of the associated Lagrangian function:

Bk = H −∑
i
λi∇2Ci|wk −

∑
j
µj∇2Dj|wk

Perform the update (wk+1, λk+1, µk+1) = (wk +α∆w∗, λ∗, µ∗)
Repeat until convergence
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Implementation features

Gradients can be computed analytically or numerically. Many
numerical approaches are available:

Automatic Differentiation
Adjoint Gradient
Finite Differences
Complex Derivative

For the WEC implementation all gradients are computed analytically.
The Hessian of the Lagrangian is calculated analytically as well

A full step implementation, i.e. α= 1, is considered

The Hessian of the cost function is indefinite

Inequality constraints involve motion constraints of the device and
saturation constraints of the actuator:

umin ≤ uk ≤ umax

pmin ≤ Sp xk≤ pmax

vmin ≤ Sv xk ≤ vmax
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Handling the drag term

The calculation of the gradient of the equality constraints requires
differentiability of the dynamic equations. The drag force, due to the sgn
function is non-smooth:

FD(t) =−1

2
CDρS (v(t))2 sgn(v(t))

A smooth approximation of the drag term is:

FD(t) =−1

2
CDρS (v(t))2 tanh(K v(t))

where K is a parameter governing the degree of smoothness. The dynamic
equations are now twice differentiable
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Condensed SQP

Considerations
The KKT matrix arising from the QP problem has a very sparse nature

This sparsity can be exploited by projecting the cost function to the
null space of the equality constraints

This allows to remove the dependent variable ∆x, which accounts for
the state perturbation, and solve an optimization problem in ∆u only

This reduces the optimization space and produces a dense KKT
matrix
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Condensed SQP
Looking at the structure of ∇C|wk :

∇C|wk =


−I

I +∆t B I +∆t
∑s

i bi ∇x0 K RK
i |wk −I

. . .
. . .

. . .

I +∆t B I +∆t
∑s

i bi ∇xN−1 K RK
i |wk −I


Through an appropriate permutation matrix P, it is possible to rewrite the
gradient as

P∇C|wk = [
L −I

]
This allows to rewrite the equality constraint in the QP iteration as:

∆x = L∆u+P C|wk

Substituting this relationship everywhere gives the reduced dense QP problem:

min
1

2
uT Huu

subject to

du(u) ≥ 0

Hu is now positive definite, hence convergence is ensured
Daniele Cavaglieri WEC Nonlinear MPC
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Results for sine wave with Hm0 = 2m, T0 = 8s, T = 10s (1/3)
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Constraints are |u| ≤ 107N , |p| ≤ 3m/s, |v| ≤ 5m/s
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Results for sine wave with Hm0 = 2m, T0 = 8s, T = 10s (2/3)
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Constraints are |u| ≤ 107N , |p| ≤ 1m/s, |v| ≤ 5m/s
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Results for sine wave with Hm0 = 2m, T0 = 8s, T = 10s (3/3)
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Results for JONSWAP sea spectrum with Hm0 = 2m, T0 = 8s, T = 10s
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Results for JONSWAP sea spectrum with Hm0 = 2m, T0 = 8s, T = 10s
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Budal’s diagram for sine waves with Hm0 = 2m, T = 10s

Legend: RL = Resistive Loading, ACC = Approximate Complex-Conjugate Control,
AVT = Approximate Optimal Velocity Tracking, MPC = Model Predictive Control,

PML = Peak-Matching Latching Control, PMC = Peak-Matching Clutching Control
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Conclusions

Direct multiple shooting provides a fast way of solving constrained
MPC problems involving nonlinear systems

The condensing step further accelerates the solution of the QP
problem

Nonlinear MPC applied to the maximization of power take-off of a
wave energy converter allows to approach the theoretical limit while
outperforming other techniques

This approach can easily be extended to any other WEC
configuration and constraints
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