Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter

Daniele Cavaglieri Thomas Bewley

23 May 2014 Southern California Optimization Day

Daniele Cavaglieri

WEC Nonlinear MPC

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

イロト イヨト イヨト イヨト

2

Summary

2 Nonlinear Model Predictive Control

イロト イロト イヨト イヨト

2

Summary

2 Nonlinear Model Predictive Control

4 Conclusions

Wave Energy Converters (WECs)

Pros

- Green and emission-free
- Abundant and widely available
- Reliable and predictable

Cons

- High installation and maintenance costs
- Impact on the marine ecosystem

イロト イロト イヨト イヨト

3

イロト 不得 トイヨト イヨト

I naa

Dynamic model of a point-absorber wave energy converter

Dynamic equations

 $ma(t) + rv(t) + kp(t) = F_R(t) + F_D(t) + u(t) + F_E(t)$

- *m* and *r* and the mass and viscous dissipation of the device and mooring system
- *k* is the hydrodynamic stiffness due to to the buoyancy force

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dynamic model of a point-absorber wave energy converter

Dynamic equations

 $ma(t) + rv(t) + kp(t) = F_R(t) + F_D(t) + u(t) + F_E(t)$ Radiation Force

- *m* and *r* and the mass and viscous dissipation of the device and mooring system
- *k* is the hydrodynamic stiffness due to to the buoyancy force

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dynamic model of a point-absorber wave energy converter

Dynamic equations

 $ma(t) + rv(t) + kp(t) = F_R(t) + F_D(t) + u(t) + F_E(t)$ Nonlinear Drag Force

- *m* and *r* and the mass and viscous dissipation of the device and mooring system
- *k* is the hydrodynamic stiffness due to to the buoyancy force

< ロ > < 同 > < 三 > < 三 > 、

э.

Dynamic model of a point-absorber wave energy converter

Dynamic equations

$$ma(t) + rv(t) + kp(t) = F_R(t) + F_D(t) + u(t) + F_E(t)$$

Machinery Force

- *m* and *r* and the mass and viscous dissipation of the device and mooring system
- *k* is the hydrodynamic stiffness due to to the buoyancy force

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dynamic model of a point-absorber wave energy converter

Dynamic equations

 $ma(t) + rv(t) + kp(t) = F_R(t) + F_D(t) + u(t) + F_E(t)$ Excitation Force

- *m* and *r* and the mass and viscous dissipation of the device and mooring system
- *k* is the hydrodynamic stiffness due to to the buoyancy force

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Hydrodynamic forces

$$F_R(t) = -m_\infty a(t) - \int_{-\infty}^t k_R(t-\tau) v(\tau) d\tau = -m_\infty a(t) - F_r(t)$$

$$F_D(t) = -\frac{1}{2} C_D \rho S (v(t))^2 \operatorname{sgn}(v(t))$$

$$F_E(t) = \int_{-\infty}^{+\infty} k_E(t-\tau) \eta(\tau) d\tau$$

- $F_D(t)$ is a nonlinear and non-smooth function of the device velocity
- m_{∞} is the added mass, $k_R(t)$ is the causal radiation kernel
- $k_E(t)$ is the noncausal excitation kernel, $\eta(t)$ is the wave elevation at the device location

э.

State-space model

State-space realization of $F_r(t)$

 $\dot{z}(t) = A_p z(t) + B_p v(t)$ $F_r(t) = C_p z(t) + D_P v(t)$

State-space WEC model

 $\dot{x} = Ax(t) + f_D(x(t)) + Bu(t) + EF_E(t)$

- *u*(*t*) is the control variable
- $F_E(t)$ is supposed to be known in advance or predicted through estimation techniques

イロト イヨト イヨト イヨト

2

Summary

2 Nonlinear Model Predictive Control

4 Conclusions

3

MPC formulation

The goal is optimizing the WEC power take-off by maximizing the energy absorption over the interval [t_0 , $t_0 + T$]:

$$\max E_a = \max - \int_{t_0}^{t_0 + T} v(t) \, u(t) \, dt$$

subject to mechanical and dynamics constraints.

