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Abstract Computational methods are proposed for solving a convex quadratic pro-
gram (QP). Active-set methods are defined for a particular primal and dual formulation
of a QP with general equality constraints and simple lower bounds on the variables. In
the first part of the paper, two methods are proposed, one primal and one dual. These
methods generate a sequence of iterates that are feasible with respect to the equality
constraints associated with the optimality conditions of the primal–dual form. The
primal method maintains feasibility of the primal inequalities while driving the infea-
sibilities of the dual inequalities to zero. The dual method maintains feasibility of the
dual inequalities while moving to satisfy the primal inequalities. In each of thesemeth-
ods, the search directions satisfy a KKT system of equations formed fromHessian and
constraint components associated with an appropriate column basis. The composition
of the basis is specified by an active-set strategy that guarantees the nonsingularity of
each set of KKT equations. Each of the proposed methods is a conventional active-set
method in the sense that an initial primal- or dual-feasible point is required. In the
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second part of the paper, it is shown how the quadratic program may be solved as
a coupled pair of primal and dual quadratic programs created from the original by
simultaneously shifting the simple-bound constraints and adding a penalty term to the
objective function. Any conventional column basis may be made optimal for such a
primal–dual pair of shifted-penalized problems. The shifts are then updated using the
solution of either the primal or the dual shifted problem. An obvious application of this
approach is to solve a shifted dual QP to define an initial feasible point for the primal
(or vice versa). The computational performance of each of the proposed methods is
evaluated on a set of convex problems from the CUTEst test collection.

Keywords Quadratic programming · Active-set methods · Convex quadratic
programming · Primal active-set methods · Dual active-set methods

Mathematics Subject Classification 90C20

1 Introduction

We consider the formulation and analysis of active-set methods for a convex quadratic
program (QP) of the form

minimize
x∈Rn , y∈Rm

1
2 x

THx + 1
2 y

TMy + cTx

subject to Ax + My = b, x ≥ 0,
(1)

where A,b, c, H andM are constant,with H andM symmetric positive semidefinite. In
order to simplify the theoretical discussion, the inequalities of (1) involve nonnegativity
constraints only. However, the methods to be described are easily extended to treat all
forms of linear constraints. (Numerical results are given for problems with constraints
in the form xL ≤ x ≤ xU and bL ≤ Ax ≤ bU , for fixed vectors xL , xU , bL and bU .)
If M = 0, the QP (1) is a conventional convex quadratic program with constraints
defined in standard form.A regularized quadratic programmaybe obtained by defining
M = μI for some small positive parameter μ. (For applications that require the
solution of a regularized QP see, e.g., [1,32,60].)

Active-set methods for quadratic programming problems of the form (1) solve a
sequence of linear equations that involve the y-variables and a subset of the x-variables.
Each set of equations constitutes the optimality conditions associated with an equality-
constrained quadratic subproblem. The goal is to predict the optimal active set, i.e.,
the set of constraints that are satisfied with equality, at the solution of the problem.
A conventional active-set method has two phases. In the first phase, a feasible point
is found while ignoring the objective function; in the second phase, the objective is
minimized while feasibility is maintained. A useful feature of active-set methods is
that they are well-suited for “warm starts”, where a good estimate of the optimal
active set is used to start the algorithm. This is particularly useful in applications
where a sequence of quadratic programs is solved, e.g., in a sequential quadratic pro-
gramming method or in an ODE- or PDE-constrained problem with mesh refinement.
Other applications of active-set methods for quadratic programming include mixed-
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integer nonlinear programming, portfolio analysis, structural analysis, and optimal
control.

In Sect. 2, the primal and dual forms of a convex quadratic programwith constraints
in standard form are generalized to include general lower bounds on both the primal
and dual variables. These problems constitute a primal–dual pair that includes problem
(1) and its associated dual as a special case. In Sects. 3 and 4, an active-set method is
proposed for each of the primal and dual forms associatedwith the generalized problem
of Sect. 2. Both of these methods provide a sequence of iterates that are feasible
with respect to the equality constraints associated with the optimality conditions of
the primal–dual problem pair. The primal method maintains feasibility of the primal
inequalitieswhile driving the infeasibilities of the dual inequalities to zero. By contrast,
the dual method maintains feasibility of the dual inequalities while moving to satisfy
the primal inequalities. In each of these methods, the search directions satisfy a KKT
system of equations formed from Hessian and constraint components associated with
an appropriate column basis. The composition of the basis is specified by an active-set
strategy that guarantees the nonsingularity of each set of KKT equations.

The methods formulated in Sects. 3–4 define conventional active-set methods in
the sense that an initial feasible point is required. In Sect. 5, a method is proposed that
solves a pair of coupled quadratic programs created from the original by simultane-
ously shifting the simple-bound constraints and adding a penalty term to the objective
function. Any conventional column basis can be made optimal for such a primal–dual
pair of shifted-penalized problems. The shifts are then updated using the solution of
either the primal or the dual shifted problem. An obvious application of this idea is to
solve a shifted dual QP to define an initial feasible point for the primal, or vice-versa.
In addition to the obvious benefit of using the objective function while getting feasible,
this approach provides an effective method for finding a dual-feasible point when H is
positive semidefinite and M = 0. Finding a dual-feasible point is relatively straight-
forward for the strictly convex case, i.e., when H is positive definite. However, in
the general case, the dual constraints for the phase-one linear program involve entries
from H as well as A, which complicates the formulation of the phase-one method
considerably.

Finally, in Sect. 7 some numerical experiments are presented for a simpleMatlab
implementation of a coupled primal–dual method applied to a set of convex problems
from the CUTEst test collection [45,47].

There are a number of alternative active-set methods available for solving a QPwith
constraints written in the format of problem (1). Broadly speaking, these methods fall
into three classes defined here in the order of increasing generality: (i) methods for
strictly convex quadratic programming (H symmetric positive definite) [2,34,41,55,
58]; (ii) methods for convex quadratic programming (H symmetric positive semi-
definite) [8,40,51,52,59]; and (iii) methods for general quadratic programming (no
assumptions on H other than symmetry) [3,4,12,24,27,31,33,36,37,42–44,50,59].
Of the methods specifically designed for convex quadratic programming, only the
methods of Boland [8] and Wong [59, Chapter 4] are dual active-set methods. Some
existing active-set quadratic programming solvers include QPOPT [38], QPSchur
[2], SQOPT [40], SQIC [33] and QPA (part of the GALAHAD software library)
[46].
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The primal active-set method proposed in Sect. 3 is motivated by the methods of
Fletcher [24], Gould [42], and Gill and Wong [33], which may be viewed as methods
that extend the properties of the simplex method to general quadratic programming.
At each iteration, a direction is computed that satisfies a nonsingular system of linear
equations based on an estimate of the active set at a solution. The equations may be
written in symmetric form and involve both the primal and dual variables. In this
context, the purpose of the active-set strategy is not only to obtain a good estimate
of the optimal active set, but also to ensure that the systems of linear equations that
must be solved at each iteration are nonsingular. This strategy allows the application
of any convenient linear solver for the computation of the iterates. In this paper,
these ideas are applied to convex quadratic programming. The resulting sequence of
iterates is the same as that generated by an algorithm for general QP, but the structure
of the iteration is different, as is the structure of the linear equations that must be
solved. Similar ideas are used to formulate the new dual active-set method proposed
in Sect. 4.

The proposed primal, dual, and combined primal–dual methods use a “conven-
tional” active-set approach in the sense that the constraints remain unchanged during
the solution of a given QP. Alternative approaches that use a parametric active-set
method have been proposed by Best [5,6], Ritter [56,57], Ferreau et al. [22], Potschka
et al. [54], and implemented in the qpOASES package by Ferreau et al. [23]. Primal
methods based on the augmented Lagrangian method have been proposed by Delbos
and Gilbert [18], Chiche and Gilbert [15], and Gilbert and Joannopoulos [30]. The use
of shifts for the bounds have been suggested by Cartis and Gould [13] in the context
of interior methods for linear programming. Another class of active-set methods that
are convergent for strictly convex quadratic programs have been considered by Curtis
et al. [16].

Notation and terminology Given vectors a and b with the same dimension, min(a, b)
is a vector with components min(ai , bi ). The vectors e and e j denote, respectively, the
column vector of ones and the j th column of the identity matrix I . The dimensions
of e, ei and I are defined by the context. Given vectors x and y, the column vector
consisting of the components of x augmented by the components of y is denoted by
(x, y).

2 Background

Although the purpose of this paper is the solution of quadratic programs of the form (1),
for reasons that will become evident in Sect. 5, the analysis will focus on the properties
of a pair of problems that may be interpreted as a primal–dual pair of QPs associated
with problem (1). It is assumed throughout that the matrix

(
A M

)
associated with the

equality constraints of problem (1) has full row rank. This assumption can be made
without loss of generality, as shown in Proposition 12 of the “Appendix”. The paper
involves a number of other basic theoretical results that are subsidiary to the main
presentation. The proofs of these results are relegated to the “Appendix”.
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2.1 Formulation of the primal and dual problems

For given constant vectors q and r , consider the pair of convex quadratic programs

(PQPq,r )
minimize

x,y
1
2 x

THx + 1
2 y

TMy + cTx + rTx

subject to Ax + My = b, x ≥ −q,

and

(DQPq,r )
maximize

x,y,z
− 1

2 x
THx − 1

2 y
TMy + bTy − qTz

subject to − Hx + ATy + z = c, z ≥ −r.

The following result gives joint optimality conditions for the triple (x, y, z) such that
(x, y) is optimal for (PQPq,r ), and (x, y, z) is optimal for (DQPq,r ). If q and r are zero,
then (PQP0,0) and (DQP0,0) are the primal and dual problems associated with (1). For
arbitrary q and r , (PQPq,r ) and (DQPq,r ) are essentially the dual of each other, the
difference is only an additive constant in the value of the objective function.

Proposition 1 Let q and r denote constant vectors inRn. If (x, y, z) is a given triple in
R
n ×R

m ×R
n, then (x, y) is optimal for (PQPq,r ) and (x, y, z) is optimal for (DQPq,r )

if and only if

Hx + c − ATy − z = 0, (2a)

Ax + My − b = 0, (2b)

x + q ≥ 0, (2c)

z + r ≥ 0, (2d)

(x + q)T (z + r) = 0. (2e)

In addition, the optimal objective values satisfy optval(PQPq,r ) − optval(DQPq,r ) =
−qTr . Finally, (2) has a solution if and only if the sets

{
(x, y, z) : −Hx + ATy + z = c, z ≥ −r

}
and

{
(x, y) : Ax + My = b, x ≥ −q

}

are both nonempty.

Proof Let the vector of Lagrange multipliers for the constraints Ax + My − b = 0
be denoted by ỹ. Without loss of generality, the Lagrange multipliers for the bounds
x + q ≥ 0 of (PQPq,r ) may be written in the form z + r , where r is the given fixed
vector r . With these definitions, a Lagrangian function L(x, y, ỹ, z) associated with
(PQPq,r ) is given by

L(x, y, ỹ, z) = 1
2 x

THx + (c + r)Tx + 1
2 y

TMy − ỹT(Ax + My − b)

− (z + r)T(x + q).
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Stationarity of the Lagrangian with respect to x and y implies that

Hx + c + r − ATỹ − z − r = Hx + c − ATỹ − z = 0, (3a)

My − Mỹ = 0. (3b)

The optimality conditions for (PQPq,r ) are then given by: (i) the feasibility conditions
(2b) and (2c); (ii) the nonnegativity conditions (2d) for the multipliers associated with
the bounds x+q ≥ 0; (iii) the stationarity conditions (3); and (iv) the complementarity
conditions (2e). The vector y appears only in the termMy of (2b) and (3b). In addition,
(3b) implies thatMy = Mỹ, in which case wemay choose y = ỹ. This common value
of y and ỹmust satisfy (3a), which is then equivalent to (2a). The optimality conditions
(2) for (PQPq,r ) follow directly.

