
Math 270B: Numerical Approximation and Nonlinear Equations

Instructor: Michael Holst

Winter Quarter 2017

PRACTICE/SAMPLE FINAL EXAM

Name

#1 10
#2 10
#3 10
#4 10
#5 10
#6 10
#7 10
#8 10

Total 80

Instructions:

• No calculators allowed (or needed).

• No crib sheets or notes allowed.
• You must show your work.

• Put your name on the line above and staple this sheet to the pages containing your exam solutions.

Questions:

1. (Calculus in Rn: 10 points.) Calculate the derivative f ′(x), the gradient g(x) = ∇f(x), and the Hessian
matrix H(x) (the Jacobian matrix of ∇f(x)) of the following real-valued function of n real variables:

f(x) =
1

2
xTAx− xT b, where: A ∈ Rn×n, x, b ∈ Rn.

Show your work; as usual, I recommend using the Gateaux variation.

2. (Taylor Expansion in Rn and Newton’s Method: 10 points.)

(a) Let F : Rn → Rn be differentiable. Using the fundamental theorem of calculus in Rn, derive the
following Taylor expansion with integral remainder:

F (x+ h) = F (x) + F ′(x)h+

∫ 1

0

{F ′(x+ ξh)− F ′(x)}h dξ.

(b) Using this Taylor expansion, derive Newton’s method for F (x) = 0, where F : Rn → Rn.

(c) Give a complete algorithm (in pseudocode only) for implementing Newton’s method that you
just derived in (b) on a computer. Include backtracking line-search (i.e., damping) and allow for
inexact solves of the linearized systems at each step.

3. (Newton’s Method and Unconstrained Optimization: 10 points.)

(a) Let f(x) : Rn → R be analytic (have a convergent Taylor expansion at all points in Rn). Prove
that a descent direction p ∈ Rn for f(x) at a point x ∈ Rn is always a direction of decrease for
f(x) at x.

(b) Let F (x) : D ⊂ Rn → Rn, and assume that the Jacobian F ′(x) : D ⊂ Rn → Rn×n is Lipschitz
continuous with Lipschitz constant γ. Show that the error in the linear model

Lk(x) = F (xk) + F ′(xk)(x− xk)

of F (x) can be bounded as follows:

‖F (x)− Lk(x)‖ ≤ 1

2
γ‖x− xk‖2.

4. (Constrained Optimization: 10 points)
Let f, C : R2 → R, with f(x) = 3x2 + x21 + x22, and c(x) = x21 + (x2 + 1)2 − 1 = 0.

(a) Form the Lagrangian L(x, λ) from f(x) and c(x) that you will use to minimize f(x) over R2,
subject to c(x) = 0.

(b) Find a point satisfying the (first order) KKT conditions. Verify (check second order conditions)
that it is an optimal point.

(c) Repeat Parts (a) and (b) with f(x) = x31 + x32.

1
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5. (Polynomial forms and interpolation: 10 points.) Assume that we are given n+ 1 distinct points and
corresponding function values:

x0 x1 · · · xn
f(x0) f(x1) · · · f(xn)

(a) Write down the unique degree n interpolating polynomial pn(x) that interpolates f(x) at the n+1
points.

(b) Now write down the Newton form of this polynomial.

(c) Write down the expression for interpolation error.

6. (Polynomial Interpolation Construction: 10 points.)

(a) Construct the (unique) quadratic interpolation polynomial p2(x) which interpolates the data:

x f(x)
0 1
1 2
2 13

(b) If the function f(x) that generated the above data was actually the cubic polynomial P3(x) =
2x3 − x2 + 1, derive an error bound (a fairly “tight” one) for the interval [0, 2].

7. (Difference Approximations to Derivatives: 10 points.)

(a) Show that the forward difference formula has an error expansion of the form:

f ′(x) =

[
f(x+ h)− f(x)

h

]
− f ′′(x)

2
h− f ′′′(x)

6
h2 +O(h3).

(b) Derive an expression for the error in the following difference approximation to f ′(x):

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

(c) Derive an expression for the error in the following difference approximation to f ′′(x):

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

8. (Quadrature: 10 points.)

(a) Use the (non-composite) Trapezoid Rule to approximate the following integral:∫ 1

0

x3dx,

and derive an error bound. Also, compare your numerical result with the exact integral.

(b) Determine the number of internals n required for use with the composite version of the Trapezoid
rule in order to approximate the integral to five digits of accuracy (e.g., ensure that |error| <
10−5).