This reduces to the solution of the following nonlinear optimization problem:

$$\min \frac{1}{2} \int_{t_0}^{t_0+T} x^T S_v^T u + u^T S_v x \, dt$$

subject to
 $x(t_0) = \bar{x}_0$
 $\dot{x}(t) = Ax(t) + f_D(x(t)) + Bu(t) + EF_E(t), \quad t \in [t_0, t_0 + T]$
 $d(x(t), u(t)) \ge 0, \quad t \in [t_0, t_0 + T]$

イロト イロト イヨト イヨト

= nar

Problem discretization

The time interval is divided into *N* shooting intervals. In each interval, the following conditions must be imposed:

$$\begin{split} u_k(t) &= u_k, & t \in [t_k, t_{k+1}] \\ F_{Ek}(t) &= F_{Ek}, & t \in [t_k, t_{k+1}] \\ \dot{x}_k(t) &= A x_k(t) + f_D(x_k(t)) + B u_k + E F_{Ek}(t), & t \in [t_k, t_{k+1}] \\ x_k(t_{k+1}) &= x_{k+1} \\ d(x_k, u_k) &\geq 0 \end{split}$$

The nonlinear dynamic equations are discretized using an explicit fourth-order Runge-Kutta scheme

イロト イヨト イヨト イヨト

- 문

Nonlinear Constrained Programming (1/2)

The discretized problem now appears as

$$\min \frac{1}{2} \sum_{k=0}^{N-1} x_k^T S_v^T u_k + u_k^T S_v x_k$$

subject to

$$\begin{aligned} x_0 &= \bar{x}_0 \\ x_k + \Delta t \sum_{i=1}^{s} b_i K_i^{RK} - x_{k+1} &= 0, \\ K_i^{RK} &= A \left(x_k + \Delta t \sum_{j=1}^{i-1} a_{ij} K_j^{RK} \right) + f_D \left(x_k + \Delta t \sum_{j=1}^{i-1} a_{ij} K_j^{RK} \right) + B u_k + E F_{Ek} \\ d(x_k, u_k) &\geq 0, \qquad \qquad k \in [0, N-1] \end{aligned}$$

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - のへで

Nonlinear Constrained Programming (2/2)

Define:

$$w = \begin{bmatrix} u^T & x^T \end{bmatrix}^T$$

The optimization problem becomes:

$$\min J(w) = \min \frac{1}{2} w^{T} H w$$

subject to
$$C(w) + \Lambda \bar{x}_{0} = 0$$
$$D(w) \ge 0$$

where:

$$H = \begin{bmatrix} 0 & \bar{S}_{\nu} \\ \bar{S}_{\nu}^T & 0 \end{bmatrix}$$

The bar sign accounts for the discretization of the time integral

Sequential Quadratic Programming (SQP)

- Define an initial guess for the optimization variable and the Lagrange multipliers (w_0, λ_0, μ_0)
- At each iteration k, starting from (w_k, λ_k, μ_k) , solve the following quadratic programming problem (QP):

$$\min_{\Delta w, \lambda, \mu} \frac{1}{2} \Delta w^T B_k \Delta w + b_k^T \Delta w$$

subject to
$$\nabla C|_{w_k} \Delta w + C|_{w_k} = 0$$

$$\nabla D|_{w_k} \Delta w + D|_{w_k} \ge 0$$

where $b_k = \nabla J(w)|_{w_k}$ is the gradient of the cost function and B_k is the Hessian of the associated Lagrangian function:

$$B_k = H - \sum_i \lambda_i \nabla^2 C_i |_{w_k} - \sum_j \mu_j \nabla^2 D_j |_{w_k}$$

- Perform the update $(w_{k+1}, \lambda_{k+1}, \mu_{k+1}) = (w_k + \alpha \Delta w^*, \lambda^*, \mu^*)$
- Repeat until convergence

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ●

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Implementation features

- Gradients can be computed analytically or numerically. Many numerical approaches are available:
 - Automatic Differentiation
 - Adjoint Gradient
 - Finite Differences
 - Complex Derivative

For the WEC implementation all gradients are computed analytically. The Hessian of the Lagrangian is calculated analytically as well

- A full step implementation, i.e. $\alpha = 1$, is considered
- The Hessian of the cost function is indefinite
- Inequality constraints involve motion constraints of the device and saturation constraints of the actuator:

 $u_{\min} \le u_k \le u_{\max}$ $p_{\min} \le S_p x_k \le p_{\max}$ $v_{\min} \le S_v x_k \le v_{\max}$