With the substitution ỹ = y, the expression for the Lagrangian may be rearranged
so that

L(x, y, y, z) = − 1
2 x

THx− 1
2 y

TMy+bTy−qTz+(Hx+c− ATy−z)Tx−qTr. (4)

Taking into account (3) for y = ỹ, the dual objective is given by (4) as − 1
2 x

THx −
1
2 y

TMy+bTy−qTz−qTr , and the dual constraints are Hx+c−ATy−z = 0 and z+r ≥
0. It follows that (DQPq,r ) is equivalent to the dual of (PQPq,r ), the only difference is
the constant term −qTr in the objective, which is a consequence of the shift z + r in
the dual variables. Consequently, strong duality for convex quadratic programming
implies optval(PQPq,r )−optval(DQPq,r ) = −qTr . In addition, the variables x , y and z
satisfying (2) are feasible for (PQPq,r ) and (DQPq,r ) with the difference in the objective
function value being −qTr . It follows that (x, y, z) is optimal for (DQPq,r ) as well
as (PQPq,r ). Finally, feasibility of both (PQPq,r ) and (DQPq,r ) is both necessary and
sufficient for the existence of optimal solutions. ��

2.2 Optimality conditions and the KKT equations

The proposed methods are based on maintaining index sets B and N that define a
partition of the index set I = {1, 2, …, n}, i.e., I = B ∪ N with B ∩ N = ∅.
Following standard terminology, we refer to the subvectors xB and xN associated with
an arbitrary x as the basic and nonbasic variables, respectively. The crucial feature of
B is that it defines a unique solution (x, y, z) to the equations

Hx + c − AT y − z = 0, xN + qN = 0,

Ax + My − b = 0, zB + rB = 0.
(5)

For the symmetric Hessian H , the matrices HBB and HNN denote the subset of rows
and columns of H associated with the sets B and N , respectively. The unsymmetric
matrix of components hi j with i ∈ B and j ∈ N will be denoted by HBN . Similarly,
AB and AN denote the matrices of columns of A associated withB andN respectively.
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With this notation, the Eq. (5) may be written in partitioned form as

HBBxB + HBNxN + cB − AT
B y − zB = 0, xN + qN = 0,

HT
BN xB + HNNxN + cN − AT

N y − zN = 0, zB + rB = 0,

ABxB + AN xN + My − b = 0.

Eliminating xN and zB from these equations using the equalities xN + qN = 0 and
zB + rB = 0 yields the symmetric equations

(
HBB AT

B

AB −M

) (
xB

−y

)
=

(
HBNqN − cB − rB

ANqN + b

)
(6)

for xB and y. It follows that (5) has a unique solution if and only if (6) has a unique
solution. Therefore, if B is chosen to ensure that (5) has a unique solution, it must
follow from (6) that the matrix KB such that

KB =
(
HBB AT

B

AB −M

)
(7)

is nonsingular. Once xB and y have been computed, the zN -variables are given by

zN = HT
BNxB − HNNqN + cN − AT

N y. (8)

As in Gill and Wong [33], any set B such that KB is nonsingular is referred to as a
second-order consistent basis. Methods that impose restrictions on the eigenvalues of
KB are known as inertia-controlling methods. (For a description of inertia-controlling
methods for general quadratic programming, see, e.g., [33,37].)

The two methods proposed in this paper, one primal, one dual, generate a sequence
of iterates that satisfy the Eq. (5) for some partition B and N . If the conditions (5)
are satisfied, the additional requirement for fulfilling the optimality conditions of
Proposition 1 are xB +qB ≥ 0 and zN +rN ≥ 0. The primal method of Sect. 3 imposes
the restriction that xB + qB ≥ 0, which implies that the sequence of iterates is primal
feasible. In this case the method terminates when zB + rB ≥ 0 is satisfied. Conversely,
the dual method of Sect. 4 imposes dual feasibility bymeans of the bounds zN +rN ≥ 0
and terminates when xB + qB ≥ 0.

In both methods, an iteration starts and ends with a second-order consistent basis,
and comprises one or more subiterations. In each subiteration an index l and index
sets B and N are known such that B ∪ {l} ∪ N = {1, 2, …, n}. This partition defines
a search direction (�x,�y,�z) that satisfies the identities

H�x − AT�y − �z = 0, �xN = 0,

A�x + M�y = 0, �zB = 0.
(9)

As l /∈ B and l /∈ N , these conditions imply that neither �xl nor �zl are restricted to
be zero. The conditions �xN = 0 and �zB = 0 imply that (9) may be expressed in
the partitioned-matrix form
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⎛

⎜⎜
⎝

hll hTBl aTl 1
hBl HBB AT

B

hNl HT
BN AT

N I
al AB −M

⎞

⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

�xl
�xB

−�y
−�zl
−�zN

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ ,

where hll denotes the lth diagonal of H , and the column vectors hBl and hNl denote
the column vectors of elements hil and h jl with i ∈ B, and j ∈ N , respectively. It
follows that �xl , �xB , �y and �zl satisfy the homogeneous equations

⎛

⎝
hll hTBl aTl 1
hBl HBB AT

B

al AB −M

⎞

⎠

⎛

⎜⎜
⎝

�xl
�xB

−�y
−�zl

⎞

⎟⎟
⎠ =

⎛

⎝
0
0
0

⎞

⎠ , (10a)

and �zN is given by

�zN = hNl�xl + HT
BN�xB − AT

N �y. (10b)

The properties of these equations are established in the next subsection.

2.3 The linear algebra framework

This section establishes the linear algebra framework that serves to emphasize the
underlying symmetry between the primal and dual methods. It is shown that the search
direction for the primal and the dual method is a nonzero solution of the homogeneous
equations (10a), i.e., every direction is a nontrivial null vector of the matrix of (10a).
In particular, it is shown that the null-space of (10a) has dimension one, which implies
that the solution of (10a) is unique up to a scalar multiple. The length of the direction
is then completely determined by fixing either �xl = 1 or �zl = 1. The choice of
which component to fix depends on whether or not the corresponding component in a
null vector of (10a) is nonzero. The conditions are stated precisely in Propositions 3
and 4 below.

The first result shows that the components �xl and �zl of any direction (�x , �y,
�z) satisfying the identities (9) must be such that �xl�zl ≥ 0.

Proposition 2 If the vector (�x,�y,�z) satisfies the identities

H�x − AT�y − �z = 0,

A�x + M�y = 0,

then �xT�z = �xTH�x + �yTM�y ≥ 0. Moreover, given an index l and index
sets B andN such that B ∪ {l} ∪N = {1, 2, …, n} with �xN = 0 and �zB = 0, then
�xl�zl = �xTH�x + �yTM�y ≥ 0.
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Proof Premultiplying the first identity by �xT and the second by �yT gives

�xTH�x − �xTAT�y − �xT�z = 0, and �yTA�x + �yTM�y = 0.

Eliminating the term �xTAT�y gives �xTH�x + �yTM�y = �xT�z. By defi-
nition, H and M are symmetric positive semidefinite, which gives �xT�z ≥ 0. In
particular, if B ∪ {l} ∪ N = {1, 2, …, n}, with �xN = 0 and �zB = 0, it must hold
that �xT�z = �xl�zl ≥ 0. ��

The set of vectors (�xl , �xB , �y, �zl , �zN ) satisfying the Eq. (10) is completely
characterized by the properties of the matrices KB and Kl such that

KB =
(
HBB AT

B

AB −M

)
and Kl =

⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠ . (11)

The properties are summarized by the results of the following two propositions.

Proposition 3 Assume that KB is nonsingular. Let�xl be a given nonnegative scalar.

1. If �xl = 0, then the only solution of (10) is zero, i.e., �xB = 0, �y = 0, �zl = 0
and �zN = 0.

2. If �xl > 0, then the quantities �xB, �y, �zl and �zN of (10) are unique and
satisfy the equations

(
HBB AT

B

AB −M

) (
�xB

−�y

)
= −

(
hBl

al

)
�xl ,

�zl = hll�xl + hTBl�xB − aTl �y,

�zN = hNl�xl + HT
BN�xB − AT

N �y.

(12)

Moreover, either
(i) Kl is nonsingular and �zl > 0, or
(ii) Kl is singular and �zl = 0, in which case it holds that �y = 0, �zN = 0,

and the multiplicity of the zero eigenvalue of Kl is one, with corresponding
eigenvector (�xl ,�xB, 0).

Proof Proposition 2 implies that�zl ≥ 0 if�xl > 0, which implies that the statement
of the proposition includes all possible values of �zl . The second and third blocks of
the Eq. (10a) imply that

(
hBl

al

)
�xl +

(
HBB AT

B

AB −M

) (
�xB

−�y

)
=

(
0
0

)
. (13)

As KB is nonsingular by assumption, the vectors �xB and �y must constitute the
unique solution of (13) for a given value of �xl . Furthermore, given �xB and �y, the
quantities�zl and�zN of (12) are also uniquely defined. The specific value�xl = 0,
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gives �xB = 0 and �y = 0, so that �zl = 0 and �zN = 0. It follows that �xl must
be nonzero for at least one of the vectors �xB , �y, �zl or �zN to be nonzero.

Next it is shown that if �xl > 0, then either (2i) or (2ii) must hold. For (2i), it
is necessary to show that if �xl > 0 and Kl is nonsingular, then �zl > 0. If Kl is
nonsingular, the homogeneous equations (10a) may be written in the form

⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠

⎛

⎝
�xl
�xB

−�y

⎞

⎠ =
⎛

⎝
1
0
0

⎞

⎠ �zl , (14)

which implies that�xl ,�xB and�y are unique for a given value of�zl . In particular,
if �zl = 0 then �xl = 0, which would contradict the assumption that �xl > 0. If
follows that�zl must be nonzero. Finally, Proposition 2 implies that if�zl is nonzero
and �xl > 0, then �zl > 0 as required.

For the first part of (2ii), it must be shown that if Kl is singular, then�zl = 0. If Kl is
singular, it must have a nontrivial null vector (pl , pB ,−u). Moreover, every null vector
must have a nonzero pl , because otherwise (pB , −u) would be a nontrivial null vector
of KB , which contradicts the assumption that KB is nonsingular. A fixed value of pl
uniquely defines pB and u, which indicates that the multiplicity of the zero eigenvalue
must be one. A simple substitution shows that (pl , pB , −u, vl ) is a nontrivial solution
of the homogeneous equation (10a) such that vl = 0. As the subspace of vectors
satisfying (10a) is of dimension one, it follows that every solution is unique up to a
scalar multiple. Given the properties of the known solution (pl , pB , −u, 0), it follows
that every solution (�xl ,�xB ,−�y,−�zl ) of (10a) is an eigenvector associated with
the zero eigenvalue of Kl , with �zl = 0.

For the second part of (2ii), if �zl = 0, the homogeneous equations (10a) become

⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠

⎛

⎝
�xl
�xB

−�y

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ . (15)

As Kl is singular in (15), Proposition 5 of the “Appendix” implies that

⎛

⎝
hll hTBl
hBl HBB

al AB

⎞

⎠
(

�xl
�xB

)
=

⎛

⎝
0
0
0

⎞

⎠ , and

⎛

⎝
aTl
AT

B

−M

⎞

⎠ �y =
⎛

⎝
0
0
0

⎞

⎠ . (16)

The nonsingularity of KB implies that
(
AB − M

)
has full row rank, in which case

the second equation of (16) gives �y = 0. It follows that every eigenvector of Kl

associated with the zero eigenvalue has the form (�xl , �xB , 0). It remains to show
that �zN = 0. If Proposition 6 of the “Appendix” is applied to the first equation of
(16), then it must hold that

⎛

⎝
hll hTBl
hBl HBB

hNl HT
BN

⎞

⎠
(

�xl
�xB

)
=

⎛

⎝
0
0
0

⎞

⎠ .
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It follows from the definition of�zN in (12) that�zN = hNl�xl +HT
BN�xB−AT

N �y =
0, which completes the proof. ��
Proposition 4 Assume that Kl is nonsingular. Let �zl be a given nonnegative scalar.

1. If �zl = 0, then the only solution of (10) is zero, i.e., �xl = 0, �xB = 0, �y = 0
and �zN = 0.

2. If �zl > 0, then the quantities �xl , �xB, �y and �zN of (10) are unique and
satisfy the equations

⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠

⎛

⎝
�xl
�xB

−�y

⎞

⎠ =
⎛

⎝
1
0
0

⎞

⎠ �zl , (17a)

�zN = HNl�xl + HT
BN�xB − AT

N �y. (17b)

Moreover, either
(i) KB is nonsingular and �xl > 0, or
(ii) KB is singular and �xl = 0, in which case, it holds that �xB = 0 and the

multiplicity of the zero eigenvalue of KB is one, with corresponding eigenvector
(0,�y).

Proof In Proposition 2 it is established that �xl ≥ 0 if �zl > 0, which implies that
the statement of the proposition includes all possible values of �xl .

It follows from (10a) that �xl , �xB , and �y must satisfy the equations

⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠

⎛

⎝
�xl
�xB

−�y

⎞

⎠ =
⎛

⎝
�zl
0
0

⎞

⎠ . (18)

Under the given assumption that Kl is nonsingular, the vectors �xl , �xB and �y are
uniquely determined by (18) for a fixed value of �zl . In addition, once �xl , �xB and
�y are defined, �zN is uniquely determined by (17b). It follows that if �zl = 0, then
�xl = 0, �xB = 0, �y = 0 and �zN = 0.

