
Math 270B: Numerical Approximation and Nonlinear Equations

Instructor: Michael Holst

Winter Quarter 2011

Homework Assignment #2
Due : Give to the class TA within two weeks if you would like it marked.

Our goal in this homework is to further study the approach of using a quadratic model as a basis for developing
methods for unconstrained optimization, and to study the method of Lagrange multipliers for incorporating equality
constraints into optimization.

The starred exercises are those that require the use of a tool such as Matlab.

Exercise 2.1. Let H be a symmetric matrix with spectral decomposition H = V DV T .

(a) Show that an eigenvector v associated with a positive eigenvalue λ satisfies vTHv > 0.
(b) Write down the inverse of H in terms of V and D.
(c) If r is a positive integer, give an expression for Hr in terms of D and V . If H is positive definite, find a matrix

B such that H = B2 = BB (B is the “square root” of H).
(d) Let α denote a scalar such that the matrix H − αI is nonsingular. If ψ(α) is the univariate function ψ(α) =

uT (H − αI)−1u, where u is a nonzero vector, find ψ′(α).

Exercise 2.2. Given each of the following cases of a gradient g(x̄) and Hessian H(x̄) defined at a point x̄, discuss
the optimality of x̄. I.e., check the first and second order conditions for optimality. (Do not use Matlab, atleast for
the 2x2 cases; you may need to know how to compute eigenvalues by hand for 2x2 cases in the final exam.)

(i) g(x̄) =
(

1
0

)
, H(x̄) =

(
3 1
1 1

)
. (ii) g(x̄) =

(
0
0

)
, H(x̄) =

(
3 2
2 0

)
.

(iii) g(x̄) =
(

0
0

)
, H(x̄) =

(
4 −1

−1 4

)
. (iv) g(x̄) =

(
0
0

)
, H(x̄) =

(
−2 0

0 −3

)
.

(v) g(x̄) =

 0
0
0

 , H(x̄) =

 3 0 0
0 1 1
0 1 1

 .

Exercise 2.3.∗ Write a Matlab function with specification [f,g,H] = ex33(x) that computes f(x), g(x) and H(x)
for the function

f(x) = ex3x2
1 + 2x2

2 + x2
3 cosx1

at any point x. Use your function to compute f(x), g(x), and H(x) at x = (0, 0, 0)T and x = (−1, 2, −2)T . In
each case, compute the spectral decomposition of the Hessian matrix and indicate if the necessary and sufficient
conditions for unconstrained local minimization are satisfied.

Exercise 2.4. Let q(x), x ∈ Rn, be the quadratic function q(x) = cTx+ 1
2x

THx, where H is symmetric.

(a) Write down an expression for ∇q(x) in terms of c, H and x.
(b) Given an arbitrary point x0 and a direction p, write down the Taylor-series expansion of q(x0 + p).

(c) For this part, consider q(x) such that H is positive definite. If p is a direction such that ∇q(x0)T p < 0, show
that there exists a positive minimizer α∗ of q(x0 + αp). Derive a closed-form expression for α∗.
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Exercise 2.5.∗ Write a Matlab m-file steepest.m that implements the method of steepest descent with a back-
tracking line search. Your function must include the following features.

• Use µ = 1
4 to define the sufficient-decrease criterion in the backtracking algorithm.

• The minimization must be terminated when either ‖g(xk)‖ ≤ 10−5 or 75 iterations are performed. Any Matlab
“while” loop must include a test that will terminate the loop if it is executed more than 20 times.

Use steepest.m to find a minimizer of the function

f(x) = ex3x2
1 + 2x2

2 + x2
3 cosx1,

starting at the point (−1, 1, 1)T (first write a Matlab function as in Exercise 2.3). Next, minimize the function
(again, first write a Matlab function as in Exercise 2.3)

f(x) = x1 + x2 + x3 + x4 + x2
1 + x2

2 + 10−1x2
3 + 10−3x2

4,

starting at the point (−1, 0, 1, 1)T . Compare the two runs. Can you explain why steepest descent behaves like this?

Exercise 2.6.∗ Modify the Matlab m-file steepest.m from Exercise 2.5 to produce a Matlab m-file newton.m
that implements the Newton’s method for optimization with a backtracking line search. Repeat the two examples
in Exercise 2.5 using the newton.m m-file.

Exercise 2.7. Consider the nonlinearly constrained problem

minimize
x∈R2

3x2 + x2
1 + x2

2

subject to x2
1 + (x2 + 1)2 − 1 = 0.

(2.1)

(a) Show that x(α) = (sinα, cosα − 1)T is a feasible path for the nonlinear constraint x2
1 + (x2 + 1)2 − 1 = 0 of

problem (2.1). Compute the tangent to the feasible path at x̄ = (0, 0)T .
(b) If f(x) denotes the objective function of problem (2.1), find an expression for f (x(α)) and compute f (x(0)).
(c) Define the Lagrangian function L(x, λ) and constraint Jacobian J(x) for problem (2.1). Derive ∇L(x, λ), the

gradient of the Lagrangian, and ∇2
xxL(x, λ), the Hessian of the Lagrangian with respect to x.

(d) Determine whether or not the point x̄ = (0, 0)T is a constrained minimizer of problem (2.1).

Exercise 2.8. Consider the problem
minimize

x∈R2
x2

1 + 2x2
2

subject to x1 + x2 − 1 = 0.

(a) Find a point satisfying the KKT conditions. Verify that it is indeed an optimal point.
(b) Repeat Part (a) with the objective replaced by x3

1 + x3
2.

Exercise 2.9.∗ Write a Matlab function that will compute c(x) and J(x) for the constraint function

c(x) = x1 + x2 − x1x2 −
3
2
.

Use your function to find c(x) and J(x) at x = (.1, −.5)T , x = (.5, −1)T and x = (1.18249728, −1.73976692)T .
At each of these points, discuss the optimality of the constrained minimization problem:

minimize
x∈R2

ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

subject to x1 + x2 − x1x2 − 3
2 = 0.

Exercise 2.10. Assume that c : Rn → Rm, with ci ∈ C1(R,R), i = 1, . . . ,m, and with 1 ≤ m ≤ n. We know that
if x is a feasible point, then T 0(x) ⊂ N(J(x)), where T 0(x) is the tangent cone at x, J(x) = ∇c(x) is the Jacobian
matrix of the constraints at x, and N(J(x)) is the nullspace of J(x) at x. Prove that if the rows of J(x) at x are
linearly independent, then constraint qualification holds at x (i.e., T 0(x) ≡ N(J(x))).

Exercise 2.11. Prove the KKT Theorem (existence of Lagrange Multipliers when constraint qualification holds).