Implementation features

- Gradients can be computed analytically or numerically. Many numerical approaches are available:
 - Automatic Differentiation
 - Adjoint Gradient
 - Finite Differences
 - Complex Derivative

For the WEC implementation all gradients are computed analytically. The Hessian of the Lagrangian is calculated analytically as well

• A full step implementation, i.e. $\alpha = 1$, is considered

- The Hessian of the cost function is indefinite
- Inequality constraints involve motion constraints of the device and saturation constraints of the actuator:

$$u_{\min} \le u_k \le u_{\max}$$
$$p_{\min} \le S_p x_k \le p_{\max}$$
$$v_{\min} \le S_v x_k \le v_{\max}$$

э.

Implementation features

- Gradients can be computed analytically or numerically. Many numerical approaches are available:
 - Automatic Differentiation
 - Adjoint Gradient
 - Finite Differences
 - Complex Derivative

For the WEC implementation all gradients are computed analytically. The Hessian of the Lagrangian is calculated analytically as well

- A full step implementation, i.e. $\alpha = 1$, is considered
- The Hessian of the cost function is indefinite
- Inequality constraints involve motion constraints of the device and saturation constraints of the actuator:

$$u_{\min} \le u_k \le u_{\max}$$
$$p_{\min} \le S_p x_k \le p_{\max}$$
$$v_{\min} \le S_v x_k \le v_{\max}$$

э.

Implementation features

- Gradients can be computed analytically or numerically. Many numerical approaches are available:
 - Automatic Differentiation
 - Adjoint Gradient
 - Finite Differences
 - Complex Derivative

For the WEC implementation all gradients are computed analytically. The Hessian of the Lagrangian is calculated analytically as well

- A full step implementation, i.e. $\alpha = 1$, is considered
- The Hessian of the cost function is indefinite
- Inequality constraints involve motion constraints of the device and saturation constraints of the actuator:

$$u_{\min} \le u_k \le u_{\max}$$
$$p_{\min} \le S_p x_k \le p_{\max}$$
$$v_{\min} \le S_v x_k \le v_{\max}$$

3

ヘロト ヘ回ト ヘヨト ヘヨト

э.

Handling the drag term

The calculation of the gradient of the equality constraints requires differentiability of the dynamic equations. The drag force, due to the sgn function is non-smooth:

$$F_D(t) = -\frac{1}{2} C_D \rho S \left(v(t) \right)^2 \operatorname{sgn}(v(t))$$

A smooth approximation of the drag term is:

$$F_D(t) = -\frac{1}{2} C_D \rho S(v(t))^2 \tanh(K v(t))$$

where *K* is a parameter governing the degree of smoothness. The dynamic equations are now twice differentiable

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

I naa

Handling the drag term

The calculation of the gradient of the equality constraints requires differentiability of the dynamic equations. The drag force, due to the sgn function is non-smooth:

$$F_D(t) = -\frac{1}{2} C_D \rho S \left(v(t) \right)^2 \operatorname{sgn}(v(t))$$

A smooth approximation of the drag term is:

$$F_D(t) = -\frac{1}{2} C_D \rho S(v(t))^2 \tanh(K v(t))$$

where *K* is a parameter governing the degree of smoothness. The dynamic equations are now twice differentiable

< □ > < 同 > < 回 > < 回 > .

э.

Condensed SQP

Considerations

- The KKT matrix arising from the QP problem has a very sparse nature
- This sparsity can be exploited by projecting the cost function to the null space of the equality constraints
- This allows to remove the dependent variable Δx , which accounts for the state perturbation, and solve an optimization problem in Δu only
- This reduces the optimization space and produces a dense KKT matrix

Nonlinear MPC

Simulations

Conclusions

= nar

Condensed SQP

Looking at the structure of $\nabla C|_{w_k}$:

$$\nabla C|_{w_k} = \begin{bmatrix} -I & & & \\ I + \Delta t B & & I + \Delta t \sum_i^s b_i \nabla_{x_0} K_i^{RK}|_{w_k} & -I & & \\ & \ddots & & \ddots & \ddots & \\ & & I + \Delta t B & & & I + \Delta t \sum_i^s b_i \nabla_{x_{N-1}} K_i^{RK}|_{w_k} & -I \end{bmatrix}$$

Through an appropriate permutation matrix *P*, it is possible to rewrite the gradient as $P\nabla C|_{uv} = \begin{bmatrix} I & -I \end{bmatrix}$