It remains to show that if �zl > 0, then either (2i) or (2ii) must hold. If KB is
singular, then Proposition 5 of the “Appendix” implies that there must exist u and v

such that
(
HBB

AB

)
u =

(
0
0

)
and

(
AT

B

−M

)
v =

(
0
0

)
.

Proposition 6 of the “Appendix” implies that the vector u must also satisfy hTBlu = 0.
If u is nonzero, then (0, u, 0) is a nontrivial null vector for Kl , which contradicts the
assumption that Kl is nonsingular. It follows that

(
HBB AT

B

)
has full row rank and the

singularity of KB must be caused by dependent rows in
(
AB −M

)
. The nonsingularity

of Kl implies that
(
al AB − M

)
has full row rank and there must exist a vector v
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such that vTal 
= 0, vTAB = 0 and vTM = 0. If v is scaled so that vTal = −�zl ,
then (0, 0,−v) must be a solution of (18). It follows that �xl = 0, v = �y, and
(0,�y) is an eigenvector of KB associated with a zero eigenvalue. The nonsingularity
of Kl implies that v is unique given the value of the scalar �zl , and hence the zero
eigenvalue has multiplicity one.

Conversely, �xl = 0 implies that (�xB,�y) is a null vector for KB . However, if
KB is nonsingular, then the vector is zero, contradicting (17a). It follows that KB must
be singular. ��

3 A primal active-set method for convex QP

In this section a primal-feasible method for convex QP is formulated. Each iteration
begins and ends with a point (x, y, z) that satisfies the conditions

Hx + c − ATy − z = 0, xN + qN = 0, xB + qB ≥ 0,

Ax + My − b = 0, zB + rB = 0,
(19)

for appropriate second-order consistent bases. The purpose of the iterations is to drive
(x, y, z) to optimality by driving the dual variables to feasibility (i.e., by driving the
negative components of zN + rN to zero). Methods for finding B and N at the initial
point are discussed in Sect. 5.

An iteration consists of a group of one or more consecutive subiterations during
which a specific dual variable is made feasible. The first subiteration is called the base
subiteration. In some cases only the base subiteration is performed, but, in general,
additional intermediate subiterations are required.

At the start of the base subiteration, an index l in the nonbasic set N is identified
such that zl + rl < 0. The idea is to remove the index l from N (i.e., N ← N \{l})
and attempt to increase the value of zl + rl by taking a step along a primal-feasible
direction (�xl ,�xB ,�y,�zl ). The removal of l fromN implies thatB∪{l}∪N = {1,
2, …, n} with B second-order consistent. This implies that KB is nonsingular and the
(unique) search direction may be computed as in (12) with �xl = 1.

If �zl > 0, the step α∗ = −(zl + rl)/�zl gives zl + α∗�zl + rl = 0. Otherwise,
�zl = 0, and there is no finite value of α that will drive zl + α�zl + rl to its bound,
and α∗ is defined to be +∞. Proposition 11 of the “Appendix” implies that the case
�zl = 0 corresponds to the primal objective function being linear and decreasing
along the search direction.

Even if �zl is positive, it is not always possible to take the step α∗ and remain
primal feasible. A positive step in the direction (�xl , �xB , �y, �zl ) must increase xl
from its bound, but may decrease some of the basic variables. This makes it necessary
to limit the step to ensure that the primal variables remain feasible. The largest step
length that maintains primal feasibility is given by

αmax = min
i :�xi<0

xi + qi
−�xi

.
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If αmax is finite, this value gives xk + αmax�xk + qk = 0, where k is the index k =
argmini :�xi<0 (xi + qi )/(−�xi ). The overall step length is then α = min

(
α∗, αmax

)
.

An infinite value of α indicates that the primal problem (PQPq,r ) is unbounded, or,
equivalently, that the dual problem (DQPq,r ) is infeasible. In this case, the algorithm is
terminated. If the step α = α∗ is taken, then zl + α�zl + rl = 0, the subiterations are
terminated with no intermediate subiterations andB ← B∪{l}. Otherwise, α = αmax,
and the basic and nonbasic sets are updated asB ← B\{k} andN ← N ∪{k} giving a
new partitionB∪{l}∪N = {1, 2,…, n}. In order to show that the equations associated
with the new partition are well-defined, it is necessary to show that allowing zk tomove
does not give a singular Kl . Proposition 9 of the “Appendix” shows that the submatrix
Kl associated with the updated B and N is nonsingular for the cases �zl > 0 and
�zl = 0.

Because the removal of k from B does not alter the nonsingularity of Kl , it is
possible to add l to B and thereby define a unique solution of the system (5). However,
if zl + rl < 0, additional intermediate subiterations are required to drive zl + rl to
zero. In each of these subiterations, the search direction is computed by choosing
�zl = 1 in Proposition 4. The step length α∗ is given by α∗ = −(zl + rl)/�zl as in
the base subiteration above, but now α∗ is always finite because �zl = 1. Similar to
the base subiteration, if no constraint is added, then zl + α∗�zl + rl = 0. Otherwise,
the index of another blocking variable k is moved from B toN . Proposition 9 implies
that the updated matrix Kl is nonsingular at the end of an intermediate subiteration. As
a consequence, the intermediate subiterations may be repeated until zl + rl is driven
to zero.

At the end of the base subiteration or after the intermediate subiterations are com-
pleted, it must hold that zl + rl = 0 and the final Kl is nonsingular. This implies that
a new iteration may be initiated with the new basic set B ∪ {l} defining a nonsingular
KB .

The primal active-setmethod is summarized inAlgorithm1below.The convergence
properties of Algorithm 1 are established in Sect. 5, which concerns a general primal
algorithm that includes Algorithm 1 as a special case.

4 A dual active-set method for convex QP

Each iteration of the dual active-set method begins and ends with a point (x, y, z) that
satisfies the conditions

Hx + c − ATy − z = 0, xN + qN = 0,

Ax + My − b = 0, zB + rB = 0, zN + rN ≥ 0,
(20)

for appropriate second-order consistent bases. For the dual method, the purpose is to
drive the primal variables to feasibility (i.e., by driving the negative components of
x + q to zero).

An iteration begins with a base subiteration in which an index l in the basic set
B is identified such that xl + ql < 0. The corresponding dual variable zl may be
increased from its current value zl = −rl by removing the index l fromB, and defining
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Algorithm 1 A primal active-set method for convex QP.
Find (x, y, z) satisfying conditions (19) for some second-order consistent basis B;
while ∃ l : zl + rl < 0 do

N ← N \{l};
primal_base(B,N , l, x , y, z); [returns B,N , x , y, z]
while zl + rl < 0 do

primal_intermediate(B,N , l, x , y, z); [returns B,N , x , y, z]
end while
B ← B ∪ {l};

end while
function primal_base(B,N , l, x , y, z)

�xl ← 1; Solve

(
HBB ATB
AB −M

) (
�xB

−�y

)
= −

(
hBl
al

)
;

�zN ← hNl�xl + HT
BN�xB − ATN�y;

�zl ← hll�xl + hTBl�xB − aTl �y; [�zl ≥ 0]
α∗ ← −(zl + rl )/�zl ; [α∗ ← +∞ if �zl = 0]
αmax ← min

i :�xi<0
(xi + qi )/(−�xi ); k ← argmin

i :�xi<0
(xi + qi )/(−�xi );

α ← min
(
α∗, αmax

)
;

if α = +∞ then
stop; [(DQPq,r ) is infeasible]

end if
xl ← xl + α�xl ; xB ← xB + α�xB ;
y ← y + α�y; zl ← zl + α�zl ; zN ← zN + α�zN ;
if zl + rl < 0 then

B ← B\{k}; N ← N ∪ {k};
end if
return B, N , x , y, z;

end function
function primal_intermediate(B,N , l, x , y, z)

�zl ← 1; Solve

⎛

⎝
hll hTBl aTl
hBl HBB ATB
al AB −M

⎞

⎠

⎛

⎝
�xl
�xB

−�y

⎞

⎠ =
⎛

⎝
1
0
0

⎞

⎠; [�xl ≥ 0]

�zN ← HNl�xl + HT
BN�xB − ATN�y;

α∗ ← −(zl + rl );
αmax ← min

i :�xi<0
(xi + qi )/(−�xi ); k ← argmin

i :�xi<0
(xi + qi )/(−�xi );

α ← min
(
α∗, αmax

)
;

xl ← xl + α�xl ; xB ← xB + α�xB ;
y ← y + α�y; zl ← zl + α�zl ; zN ← zN + α�zN ;
if zl + rl < 0 then

B ← B\{k}; N ← N ∪ {k};
end if
return B, N , x , y, z;

end function

B ← B\{l}. Once l is removed from B, it holds that B ∪ {l} ∪ N = {1, 2,…, n}. The
resulting matrix Kl of (11) is nonsingular, and the unique direction (�xl ,�xB,�y)
may be computed with �zl = 1 in Proposition 4.

If �xl > 0, the step α∗ = −(xl + ql)/�xl gives xl + α∗�xl + ql = 0. Otherwise,
�xl = 0 and Proposition 11 of the “Appendix” implies that the dual objective function
is linear and increasing along (�x,�y,�z). In this case α∗ = +∞. As xl + ql is
increased towards zero, some nonbasic dual variables may decrease and the step must
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be limited by αmax = mini :�zi<0 (zi + ri )(−�zi ) to maintain feasibility of the
nonbasic dual variables. This gives the step α = min

(
α∗, αmax

)
. If α = +∞, the dual

problem is unbounded and the iteration is terminated. This is equivalent to the primal
problem (PQPq,r ) being infeasible. If α = α∗, then xl + α�xl + ql = 0. Otherwise, it
must hold that α = αmax andN and B are redefined asN = N \{k} and B = B∪{k},
where k is the index k = argmini :�zi<0 (zi + ri )/(−�zi ). The partition at the new
point satisfies B ∪ {l} ∪ N = {1, 2, …, n}. Proposition 10 of the “Appendix” shows
that the new KB is nonsingular for both of the cases �xl > 0 and �xl = 0.

If xl+ql < 0 at the newpoint, then at least one intermediate subiteration is necessary
to drive xl +ql to zero. The nonsingularity of KB implies that the search direction may
be computedwith�xl = 1 in Proposition 3. As in the base subiteration, the step length
is α∗ = −(xl + ql)/�xl , but in this case α∗ can never be infinite because �xl = 1.
If no constraint index is added to B, then xl + α�xl + ql = 0. Otherwise, the index
k of a blocking variable is moved from N to B. Proposition 10 of the “Appendix”
implies that the updated KB is nonsingular at the end of an intermediate subiteration.
Once xl + ql is driven to zero, the index l is moved to N and a new iteration is
started.

The dual active-set method is summarized in Algorithm 2 below. Its convergence
properties are discussed in Sect. 5.5.

5 Combining primal and dual active-set methods

The primal active-set method proposed in Sect. 3 may be used to solve (PQPq,r ) for
a given initial second-order consistent basis satisfying the conditions (19). An appro-
priate initial point may be found by solving a conventional phase-1 linear program.
Alternatively, the dual active-set method of Sect. 4 may be used in conjunction with
an appropriate phase-1 procedure to solve the quadratic program (PQPq,r ) for a given
initial second-order consistent basis satisfying the conditions (20). In this section a
method is proposed that provides an alternative to the conventional phase-1/phase-2
approach. It is shown that a pair of coupled quadratic programs may be created from
the original by simultaneously shifting the bound constraints. Any second-order con-
sistent basis can be made optimal for such a primal–dual pair of shifted problems.
The shifts are then updated using the solution of either the primal or the dual shifted
problem. An obvious application of this approach is to solve a shifted dual QP to
define an initial feasible point for the primal, or vice-versa. This strategy provides an
alternative to the conventional phase-1/phase-2 approach that utilizes the QP objective
function while finding a feasible point.

5.1 Finding an initial second-order-consistent basis

For themethods described in Sect. 5.2 below, it is possible to define a simple procedure
for finding the initial second-order consistent basis B such that the matrix KB of (7) is
nonsingular. The required basis may be obtained by finding a symmetric permutation
Π of the “full” KKT matrix K such that

123



484 A. Forsgren et al.

Algorithm 2 A dual active-set method for convex QP.
Find (x, y, z) satisfying conditions (20) for some second-order consistent basis B;
while ∃ l : xl + ql < 0 do

B ← B\{l};
dual_base(B,N , l, x , y, z); [Base subiteration]
while xl + ql < 0 do

dual_intermediate(B,N , l, x , y, z); [Intermediate subiteration]
end while
N ← N ∪ {l};

end while
function dual_base(B,N , l, x , y, z)

�zl ← 1; Solve

⎛

⎝
hll hTBl aTl
hBl HBB ATB
al AB −M

⎞

⎠

⎛

⎝
�xl
�xB

−�y

⎞

⎠ =
⎛

⎝
1
0
0

⎞

⎠; [�xl ≥ 0]

�zN ← hNl�xl + HT
BN�xB − ATN�y;

α∗ ← −(xl + ql )/�xl ; [α∗ ← +∞ if �xl = 0]
αmax ← min

i :�zi<0
(zi + ri )/(−�zi ); k ← argmin

i :�zi<0
(zi + ri )/(−�zi );

α ← min
(
α∗, αmax

)
;

if α = +∞ then
stop; [(PQPq,r ) is infeasible]

end if
xl ← xl + α�xl ; xB ← xB + α�xB ;
y ← y + α�y; zl ← zl + α�zl ; zN ← zN + α�zN ;
if xl + ql < 0 then

B ← B ∪ {k}; N ← N \{k};
end if
return B, N , x , y, z;

end function
function dual_intermediate(B,N , l, x , y, z)

�xl ← 1; Solve

(
HBB ATB
AB −M

)(
�xB

−�y

)
= −

(
hBl
al

)
;

�zl ← hll�xl + hTBl�xB − aTl �y; [�zl ≥ 0]

�zN ← hNl�xl + HT
BN�xB − ATN�y;

α∗ ← −(xl + ql );
αmax ← min

i :�zi<0
(zi + ri )/(−�zi ); k ← argmin

i :�zi<0
(zi + ri )/(−�zi );

α ← min
(
α∗, αmax

)
;

xl ← xl + α�xl ; xB ← xB + α�xB ;
y ← y + α�y; zl ← zl + α�zl ; zN ← zN + α�zN ;
if xl + ql < 0 then

B ← B ∪ {k}; N ← N \{k};
end if
return B, N , x , y, z;

end function

ΠT KΠ = ΠT
(
H AT

A −M

)
Π =

⎛

⎝
HBB AT

B HBN

AB −M AN

HT
BN AT

N HNN

⎞

⎠ , (21)

where the leading principal block 2×2 submatrix is of the form (7). The full row-rank
assumption on

(
A − M

)
ensures that the permutation (21) is well defined, see [28,

Section 6]. In practice, the permutation may be determined using any method for
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finding a symmetric indefinite factorization of K , see, e.g., [10,11,25]. Such methods
use symmetric interchanges that implicitly form the nonsingular matrix KB by defer-
ring singular pivots. In this case, KB may be defined as any submatrix of the largest
nonsingular principal submatrix obtained by the factorization. (There may be further
permutations within Π that are not relevant to this discussion; for further details,
see, e.g., [20,21,28,29].) The permutation Π defines the initial B-N partition of the
columns of A, i.e., it defines an initial second-order consistent basis.

5.2 Initializing the shifts

Given a second-order consistent basis, it is straightforward to create shifts (q(0), r (0))
and corresponding (x, y, z) so that q(0) ≥ 0, r (0) ≥ 0 and (x, y, z) are optimal
for (PQPq(0),r (0) ) and (DQPq(0),r (0) ). First, choose nonnegative vectors q(0)

N and r (0)
B .

(Obvious choices are q(0)
N = 0 and r (0)

B = 0.) Define zB = −r (0)
B , xN = −q(0)

N ,
and solve the nonsingular KKT-system (6) to obtain xB and y, and compute zN from
(8). Finally, let q(0)

B ≥ max{−xB, 0} and r (0)
N ≥ max{−zN , 0}. Then, it follows from

Proposition 1 that x , y and z are optimal for the problems (PQPq(0),r (0) ) and (DQPq(0),r (0) ),

with q(0) ≥ 0 and r (0) ≥ 0. If q(0) and r (0) are zero, then x , y and z are optimal for
the original problem.

5.3 Solving the original problem by removing the shifts

The original problem may now be solved as a pair of shifted quadratic programs.
Two alternative strategies are proposed. The first is a “primal first” strategy in which
a shifted primal quadratic program is solved, followed by a dual. The second is an
analogous “dual first” strategy.

The “primal-first” strategy is summarized as follows.

(0) Find B, N , q(0), r (0), x , y, z, as described in Sects. 5.1 and 5.2.
(1) Set q(1) = q(0), r (1) = 0. Solve (PQPq,0) using the primal active-set method.
(2) Set q(2) = 0, r (2) = 0. Solve (DQP0,0) using the dual active-set method.

In steps (1) and (2), the initial B–N partition and initial values of x , y, and z are
defined as the final B–N partition and final values of x , y, and z from the preceding
step. The “dual-first” strategy is defined in an analogous way.

(0) Find B, N , q(0), r (0), x , y, z, as described in Sects. 5.1 and 5.2.
(1) Set q(1) = 0, r (1) = r (0). Solve (DQP0,r ) using the dual active-set method.
(2) Set q(2) = 0, r (2) = 0. Solve (PQP0,0) using the primal active-set method.

As in the “primal-first” strategy, the initial B–N partition and initial values of x , y,
and z for steps (1) and (2), are defined as the final B–N partition and final values of
x , y, and z from the preceding step.

(The strategies of solving two consecutive quadratic programs may be generalized
to a sequence ofmore than two quadratic programs,wherewe alternate between primal
and dual active-set methods, and eliminate the shifts in more than two steps.)
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In order for these approaches to be well-defined, a simple generalization of the
primal and dual active-set methods of Algorithms 1 and 2 is required.

5.4 Relaxed initial conditions for the primal QP method

For Algorithm 1, the initial values of B, N , q, r , x , y, and z must satisfy conditions
(19). However, the choice of r = r (2) = 0 in Step (2) of the dual-first strategy may
give some negative components in the vector zB + rB . This possibility may be handled
by defining a simple generalization of Algorithm 1 that allows initial points satisfying
the conditions

Hx + c − ATy − z = 0, xN + qN = 0, xB + qB ≥ 0,

Ax + My − b = 0, zB + rB ≤ 0,
(22)

instead of the conditions (19). In Algorithm 1, the index l identified at the start of
the primal base subiteration is selected from the set of nonbasic indices such that
z j + r j < 0. In the generalized algorithm, the set of eligible indices for l is extended
to include indices associated with negative values of zB + rB . If the index l is deleted
from B, the associated matrix Kl is nonsingular, and intermediate subiterations are
executed until the updated value satisfies zl + rl = 0. At this point, the index l is
returned B. The method is summarized in Algorithm 3.

Algorithm 3 A primal active-set method for convex QP.
Find (x, y, z) satisfying conditions (22) for some second-order consistent basis B;
while ∃ l : zl + rl < 0 do

if l ∈ N then
N ← N \{l};
primal_base(B,N , l, x , y, z); [returns B,N , x , y, z]

else
B ← B\{l};

end if
while zl + rl < 0 do

primal_intermediate(B,N , l, x , y, z); [returns B,N , x , y, z]
end while
B ← B ∪ {l};

end while

This section concludes with a convergence result for the primal method of Algo-
rithm 3. In particular, it is shown that the algorithm is well-defined, and terminates in
a finite number of iterations if (PQPq,r ) is nondegenerate. We define nondegeneracy to
mean that a nonzero step in the x-variables is taken at each iteration of Algorithm 3
that involves a base subiteration. A sufficient condition on (PQPq,r ) for this to hold
is that the gradients of the equality constraints and active bound constraints are lin-
early independent at each iterate. See, e.g., Fletcher [26] for further discussion of
these issues. As the active-set strategy uses the same criteria for adding and deleting
variables as those used in the simplex method, standard pivot selection rules used to
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avoid cycling in linear programming, such as lexicographical ordering, least-index
selection or perturbation may be applied directly to the method proposed here (see,
e.g., [7,14,17,49]).

Theorem 1 Given a primal-feasible point (x0, y0, z0) satisfying conditions (22) for a
second-order consistent basis B0, then Algorithm 3 generates a sequence of second-
order consistent bases {B j } j>0. Moreover, if problem (PQPq,r ) is nondegenerate, then
Algorithm 3 finds a solution of (PQPq,r ) or determines that (DQPq,r ) is infeasible in a
finite number of iterations.

Proof Assume that (x, y, z) satisfies the conditions (22) for the second-order con-
sistent basis B. Propositions 3 and 4 imply that the KKT matrices associated with
subsequent base and intermediate iterations are nonsingular, in which case each basis
is second-order consistent. Let B< denote the index set B< = {i ∈ B : zi + ri < 0},
and let r̃ be the vector r̃ i = ri , i /∈ B<, and r̃ i = −zi , i ∈ B<. These definitions imply
that r̃ i = −zi > −zi + zi + ri = ri , for every i ∈ B<. It follows that r̃ ≥ r , and the
feasible region of (DQPq,r ) is a subset of the feasible region of (DQPq ,̃r ). In addition, if
r is replaced by r̃ in (19), the only difference is that zB + r̃ B = 0, i.e., the initial point
for (22) is a stationary point with respect to (PQPq ,̃r ).

The first step of the proof is to show that after a finite number of iterations of
Algorithm 3, one of three possible events must occur: (i) the cardinality of the set
B< is decreased by at least one; (ii) a solution of problem (PQPq,r ) is found; or (iii)
(DQPq,r ) is declared infeasible. The proof will also establish that if (i) does not occur,
then either (ii) or (iii) must hold after a finite number of iterations.

Assume that (i) never occurs. This implies that the index l selected in the base
subiteration can never be an index in B< because at the end of such an iteration, it
would belong to B with zl + rl = 0, contradicting the assumption that the cardinality
of B< never decreases. For the same reason, it must hold that k /∈ B< for every
index k selected to be moved from B to N in any subiteration, because an index
can only be moved from N to B by being selected in the base subiteration. These
arguments imply that zi = −r̃ i , with i ∈ B<, throughout the iterations. It follows
that the iterates may be interpreted as being members of a sequence constructed for
solving (PQPq ,̃r ) with a fixed r̃ , where the initial stationary point is given, and each
iteration gives a new stationary point. The nondegeneracy assumption implies that
α�x 
= 0 for at least one subiteration. For the base subiteration, �xl > 0, and it
follows from Proposition 4 that �x 
= 0 if and only if �xl > 0 for an intermediate
subiteration. Therefore, Proposition 11 shows that the objective value of (PQPq ,̃r ) is
strictly decreasing for a subiteration where α�x 
= 0. In addition, the objective value
of (PQPq ,̃r ) is nonincreasing at each subiteration, so a strict overall improvement of
the objective value of (PQPq ,̃r ) is obtained at each iteration. As there are only a finite
number of stationary points, Algorithm 3 either solves (PQPq ,̃r ) or concludes that
(DQPq ,̃r ) is infeasible after a finite number of iterations. If (PQPq ,̃r ) is solved, then
zN + rN ≥ 0, because r̃ j = r j for j ∈ N . Hence, Algorithm 3 can not proceed further
by selecting an l ∈ N , and the only way to reduce the objective is to select an l in B
such that z j + r j < 0. Under the assumption that (i) does not occur, it must hold that
no eligible indices exist and B< = ∅. However, in this case (PQPq,r ) has been solved
with r̃ = r , and (ii) must hold. If Algorithm 3 declares (DQPq ,̃r ) to be infeasible, then
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(DQPq,r ) must also be infeasible because the feasible region of (DQPq,r ) is contained
in the feasible region of (DQPq ,̃r ). In this case (DQPq,r ) is infeasible and (iii) occurs.

Finally, if (i) occurs, there is an iteration at which the cardinality of B< decreases
and an index is removed from B<. There may be more than one such index, but there
is at least one l moved from B< to B\B<, or one k moved from B< to N . In either
case, the cardinality of B< is decreased by at least one. After such an iteration, the
argument given above may be repeated for the new set B< and new shift r̃ . Applying
this argument repeatedly gives the result that the situation (i) can occur only a finite
number of times.

It follows that (ii) or (iii) must occur after a finite number of iterations, which is the
required result. ��

5.5 Relaxed initial conditions for the dual QP method

Analogous to the primal case, the choice of q = q(2) = 0 in Step (2) of the primal-first
strategy may give some negative components in the vector xN + qN . In this case, the
conditions (20) on the initial values of B, N , q, r , x , y, and z are relaxed so that

Hx + c − ATy − z = 0, xN + qN ≤ 0,

Ax + My − b = 0, zB + rB = 0, zN + rN ≥ 0.
(23)

Similarly, the set of eligible indices may be extended to include indices associated
with negative values of xN + qN . If the index l is from N , the associated matrix
KB is nonsingular, and intermediate subiterations are executed until the updated value
satisfies xl + ql = 0.At this point, the index l is returnedN . Themethod is summarized
in Algorithm 4.