This allows to rewrite the equality constraint in the QP iteration as:

 $\Delta x = L \Delta u + P C|_{W_k}$

Substituting this relationship everywhere gives the reduced dense QP problem:

$$\min \frac{1}{2} u^T H_u u$$

subject to
$$d_u(u) \ge 0$$

 H_u is now positive definite, hence convergence is ensured \Box , (\Box , (\Box , (Ξ) (Ξ)

Condensed SQP

Looking at the structure of $\nabla C|_{w_k}$:

$$\nabla C|_{w_k} = \begin{bmatrix} -I & & & \\ I + \Delta t B & & I + \Delta t \sum_i^s b_i \nabla_{x_0} K_i^{RK}|_{w_k} & -I & & \\ & \ddots & & \ddots & \ddots & \\ & & I + \Delta t B & & & I + \Delta t \sum_i^s b_i \nabla_{x_{N-1}} K_i^{RK}|_{w_k} & -I \end{bmatrix}$$

Through an appropriate permutation matrix *P*, it is possible to rewrite the gradient as $P\nabla C|_{W_k} = \begin{bmatrix} L & -I \end{bmatrix}$

This allows to rewrite the equality constraint in the QP iteration as:

 $\Delta x = L \Delta u + PC|_{w_k}$

Substituting this relationship everywhere gives the reduced dense QP problem:

$$\min \frac{1}{2}u^{T}H_{u}u$$

subject to
$$d_{u}(u) \ge 0$$

Simulations

Conclusions

Condensed SQP

Looking at the structure of $\nabla C|_{w_k}$:

$$\nabla C|_{w_k} = \begin{bmatrix} -I & & & \\ I + \Delta t B & & I + \Delta t \sum_i^s b_i \nabla_{x_0} K_i^{RK}|_{w_k} & -I & & \\ & \ddots & & \ddots & \ddots & \\ & & I + \Delta t B & & & I + \Delta t \sum_i^s b_i \nabla_{x_{N-1}} K_i^{RK}|_{w_k} & -I \end{bmatrix}$$

Through an appropriate permutation matrix *P*, it is possible to rewrite the gradient as $P\nabla C|_{W^{k}} = \begin{bmatrix} L & -I \end{bmatrix}$

This allows to rewrite the equality constraint in the QP iteration as:

$$\Delta x = L \Delta u + P C|_{w_k}$$

Substituting this relationship everywhere gives the reduced dense QP problem:

$$\min \frac{1}{2} u^T H_u u$$

subject to
$$d_u(u) \ge 0$$

Simulations

イロト イロト イヨト イヨト

2

Conclusions

Summary

2 Nonlinear Model Predictive Control

4 Conclusions

Daniele Cavaglieri WEC Nonlinear MPC

Results for sine wave with $H_{m0} = 2m$, $T_0 = 8s$, T = 10s (1/3)

Results for sine wave with $H_{m0} = 2m$, $T_0 = 8s$, T = 10s (2/3)

E 99€

Results for sine wave with $H_{m0} = 2m$, $T_0 = 8s$, T = 10s (3/3)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Results for JONSWAP sea spectrum with $H_{m0} = 2m$, $T_0 = 8s$, T = 10s

Constraints are $|u| \le 10^6 N$, $|p| \le 1m/s$, $|v| \le 5m/s$

2

Results for JONSWAP sea spectrum with $H_{m0} = 2m$, $T_0 = 8s$, T = 10s

Budal's diagram for sine waves with $H_{m0} = 2m$, T = 10s

Legend: RL = Resistive Loading, ACC = Approximate Complex-Conjugate Control, AVT = Approximate Optimal Velocity Tracking, MPC = Model Predictive Control, PML = Peak-Matching Latching Control, PMC = Peak-Matching Clutching Control

イロト イロト イヨト イヨト

2

Summary

2 Nonlinear Model Predictive Control

イロト 不得 トイヨト イヨト

3

Conclusions

- Direct multiple shooting provides a fast way of solving constrained MPC problems involving nonlinear systems
- The condensing step further accelerates the solution of the QP problem
- Nonlinear MPC applied to the maximization of power take-off of a wave energy converter allows to approach the theoretical limit while outperforming other techniques
- This approach can easily be extended to any other WEC configuration and constraints