Algorithm 4 A dual active-set method for convex QP.
Find (x, y, z) satisfying conditions (23) for some second-order consistent B;
while ∃ l : xl + ql < 0 do

if l ∈ B then
B ← B\{l};
dual_base(B,N , l, x , y, z); [Base subiteration]

else
N ← N \{l};

end if
while xl + ql < 0 do

dual_intermediate(B,N , l, x , y, z); [Intermediate subiteration]
end while
N ← N ∪ {l};

end while

A convergence result analogous to Theorem 1 holds for the dual algorithm. In this
case, the nondegeneracy assumption concerns the linear independence of the gradients
of the equality constraints and active bounds for (DQPq,r ).
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Theorem 2 Given a dual-feasible point (x0, y0, z0) satisfying conditions (23) for a
second-order consistent basis B0, then Algorithm 4 generates a sequence of second-
order consistent bases {B j } j>0. Moreover, if problem (DQPq,r ) is nondegenerate, then
Algorithm 4 either solves (DQPq,r ) or concludes that (PQPq,r ) is infeasible in a finite
number of iterations.

Proof The proof mirrors that of Theorem 1 for the primal method. ��

6 Practical issues

As stated, the primal quadratic program has lower bound zero on the x-variables.
This is for notational convenience. This form may be generalized in a straightforward
manner to a formwhere the x-variables has both lower and upper bounds on the primal
variables, i.e., bL ≤ x ≤ bU , where components of bL can be −∞ and components of
bU can be +∞. Given primal shifts qL and qU , and dual shifts rL and rU , we have the
primal–dual pair

(PQPq,r )
minimize

x,y
1
2 x

THx + 1
2 y

TMy + cTx + (rL − rU )Tx

subject to Ax + My = b, bL − qL ≤ x ≤ bU + qU ,

and

(DQPq,r )
maximize
x,y,zL ,zU

− 1
2 x

THx − 1
2 y

TMy + bTy + (bL − qL)
TzL − (bU + qU )TzU

subject to −Hx + ATy + zL − zU = c, zL ≥ −rL, zU ≥ −rU .

An infinite bound has neither a shift nor a corresponding dual variable. For example,
if the j th components of bL and bU are infinite, then the corresponding variable x j is
free. In the procedure given in Sect. 5.1 for finding the first second-order consistent
basis B, it is assumed that variables with indices not selected for B are initialized at
one of their bounds. As a free variable has no finite bounds, any index j associated
with a free variable should be selected for B. However, this cannot be guaranteed in
practice, and it is shown below that the primal and dual QP methods may be extended
to allow a free variable to be fixed temporarily at some value.

If the QP is defined in the general problem format of Sect. 6, then any free variable
not selected for B has no upper or lower bound and must be temporarily fixed at
some value x j = x̄ j (say). The treatment of such “temporary bounds” involves some
additional modifications to the primal and dual methods of Sects. 5.4 and 5.5.

Each temporary bound x j = x̄ j defines an associated dual variable z j with initial
value z̄ j . As the bound is temporary, it is treated as an equality constraint, and the
desired value of z j is zero. Initially, an index j corresponding to a temporary bound is
assigned a primal shift q j = 0 and a dual shift r j = −z̄ j , making x̄ j and z̄ j feasible
for the shifted problem. In both the primal-first and dual-first approaches, the idea is
to drive the z j -variables associated with temporary bounds to zero in the primal and
leave them unchanged in the dual.
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In a primal problem, regardless of whether it is solved before or after the dual prob-
lem, an index j corresponding to a temporary bound for which z j 
= 0 is considered
eligible for selection as l in the base subiteration, i.e., the index can be selected regard-
less of the sign of z j . Once selected, z j is driven to zero and j belongs to B after such
an iteration. In addition, as x j has no finite bounds, j will remain in B throughout the
iterations. Hence, at termination of a primal problem, any index j corresponding to
a temporarily bounded variable must have z j = 0. If the maximum step length at a
base subiteration is infinite, the dual problem is infeasible, as in the case of a regular
bound.

In a dual problem, the dual method is modified so that the dual variables associated
with temporary bounds remain fixed throughout the iterations. At any subiteration, if
it holds that �z j 
= 0 for some temporary bound, then no step is taken and one such
index j ismoved fromN toB. Consequently, amove ismade only if�z j = 0 for every
temporary bound j . It follows that the dual variables for the temporary bounds will
remain unaltered throughout the dual iterations. Note that an index j corresponding
to a temporary bound is moved from N to B at most once, and is never moved back
because the corresponding x j -variable has no finite bounds. If the maximum step
length at a base subiteration is infinite, it must hold that �z j = 0 for all temporary
bounds j , and the primal problem is infeasible.

The discussion above implies that a pair of primal and dual problems solved consec-
utively will terminate with z j = 0 for all indices j associated with temporary bounds.
This is because z j is unchanged in the dual problem and driven to zero in the primal
problem.

7 Numerical examples

This section concerns a particular formulation of the combined primal–dual method
of Sect. 5 in which either a “primal-first” or “dual-first” strategy is selected based
on the initial point. In particular, if the point is dual feasible, then the “dual-first”
strategy is used, otherwise, the “primal-first” strategy is selected. Some numerical
experiments are presented for a simple Matlab implementation applied to a set of
convex problems from the CUTEst test collection (see [9,45,47]).

7.1 The test problems

Each QP problem in the CUTEst test set may be written in the form

minimize
x

1
2 x

TĤ x + cTx subject to � ≤
(

x
Âx

)
≤ u,

where � and u are constant vectors of lower and upper bounds, and Â has dimension
m × n. In this format, a fixed variable or equality constraint has the same value for its
upper and lower bound. Each problem was converted to the equivalent form
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minimize
x,s

1
2 x

TĤ x + cTx subject to Âx − s = 0, � ≤
(
x
s

)
≤ u, (24)

where s is a vector of slack variables. With this formulation, the QP problem involves
simple upper and lower bounds instead of nonnegativity constraints. It follows that the
matrix M is zero, but the full row-rank assumption on the constraint matrix is satisfied
because the constraint matrix A takes the form

(
Â − I

)
and has rank m.

Numerical results were obtained for a set of 121 convex QPs in standard interface
format (SIF). The problems were selected based on the dimension of the constraint
matrix A in (24). In particular, the test set includes all QP problems for which the
smaller of m and n is of the order of 500 or less. This gave 121 QPs ranging in size
from BQP1VAR (one variable and one constraint) to LINCONT (1257 variables and
419 constraints).

7.2 The implementation

The combined primal–dual active-set method was implemented inMatlab as Algo-
rithm PDQP. For illustrative purposes, results were obtained for PDQP and the QP
solver SQOPT [40], which is a Fortran implementation of a conventional two-phase
(primal) active-set method for large-scale QP. Both PDQP and SQOPT use the method
of variable reduction, which implicitly transforms a KKT system of the form (6) into
a block-triangular system. The general QP constraints Âx − s = 0 are partitioned
into the form BxB + SxS + AN xN = 0, where B is square and nonsingular, with
AB = (

B S
)
and xB = (xB, xS). The vectors xB, xS, xN are the associated basic,

superbasic, and nonbasic components of (x, s) (see [39]). If H denotes the Hessian Ĥ
of (24) augmented by the zero rows and columns corresponding to the slack variables,
then the reduced Hessian ZTH Z is defined in terms of the matrix Z such that

Z = P

⎛

⎝
−B−1S

I
0

⎞

⎠ ,

where P permutes the columns of
(
Â − I

)
into the order

(
B S AN

)
. The matrix Z

is used only as an operator, i.e., it is not stored explicitly. Products of the form Zv or
ZTu are obtained by solving with B or BT . With these definitions, the resulting block
lower-triangular system has diagonal blocks ZTH Z , B and BT .

The initial nonsingular B is identified using anLU factorization of AT . The resulting
Z is used to form ZTH Z , and a partial Cholesky factorization with interchanges is be
used to find an upper-triangular matrix R that is the factor of the largest nonsingular
leading submatrix of ZTH Z . If ZR denotes the columns of Z corresponding to R, and
Z is partitioned as Z = (

ZR ZA

)
, then the index set B consisting of the union of the

column indices of B and the indices corresponding to ZR defines an appropriate initial
second-order consistent basis.

All SQOPT runs were made using the default parameter options. Both PDQP and
SQOPT are terminated at a point (x, y, z) that satisfies the optimality conditions of
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Proposition 1 modified to conform to the constraint format of (24). The feasibility and
optimality tolerances are given by εfea = 10−6 and εopt = 10−6, respectively. For a
given εopt, PDQP and SQOPT terminate when

max
i∈B

|zi | ≤ εopt‖y‖∞, and

{
zi ≥ −εopt‖y‖∞ if xi ≥ −�i , i ∈ N ;
zi ≤ εopt‖y‖∞ if xi ≤ ui , i ∈ N .

Both PDQP and SQOPT use the EXPAND anti-cycling procedure of Gill et al. [35]
to allow the variables (x, s) to move outside their bounds by as much as εfea. The
EXPAND procedure does not guarantee that cycling will never occur (see Hall and
McKinnon [48] for an example). Nevertheless, in many years of use, the authors have
never known EXPAND to cycle on a practical problem.

7.3 Numerical results

PDQP and SQOPT were applied to the 121 problems considered in Sect. 7.1. A sum-
mary of the results is given in Table 1. The first four columns give the name of the
problem, the number of linear constraintsm, the number of variablesn, and the optimal
objective value Objective. The next two columns summarize the SQOPT result for
the given problem, with Phs1 and Itn giving the phase-one iterations and iteration
total, respectively. The last four columns summarize the results for PDQP. The first
column gives the total number of primal and dual iterations Itn. The second column
gives the order in which the primal and dual algorithms were applied, with PD indicat-
ing the “primal-first” strategy, and DP the “dual-first” strategy. The final two columns,
headed by p-Itn, and d-Itn, give the iterations required for the primal method and
the dual method, respectively.

Of the 121 problems tested, two (LINCONT and NASH) are known to be infeasible.
This infeasibility was identified correctly by both SQOPT and PDQP. In total, SQOPT
solved 117 of the remaining 119 problems, but declared (incorrectly) that problems
RDW2D51U and RDW2D52U are unbounded. PDQP solved the same number of prob-
lems, but failed to achieve the required accuracy for the problems RDW2D51B and
RDW2D52F. In these two cases, the final objective values computed by PDQP were
1.0947648E−02 and 1.0491239E−02 respectively, instead of the optimal val-
ues 1.0947332e−02 and 1.0490828e−02. (The five RDW2D5* problems in
the test set are known to be difficult to solve, see [33].)

Figure 1 gives a performance profile (in log2 scale) for the iterations required by
PDQP and SQOPT. (For more details on the use of performance profiles, see [19].)
The figure profiles the total iterations for PDQP, the number of phase-2 iterations for
SQOPT, and the sum of phase-1 and phase-2 iterations for SQOPT. Some care must
be taken when interpreting the results in the profile. First, the CUTEst test set contains
several groups made up of similar variants of the same problem. In this situation, the
profiles can be skewedby the fact that amethodwill tend to exhibit similar performance
on all the problems in the group. For example, PDQP performs significantly better than
SQOPT on all four JNLBRNG* problems, but significantly worse on all 12 LISWET*
problems.
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Table 1 Results for PDQP and SQOPT on 121 CUTEst QPs

Name m n Objective SQOPT PDQP

Phs1 Itn Itn Order P-Itn D-Itn

ALLINQP 50 100 −9.1592833E+00 0 45 65 PD 63 2

AUG2DQP 100 220 1.7797215E+02 8 116 440 PD 326 114

AUG3D 27 156 8.3333333E−02 0 45 45 DP 0 45

AVGASA 10 8 −4.6319255E+00 5 8 5 DP 0 5

AVGASB 10 8 −4.4832193E+00 5 8 7 DP 0 7

BIGGSB1 1 100 1.5000000E−02 0 103 101 PD 101 0

BQP1VAR 1 1 0.0000000E+00 0 1 1 DP 0 1

BQPGABIM 1 50 −3.7903432E−05 0 36 7 PD 7 0

BQPGASIM 1 50 −5.5198140E−05 0 40 8 PD 8 0

CHENHARK 1 100 −2.0000000E+00 0 132 32 DP 0 32

CVXBQP1 1 100 2.2725000E+02 0 100 119 DP 2 117

CVXQP1 50 100 1.1590718E+04 5 67 91 DP 1 90

CVXQP2 25 100 8.1209404E+03 2 82 85 DP 2 83

CVXQP3 75 100 1.1943432E+04 17 46 113 DP 2 111

DEGENQP 1005 10 0.0000000E+00 0 6 18 PD 18 0

DTOC3 18 29 2.2459038E+02 1 10 17 DP 0 17

DUAL1 1 85 3.5012967E−02 0 88 88 PD 88 0

DUAL2 1 96 3.3733671E−02 0 99 99 PD 99 0

DUAL3 1 111 1.3575583E−01 0 106 106 PD 106 0

DUAL4 1 75 7.4609064E−01 0 61 61 PD 61 0

DUALC1 215 9 6.1552516E+03 1 9 4 DP 0 4

DUALC2 229 7 3.5513063E+03 2 4 4 DP 0 4

DUALC5 278 8 4.2723256E+02 1 7 6 DP 0 6

DUALC8 503 8 1.8309361E+04 4 6 8 DP 0 8

GENHS28 8 10 9.2717369E−01 0 3 5 DP 0 5

GMNCASE2 1050 175 −9.9444495E−01 18 99 91 DP 0 91

GMNCASE3 1050 175 1.5251466E+00 31 100 86 DP 0 86

GMNCASE4 350 175 5.9468849E+03 74 171 175 DP 0 175

GOULDQP2 199 399 9.0045697E−06 0 213 419 DP 0 419

GOULDQP3 199 399 5.6732908E−02 0 200 406 PD 205 201

GRIDNETA 100 180 9.5242163E+01 5 35 134 PD 81 53

GRIDNETB 100 180 4.7268237E+01 0 81 97 DP 0 97

GRIDNETC 100 180 4.8352347E+01 6 93 153 DP 0 153

HS3 1 2 0.0000000E+00 0 2 1 PD 1 0

HS3MOD 1 2 1.2325951E−32 0 2 1 PD 1 0

HS21 1 2 −9.9960000E+01 0 1 0 PD 0 0

HS28 1 3 1.2325951E−32 0 2 0 PD 0 0

HS35 1 3 1.1111111E−01 0 5 1 DP 0 1
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Table 1 continued

Name m n Objective SQOPT PDQP

Phs1 Itn Itn Order P-Itn D-Itn

HS35I 1 3 1.1111111E−01 0 5 1 DP 0 1

HS35MOD 1 3 2.5000000E−01 0 1 0 PD 0 0

HS44 6 4 −1.5000000E+01 0 2 4 PD 4 0

HS44NEW 6 4 −1.5000000E+01 0 4 9 PD 9 0

HS51 3 5 −8.8817841E−16 0 2 0 DP 0 0

HS52 3 5 5.3266475E+00 0 2 1 DP 0 1

HS53 3 5 4.0930232E+00 0 2 1 DP 0 1

HS76 3 4 −4.6818181E+00 0 4 4 DP 0 4

HS76I 3 4 −4.6818181E+00 0 4 4 DP 0 4

HS118 17 15 6.6482045E+02 0 21 23 DP 0 23

HS268 5 5 7.2759576E−12 0 8 0 PD 0 0

HUES-MOD 2 100 3.4829823E+07 1 103 7 DP 0 7

HUESTIS 2 100 3.4829823E+09 1 103 7 DP 0 7

JNLBRNG1 1 529 −1.8004556E−01 0 292 82 PD 82 0

JNLBRNG2 1 529 −4.1023852E+00 0 252 42 PD 42 0

JNLBRNGA 1 529 −3.0795806E−01 0 292 292 PD 292 0

JNLBRNGB 1 529 −6.5067871E+00 0 247 247 PD 247 0

KSIP 1001 20 5.7579792E−01 0 2847 36 DP 0 36

LINCONT 419 1257 Infeasible 138 138i 304i DP 0 304

LISWET1 100 106 2.6072632E−01 0 52 401 DP 0 401

LISWET2 100 106 2.5876398E−01 0 63 378 DP 0 378

LISWET3 100 106 2.5876398E−01 0 64 378 DP 0 378

LISWET4 100 106 2.5876399E−01 0 61 378 DP 0 378

LISWET5 100 106 2.5876410E−01 0 58 378 DP 0 378

LISWET6 100 106 2.5876390E−01 0 67 378 DP 0 378

LISWET7 100 106 2.5895785E−01 0 68 378 DP 0 378

LISWET8 100 106 2.5747454E−01 0 94 417 DP 0 417

LISWET9 100 103 2.1543892E+01 0 28 263 DP 0 263

LISWET10 100 106 2.5874831E−01 0 68 378 DP 0 378

LISWET11 100 106 2.5704145E−01 0 68 379 DP 0 379

LISWET12 100 106 9.1994948E+00 0 37 460 DP 0 460

LOTSCHD 7 12 2.3984158E+03 4 8 16 DP 0 16

MOSARQP1 10 100 −1.5420010E+02 0 102 52 DP 0 52

MOSARQP2 10 100 −2.0651670E+02 0 100 33 DP 0 33

NASH 24 72 Infeasible 5 5i 24i DP 0 24

OBSTCLAE 1 529 1.6780270E+00 0 605 178 DP 0 178

OBSTCLAL 1 529 1.6780270E+00 0 263 263 PD 263 0

OBSTCLBL 1 529 6.5193252E+00 0 469 469 PD 469 0

OBSTCLBM 1 529 6.5193252E+00 0 484 189 DP 0 189
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Table 1 continued

Name m n Objective SQOPT PDQP

Phs1 Itn Itn Order P-Itn D-Itn

OBSTCLBU 1 529 6.5193252E+00 0 303 303 PD 303 0

OSLBQP 1 8 6.2500000E+00 0 6 0 PD 0 0

PENTDI 1 500 −7.5000000E−01 0 2 2 PD 2 0

POWELL20 100 100 5.2703125E+04 49 52 99 DP 0 99

PRIMAL1 85 325 −3.5012967E−02 0 217 70 PD 70 0

PRIMAL2 96 649 −3.3733671E−02 0 407 97 PD 97 0

PRIMAL3 111 745 −1.3575583E−01 0 1223 102 PD 102 0

PRIMAL4 75 1489 −7.4609064E−01 0 1264 63 PD 63 0

PRIMALC1 9 230 −6.1552516E+03 0 18 5 PD 5 0

PRIMALC2 7 231 −3.5513063E+03 0 3 5 PD 5 0

PRIMALC5 8 287 −4.2723256E+02 0 10 6 PD 6 0

PRIMALC8 8 520 −1.8309432E+04 0 30 6 PD 6 0

QPCBLEND 74 83 −7.8425425E−03 0 111 182 PD 182 0

QPCBOEI1 351 384 1.1503952E+07 415 1055 793 PD 395 398

QPCBOEI2 166 143 8.1719635E+06 142 315 340 PD 163 177

QPCSTAIR 356 467 6.2043917E+06 210 433 970 PD 645 325

QUDLIN 1 420 −8.8290000E+06 0 419 419 PD 419 0

RDW2D51F 225 578 1.1209939E−03 29 29 217 DP 0 217

RDW2D51U 225 578 8.3930032E−04 14 16 f 219 DP 0 219

RDW2D52B 225 578 1.0947648E−02 349 488 316 f DP 0 314

RDW2D52F 225 578 1.0491239E−02 29 191 414 f DP 0 414

RDW2D52U 225 578 1.0455316E−02 15 318 f 219 DP 0 219

S268 5 5 7.2759576E−12 0 8 0 PD 0 0

SIM2BQP 1 2 0.0000000E+00 0 1 1 PD 1 0

SIMBQP 1 2 6.0185310E−31 0 2 1 PD 1 0

STCQP1 30 65 4.9452085E+02 8 53 20 DP 0 20

STCQP2 128 257 1.4294017E+03 80 215 73 DP 0 73

STEENBRA 108 432 1.6957674E+04 14 89 177 PD 2 175

TAME 1 2 3.0814879E−33 0 1 1 PD 1 0

TORSION1 1 484 −4.5608771E−01 0 256 256 PD 256 0

TORSION2 1 484 −4.5608771E−01 0 544 144 DP 0 144

TORSION3 1 484 −1.2422498E+00 0 112 112 PD 112 0

TORSION4 1 484 −1.2422498E+00 0 689 288 DP 0 288

TORSION5 1 484 −2.8847068E+00 0 40 40 PD 40 0

TORSION6 1 484 −2.8847068E+00 0 708 360 DP 0 360

TORSIONA 1 484 −4.1611287E−01 0 272 272 PD 272 0

TORSIONB 1 484 −4.1611287E−01 0 529 128 DP 0 128

TORSIONC 1 484 −1.1994864E+00 0 120 120 PD 120 0

TORSIOND 1 484 −1.1994864E+00 0 681 280 DP 0 280
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Table 1 continued

Name m n Objective SQOPT PDQP

Phs1 Itn Itn Order P-Itn D-Itn

TORSIONE 1 484 −2.8405962E+00 0 40 40 PD 40 0

TORSIONF 1 484 −2.8405962E+00 0 761 360 DP 0 360

UBH1 60 99 1.1473520E+00 11 40 112 DP 0 112

YAO 20 22 2.3988296E+00 0 2 20 DP 0 20

ZECEVIC2 2 2 −4.1250000E+00 0 4 5 PD 5 0

i infeasible, f failed

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

%
 s

ol
ve

d 
w

ith
in

 2
τ  o

f b
es

t #
 it

er
at

io
ns

PDQP
SQOPT − phase−2 iterations only
SQOPT − total iterations

Fig. 1 Performance profile of number of iterations for PDQP and SQOPT on 121 CUTEst QP problems

Second, the phase-1 search direction for SQOPT requires the computation of the
vector−Z ZTĝ(x), where ĝ(x) is the gradient of the sum of infeasibilities of the bound
constraints at x . This implies that a phase-1 iteration for SQOPT requires solves with
B and BT , compared to solves with B, BT and ZTH Z for a phase-2 iteration. As every
iteration for PDQP requires the solution of a KKT system, if the number of superbasic
variables is not small, a phase-1 iteration of SQOPT requires considerably less work
than an iteration of PDQP. It follows that the total iterations for PDQP and SQOPT
are not entirely comparable. In particular a profile that would provide an accurate
comparison with PDQP lies somewhere in-between the two SQOPT profiles shown.

Notwithstanding these remarks, the profile indicates that PDQP has comparable
overall performance to a primal method that ignores the objective function while find-
ing an initial feasible point. This provides some preliminary evidence that a combined
primal–dual active set method can be an efficient and reliable alternative to conven-
tional two-phase active-set methods. The relative performance of the proposedmethod
is likely to increase when solving a sequence of related QPs for which the initial point
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Fig. 2 Outperforming factors for total iterations for each of the 121 CUTEst QP problems solved using
PDQP and SQOPT

for one QP is close to being the solution for the next. In this case, regardless of whether
a primal or dual method is being used to solve the QP, the initial point may start off
being primal or dual feasible, or the number of primal or dual infeasibilities may be
small. This is typically the case for QP subproblems arising in sequential quadratic
programming methods or mixed-integer QP.

Figure 2 provides a bar graph of the so-called “outperforming factors” for iterations,
as proposed by Morales [53]. On the x-axis, each bar corresponds to a particular test
problem,with the problems listed in the order of Table 1. The y-axis indicates the factor
(log2 scaled) by which one solver outperformed the other. A bar in the positive region
indicates that PDQP outperformed SQOPT. A negative bar means SQOPT performed
better. A positive (negative) dark grey bar denotes a failure in SQOPT (PDQP). Light
grey bars denote a zero iteration count for a solver.

8 Summary and conclusions

Apair of two-phase active-set methods, one primal and one dual, are proposed for con-
vex quadratic programming. The methods are derived in terms of a general framework
for solving a convex quadratic program with general equality constraints and simple
lower bounds on the variables. In each of the methods, the search directions satisfy a
KKT system of equations formed from Hessian and constraint components associated
with an appropriate column basis. The composition of the basis is specified by an
active-set strategy that guarantees the nonsingularity of each set of KKT equations.
In addition, a combined primal–dual active set method is proposed in which a shifted
dual QP is solved for a feasible point for the primal (or vice versa), thereby avoiding
the need for an initial feasibility phase that ignores the properties of the objective
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function. This approach provides an effective method for finding a dual-feasible point
when the QP is convex but not strictly convex. Preliminary numerical experiments
indicate that this combined primal–dual active set method can be an efficient and reli-
able alternative to conventional two-phase active-set methods. Future work will focus
on the application of the proposed methods to situations in which a series of related
QPs must be solved, for example, in sequential quadratic programming methods and
methods for mixed-integer nonlinear programming.

Acknowledgments The authors would like to thank two referees for constructive comments that signifi-
cantly improved the presentation.

Appendix

The appendix concerns some basic results used in previous sections. The first result
shows that the nonsingularity of a KKT matrix may be established by checking that
the two row blocks

(
H AT

)
and

(
A − M

)
have full row rank.

Proposition 5 Assume that H and M are symmetric, positive semidefinite matrices.
The vectors u and v satisfy

(
H AT

A −M

) (
u

−v

)
=

(
0
0

)
(25)

if and only if (
H
A

)
u =

(
0
0

)
and

(
AT

−M

)
v =

(
0
0

)
. (26)

Proof If (26) holds, then (25) holds, which establishes the “if” direction. Now assume
that u and v are vectors such that (25) holds. Then,

uTHu − uTATv = 0, and vTAu + vTMv = 0.

Adding these equations gives the identity uTHu+vTMv = 0. But then, the symmetry
and semidefiniteness of H and M imply uTHu = 0 and vTMv = 0. This can hold
only if Hu = 0 and Mv = 0. If Hu = 0 and Mv = 0, (25) gives ATv = 0 and
Au = 0, which implies that (26) holds, which completes the proof. ��

The next result shows that when checking a subset of the columns of a symmetric
positive semidefinite matrix for linear dependence, it is only the diagonal block that
is of importance. The off-diagonal block may be ignored.

Proposition 6 Let H be a symmetric, positive semidefinite matrix partitioned as

H =
(
H11 H12

HT
12 H22

)
.
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Then,

(
H11

HT
12

)
u =

(
0
0

)
if and only if H11u = 0.

Proof If H is positive semidefinite, then H11 is positive semidefinite, and it holds that

(
0
0

)
=

(
H11

HT
12

)
u =

(
H11 H12

HT
12 H22

) (
u
0

)

if and only if

0 = (
uT 0

)
(
H11 H12

HT
12 H22

) (
u
0

)
= uTH11u

if and only if H11u = 0, as required. ��
In the following propositions, the distinct integers k and l, together with integers

from the index sets B and N define a partition of I = {1, 2, …, n}, i.e., I =
B ∪ {k} ∪ {l} ∪ N . If w is any n-vector, the nB-vector wB and wN -vector wN denote
the vectors of components of w associated with B andN . For the symmetric Hessian
H , the matrices HBB and HNN denote the subset of rows and columns of H associated
with the sets B and N respectively. The unsymmetric matrix of components hi j with
i ∈ B and j ∈ N will be denoted by HBN . Similarly, AB and AN denote the matrices
of columns associated with B and N .

The next result concerns the row rank of the
(
A − M

)
block of the KKT matrix.

Proposition 7 If the matrix
(
al ak AB − M

)
has full row rank, and there exist �xl ,

�xk , �xB, and �y such that al�xl + ak�xk + AB�xB + M�y = 0 with �xk 
= 0,
then

(
al AB − M

)
has full row rank.

Proof It must be established that uT
(
al AB −M

) = 0 implies that u = 0. For a given
u, let γ = −uTak , so that

(
uT γ

)
(
al ak AB −M

1

)
= (

0 0 0 0
)
.

Then,

0 = (
uT γ

) (
al ak AB −M

1

)
⎛

⎜⎜
⎝

�xl
�xk
�xB

−�y

⎞

⎟⎟
⎠ = γ �xk .

As �xk 
= 0, it must hold that γ = 0, in which case

uT
(
al ak AB − M

) = 0.
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As
(
al ak AB − M

)
has full row rank by assumption, it follows that u = 0 and(

al AB − M
)
must have full row rank. ��

An analogous result holds concerning the
(
H AT

)
block of the KKT matrix.

Proposition 8 If
(
HBB AT

B

)
has full row rank, and there exist quantities �xN , �xB,

�y, and �zk such that

(
hTNk hTBk aTk 1

hBN HBB AT
B

)
⎛

⎜⎜
⎝

�xN

�xB

−�y
−�zk

⎞

⎟⎟
⎠ =

(
0
0

)
, (27)

with �zk 
= 0, then the matrix
(
hkk hTBk aTk
hBk HBB AT

B

)

has full row rank.

Proof Let
(
μ vT

)
be any vector such that

(
μ vT

)
(
hTNk hTBk aTk
hBN HBB AT

B

)

= (
0 0 0

)
.

The assumed identity (27) gives

0 = (
μ vT

)
(
hTNk hTBk aTk
hBN HBB AT

B

) ⎛

⎝
�xN

�xB

−�y

⎞

⎠ = μ�zk .

As �zk 
= 0 by assumption, it must hold that μ = 0. The full row rank of
(
HBB AT

B

)

then gives v = 0 and
(
hTNk hTBk aTk
hBN HBB AT

B

)

must have full row rank. Proposition 5 implies that this is equivalent to
(
hkk hTBk aTk
hBk HBB AT

B

)

having full row rank. ��
The next proposition concerns the primal subiterations when the constraint index k is
moved from B to N . In particular, it is shown that the Kl matrix is nonsingular after
a subiteration.
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Proposition 9 Assume that (�xl , �xk , �xB, −�y, −�zl ) is the unique solution of
the equations

⎛

⎜⎜⎜⎜
⎝

hll hkl hTBl aTl 1
hkl hkk hTBk aTk
hBl hBk HBB AT

B

al ak AB −M
1 −1

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

�xl
�xk
�xB

−�y
−�zl

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟
⎠

, (28)

and that �xk 
= 0. Then, the matrices Kl and Kk are nonsingular, where

Kl =
⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠ and Kk =
⎛

⎝
hkk hTBk aTk
hBk HBB AT

B

ak AB −M

⎞

⎠ .

Proof By assumption, the Eq. (28) have a unique solution with�xk 
= 0. This implies
that there is no solution of the overdetermined equations

⎛

⎜⎜⎜
⎜⎜⎜
⎝

hll hkl hTBl aTl 1
hkl hkk hTBk aTk
hBl hBk HBB AT

B

al ak AB −M
1 −1

1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

�xl
�xk
�xB

−�y
−�zl

⎞

⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
0
0
0
1
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (29)

Given an arbitrary matrix D and nonzero vector f , the fundamental theorem of linear
algebra implies that if Dw = f has no solution, then there exists a vector v such that
vT f 
= 0. The application of this result to (29) implies the existence of a nontrivial
vector (�x̃ l , �x̃ k , �x̃ B , −�ỹ, −�z̃l , −�z̃k) such that

⎛

⎜⎜⎜⎜
⎝

hll hkl hTBl aTl 1
hkl hkk hTBk aTk 1
hBl hBk HBB AT

B

al ak AB −M
1 −1

⎞

⎟⎟⎟⎟
⎠

⎛

⎜
⎜⎜⎜⎜⎜
⎝

�x̃ l
�x̃ k
�x̃ B

−�ỹ
−�z̃l
−�z̃k

⎞

⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

0
0
0
0
0

⎞

⎟⎟⎟⎟
⎠

, (30)

with�z̃l 
= 0. The last equation of (30) gives�x̃ l+�z̃l = 0, inwhich case�x̃ l�z̃l =
−�z̃2l < 0 because �z̃l 
= 0. Any solution of (30) may be viewed as a solution of the
equations H�x̃ − AT�ỹ − �z̃ = 0, A�x̃ + M�ỹ = 0, �z̃ B = 0, and �x̃ i = 0 for
i ∈ {1, 2, …, n}\{l}\{k}. An argument similar to that used to establish Proposition 2
gives

�x̃ l�z̃l + �x̃ k�z̃k ≥ 0,

which implies that �x̃ k�z̃k > 0, with �x̃ k 
= 0 and �z̃k 
= 0.
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As the search direction is unique, it follows from (28) that
(
hBl HBk HBB AT

B

)
has

full row rank, and Proposition 6 implies that
(
HBB AT

B

)
has full row rank. Hence, as

�z̃l 
= 0, it follows from (30) and Proposition 8 that the matrix

(
hll hkl hTBl aTl
hBl hBk HBB AT

B

)

has full row rank, which is equivalent to the matrix

(
hll hTBl aTl
hBl HBB AT

B

)

having full row rank by Proposition 6,
Again, the search direction is unique and (28) implies that

(
al ak AB − M

)
has

full row rank. As �x̃ k 
= 0, Proposition 7 implies that
(
al AB − M

)
must have full

row rank. Consequently, Proposition 5 implies that Kl is nonsingular.
As �x̃ k , �x̃ l , �z̃k and �z̃l are all nonzero, the roles of k and l may be reversed to

give the result that Kk is nonsingular. ��
The next proposition concerns the situation when a constraint index k is moved

from N to B in a dual subiteration. In particular, it is shown that the resulting matrix
KB defined after a subiteration is nonsingular.

Proposition 10 Assume that there is a unique solution of the equations

⎛

⎜⎜⎜⎜⎜
⎜
⎝

hll hkl hTBl aTl 1
hkl hkk hTBk aTk 1
hBl hBk HBB AT

B

al ak AB −M
1 −1

1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎜
⎝

�xl
�xk
�xB

−�y
−�zl
−�zk

⎞

⎟⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0
0
0
0
1
0

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, (31)

with �zk 
= 0. Then, the matrices Kl and Kk are nonsingular, where

Kl =
⎛

⎝
hll hTBl aTl
hBl HBB AT

B

al AB −M

⎞

⎠ , and Kk =
⎛

⎝
hkk hTBk aTk
hBk HBB AT

B

ak AB −M

⎞

⎠ .

Proof As (31) has a unique solution with �zk 
= 0, there is no solution of

⎛

⎜⎜⎜
⎜⎜⎜
⎝

hll hkl hTBl aTl 1
hkl hkk hTBk aTk
hBl hBk HBB AT

B

al ak AB −M
1 −1

1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

�xl
�xk
�xB

−�y
−�zl

⎞

⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
0
0
0
1
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (32)
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The fundamental theorem of linear algebra applied to (32) implies the existence of a
solution of

⎛

⎜⎜
⎜⎜
⎝

hll hkl hTBl aTl 1
hkl hkk hTBk aTk 1
hBl hBk HBB AT

B

al ak AB −M
1 −1

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜
⎝

�x̃ l
�x̃ k
�x̃ B

−�ỹ
−�z̃l
−�z̃k

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎝

0
0
0
0
0

⎞

⎟⎟
⎟⎟
⎠

, (33)

with �z̃l 
= 0. It follows from (33) that �x̃ l + �z̃l = 0. As �z̃l 
= 0, this implies
�x̃ l�z̃l < 0. The solution of (33) may be regarded as a solution of the homogeneous
equations H�x − AT�y −�z = 0, A�x + M�y = 0, with �zi = 0, for i ∈ B, and
�xi = 0, for i ∈ {1, . . . , n}\{k}\{l}. Hence, Proposition 2 gives

�x̃ l�z̃l + �x̃ k�z̃k ≥ 0,

so that �x̃ k�z̃k > 0. Hence, it must hold that �x̃ k 
= 0 and �z̃k 
= 0.
As �x̃ k 
= 0, �x̃ l 
= 0, �z̃k 
= 0 and �z̃l 
= 0, the remainder of the proof is

analogous to that of Proposition 9. ��

The next result gives expressions for the primal and dual objective functions in
terms of the computed search directions.

Proposition 11 Assume that (x, y, z) satisfies the primal and dual equality con-
straints

Hx + c − ATy − z = 0, and Ax + My − b = 0.

Consider the partition {1, 2, …, n} = B ∪ {l} ∪ N such that xN + qN = 0 and
zB + rB = 0. If the components of the direction (�x, �y, �z) satisfy (9), then the
primal and dual objective functions for (PQPq,r ) and (DQPq,r ), i.e.,

fP(x, y) = 1
2 x

THx + 1
2 y

TMy + cTx + rTx

fD(x, y, z) = − 1
2 x

THx − 1
2 y

TMy + bTy − qTz,

satisfy the identities

fP(x + α�x, y + α�y) = fP(x, y) + �xl(zl + rl)α + 1
2�xl�zlα

2,

fD(x + α�x, y + α�y, z + α�z) = fD(x, y, z) − �zl(xl + ql)α − 1
2�xl�zlα

2.
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Proof The directional derivative of the primal objective function is given by

(
�xT �yT

) ∇ fP(x, y) = (
�xT �yT

) (
Hx + c + r

My

)

= (
�xT �yT

) (
ATy + z + r

My

)
(34a)

= (A�x + M�y)Ty + �xT(z + r) = �xl(zl + rl), (34b)

where the identity Hx + c = ATy + z has been used in (34a) and the identities
A�x + M�y = 0, �xN = 0 and zB + rB = 0 have been used in (34b).

The curvature in the direction (�x,�y) is given by

(
�xT �yT

)∇2 fP(x, y)

(
�x
�y

)
= (

�xT �yT
)
(
H

M

) (
�x
�y

)
= �xl�zl , (35)

where the last step follows from Proposition 2.
The directional derivative of the dual objective function is given by

(
�xT �yT �zT

) ∇ fD(x, y, z) = (
�xT �yT �zT

)
⎛

⎝
−Hx

−My + b
−q

⎞

⎠ (36a)

= −�xTHx + �yT(−My + b) − �zT q (36b)

= −(AT�y + �z)Tx + �yT(−My + b) − �zT q
(36c)

= −�yT(Ax + My − b) − �zT(x + q) (36d)

= −�zl(xl + ql), (36e)

where the identity H�x − AT�y − �z = 0 has been used in (36c) and the identities
Ax + My − b = 0, xN + qN = 0 and �zB = 0 have been used in (36e).

As z only appears linearly in the dual objective function, it follows from the structure
of the Hessian matrices of fP(x, y) and fD(x, y, z) in combination with (35) that

(
�xT �yT �zT

) ∇2 fD(x, y, z)

⎛

⎝
�x
�y
�z

⎞

⎠ = − (
�xT �yT

)∇2 fP(x, y)

(
�x
�y

)

= −�xl�zl .

��
The final result shows that there is no loss of generality in assuming that

(
A M

)
has

full row rank in (PQPq,r ).

Proposition 12 There is no loss of generality in assuming that
(
A M

)
has full row

rank in (PQPq,r ).
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Proof Let (x , y, z) be any vector satisfying (2a) and (2b). Assume that
(
A M

)
has

linearly dependent rows, and that
(
A M

)
and b may be partitioned conformally such

that

(
A M

) =
(
A1 M11 M12

A2 MT
12 M22

)
, and b =

(
b1
b2

)
,

with
(
A1 M11 M12

)
having full row rank, and

(
A2 MT

12 M22

) = N
(
A1 M11 M12

)
, (37)

with A1 ∈ R
m1×n and A2 ∈ R

m2×n for some matrix N ∈ R
m2×m1 . From the linear

dependence of the rows of
(
A M

)
, it follows that x , y and z satisfy (2a) and (2b) if

and only if

Hx + c − AT
1 y1 − AT

2 y2 − z = 0,

A1x + M11y1 + M12y2 − b1 = 0 and b2 = Nb1.

It follows from (37) that M12 = M11NT and AT
2 = AT

1 N
T , so that x , y and z satisfy

(2a) and (2b) if and only if

Hx + c − AT
1 (y1 + NTy2) − z = 0,

A1x + M11(y1 + NTy2) − b1 = 0 and b2 = Nb1.

We may now define ỹ1 = y1 + NTy2 and replace (2b) and (2a) by the system

Hx + c − AT
1 ỹ1 − z = 0,

A1x + M11 ỹ1 − b1 = 0.

By assumption,
(
A1 M11 M12

)
has full row rank. Proposition 6 implies that

(
A1 M11

)

has full row rank. This gives an equivalent problem for which
(
A1 M11

)
has full row

rank. ��

References

1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear
and quadratic optimization. Optim. Methods Softw. 11/12(1–4), 275–302 (1999)

2. Bartlett, R.A., Biegler, L.T.: QPSchur: a dual, active-set, Schur-complement method for large-scale
and structured convex quadratic programming. Optim. Eng. 7(1), 5–32 (2006)

3. Beale, E.M.L.: An introduction to Beale’s method of quadratic programming. In: Abadie, J. (ed.)
Nonlinear Programming, pp. 143–153. North Holland, Amsterdam (1967)

4. Beale, E.M.L., Benveniste, R.: Quadratic programming. In: Greenberg, H.J. (ed.) Design and Imple-
mentation of Optimization Software, pp. 249–258. Sijthoff and Noordhoff, The Netherlands (1978)

5. Best, M.J.: An algorithm for the solution of the parametric quadratic programming problem. CORR
82-14, Department of Combinatorics and Optimization, University of Waterloo, Canada (1982)

123



506 A. Forsgren et al.

6. Best,M.J.: An algorithm for the solution of the parametric quadratic programming problem. In: Fischer,
H., Riedmüller, B., Schäffler, S. (eds.) Applied Mathematics and Parallel Computing: Festschrift for
Klaus Ritter, pp. 57–76. Physica, Heidelberg (1996)

7. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2), 103–107 (1977)
8. Boland, N.L.: A dual-active-set algorithm for positive semi-definite quadratic programming. Math.

Program. Ser. A 78(1), 1–27 (1997)
9. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, PhL: CUTE: constrained and unconstrained testing

environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995)
10. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations.

SIAM J. Numer. Anal. 8, 639–655 (1971)
11. Bunch, J.R., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear

systems. Math. Comput. 31, 163–179 (1977)
12. Bunch, J.R., Kaufman, L.: A computational method for the indefinite quadratic programming problem.

Linear Algebra Appl. 34, 341–370 (1980)
13. Cartis, C.C., Gould, N.I.M.: Finding a point in the relative interior of a polyhedron. Report RAL-TR-

2006-016, Rutherford Appleton Laboratory, Oxon, UK, December (2006)
14. Charnes, A.: Optimality and degeneracy in linear programming. Econometrica 20(2), 160–170 (1952)
15. Chiche, A., Gilbert, J.C.: How the augmented Lagrangian algorithm can deal with an infeasible convex

quadratic optimization problem. J. Convex Anal. 22(4) (2016)
16. Curtis, F.E.,Han, Z., Robinson,D.P.:Aglobally convergent primal–dual active-set framework for large-

scale convex quadratic optimization. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9681-9:
1-31

17. Dantzig, G.B., Orden, A., Wolfe, P.: The generalized simplex method for minimizing a linear form
under linear inequality constraints. Pac. J. Math. 5, 183–195 (1955)

18. Delbos, F., Gilbert, J.C.: Global linear convergence of an augmented Lagrangian algorithm for solving
convex quadratic optimization problems. J. Convex Anal. 12(1), 45–69 (2005)

19. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. Ser. A 91(2), 201–213 (2002)

20. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM
Trans. Math. Softw. 30(2), 118–144 (2004)

21. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Trans. Math. Softw. 9, 302–325 (1983)

22. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of
explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

23. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set
algorithm for quadratic programming. Math. Prog. Comp. 6(4), 327–363 (2014)

24. Fletcher, R.: A general quadratic programming algorithm. J. Inst. Math. Appl. 7, 76–91 (1971)
25. Fletcher, R.: Factorizing symmetric indefinite matrices. Linear Algebra Appl. 14, 257–272 (1976)
26. Fletcher, R.: Resolving degeneracy in quadratic programming. Ann. Oper. Res. 46/47(2), 307–334

(1993)
27. Fletcher, R.: Stable reduced Hessian updates for indefinite quadratic programming. Math. Program.

Ser. B 87(2), 251–264 (2000)
28. Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math. 43,

91–107 (2002)
29. Forsgren, A., Murray, W.: Newton methods for large-scale linear equality-constrained minimization.

SIAM J. Matrix Anal. Appl. 14, 560–587 (1993)
30. Gilbert, J.C., Joannopoulos, É.: OQLA/QPALM—convex quadratic optimization solvers using the aug-

mented Lagrangian approach, with an appropriate behavior on infeasible or unbounded problems.
Technical report, INRIA, BP 105, 78153 Le Chesnay, France (2015)

31. Gill, P.E., Murray, W.: Numerically stable methods for quadratic programming. Math. Program. 14,
349–372 (1978)

32. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4),
1983–2010 (2013)

33. Gill, P.E.,Wong, E.:Methods for convex and general quadratic programming.Math. Program. Comput.
7(1), 71–112 (2015)

34. Gill, P.E., Gould, N.I.M., Murray, W., Saunders, M.A., Wright, M.H.: A weighted Gram–Schmidt
method for convex quadratic programming. Math. Program. 30, 176–195 (1984)

123

http://dx.doi.org/10.1007/s10589-014-9681-9:1-31
http://dx.doi.org/10.1007/s10589-014-9681-9:1-31


Primal and dual active-set methods for convex quadratic... 507

35. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A practical anti-cycling procedure for linearly
constrained optimization. Math. Program. 45, 437–474 (1989)

36. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: A Schur-complement method for sparse
quadratic programming. In: Cox, M.G., Hammarling, S.J. (eds.) Reliable Numerical Computation,
pp. 113–138. Oxford University Press, Oxford (1990)

37. Gill, P.E.,Murray,W., Saunders,M.A.,Wright,M.H.: Inertia-controllingmethods for general quadratic
programming. SIAM Rev. 33(1), 1–36 (1991)

38. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for QPOPT 1.0: a Fortran package for quadratic
programming. Report SOL 95-4, Department of Operations Research, Stanford University, Stanford,
CA (1995)

39. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained opti-
mization. SIAM Rev. 47, 99–131 (2005)

40. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SQOPT Version 7: software for large-scale
linear and quadratic programming. Numerical Analysis Report 06-1, Department of Mathematics,
University of California, San Diego, La Jolla, CA (2006)

41. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic
programs. Math. Program. 27(1), 1–33 (1983)

42. Gould, N.I.M.: An algorithm for large-scale quadratic programming. IMA J. Numer. Anal. 11(3),
299–324 (1991)

43. Gould, N.I.M., Toint, P.L.: An iterative working-set method for large-scale nonconvex quadratic pro-
gramming. Appl. Numer. Math. 43(1–2), 109–128 (2002)

44. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic programming.
In: Trends in industrial and applied mathematics (Amritsar, 2001), volume 72 of Appl. Optim., pp.
149–179. Kluwer, Dordrecht (2002)

45. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and sifdec: a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

46. Gould, N.I.M., Orban, D., Toint, P.L.: GALAHAD, a library of thread-safe Fortran 90 packages for
large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

47. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)

48. Hall, J.A.J., McKinnon, K.I.M.: The simplest examples where the simplex method cycles and condi-
tionswhereEXPAND fails to prevent cycling. TechnicalReportMS96-010,Department ofMathematics
and Statistics, University of Edinburgh (1996)

49. Harris, P.M.J.: Pivot selectionmethods of theDevexLP code.Math. Program. 5, 1–28 (1973). Reprinted
in Math. Prog. Study, 4, 30–57 (1975)

50. Hoyle, S.C.: A single-phase method for quadratic programming. PhD thesis, Report SOL 86-9, Depart-
ment of Operations Research, Stanford University, Stanford, CA (1986)

51. Huynh, H.M.: A large-scale quadratic programming solver based on block-LU updates of the KKT
system. PhD thesis, Program in Scientific Computing and Computational Mathematics, Stanford Uni-
versity, Stanford, CA (2008)

52. Maes, C.M.: A regularized active-set method for sparse convex quadratic programming. PhD thesis,
Institute for Computational andMathematical Engineering, Stanford University, Stanford, CA, August
(2010)

53. Morales, J.L.: A numerical study of limited memory BFGSmethods. Appl. Math. Lett. 15(4), 481–487
(2002)

54. Potschka, A., Kirches, C., Bock, H., Schlöder, J.: Reliable solution of convex quadratic programs with
parametric active set methods. Technical report, Interdisciplinary Center for Scientific Computing,
Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany, November (2010)

55. Powell, M.J.D.: On the quadratic programming algorithm of Goldfarb and Idnani. Math. Program.
Stud. 25, 46–61 (1985)

56. Ritter, K.: A method for solving nonlinear maximum problems depending on parameters. Nav. Res.
Logist. Q. 14, 147–162 (1967)

57. Ritter, K.: On parametric linear and quadratic programming. MRC Technical report 2197, University
of Wisconsin at Madison, Wisconsin, USA (1981)

58. Stoer, J.: On the realization of the quadratic programming algorithm of Goldfarb and Idnani. In: Vistas
in applied mathematics, Transl. Ser. Math. Engrg., pp. 167–180. Optimization Software, New York
(1986)

123



508 A. Forsgren et al.

59. Wong, E.: Active-set methods for quadratic programming. PhD thesis, Department of Mathematics,
University of California San Diego, La Jolla, CA (2011)

60. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput.
Optim. Appl. 11(3), 253–275 (1998)

123


	Primal and dual active-set methods for convex quadratic programming
	Abstract
	1 Introduction
	2 Background
	2.1 Formulation of the primal and dual problems
	2.2 Optimality conditions and the KKT equations
	2.3 The linear algebra framework

	3 A primal active-set method for convex QP
	4 A dual active-set method for convex QP
	5 Combining primal and dual active-set methods
	5.1 Finding an initial second-order-consistent basis
	5.2 Initializing the shifts
	5.3 Solving the original problem by removing the shifts
	5.4 Relaxed initial conditions for the primal QP method
	5.5 Relaxed initial conditions for the dual QP method

	6 Practical issues
	7 Numerical examples
	7.1 The test problems
	7.2 The implementation
	7.3 Numerical results

	8 Summary and conclusions
	Acknowledgments
	Appendix
	References




