
Math 270A: Numerical Linear Algebra

Instructor: Michael Holst

Fall Quarter 2016

PRACTICE/SAMPLE FINAL EXAM

Name

#1 10
#2 10
#3 10
#4 10
#5 10
#6 10

Total 60

Instructions:

• No calculators allowed (or needed).

• No crib sheets or notes allowed.
• You must show your work.

• Put your name on the line above and staple this sheet to the pages containing your exam solutions.

Questions:

1. (Basic Linear Algebra)

Let V be a normed space. Recall that two norms ‖ · ‖X and ‖ · ‖Y on V are called equivalent if:

C1‖u‖X ≤ ‖u‖Y ≤ C2‖u‖X , ∀u ∈ V.

In the case of a finite-dimensionals space V , we noted that all norms can be shown to be equivalent.
Consider now the specific finite-dimensional space V = Rn.

(a) Determine constants C1 and C2 for the lp norms for p = 1, 2,∞. In particular, show the following
tight bounds:

‖u‖∞ ≤ ‖u‖2 ≤ ‖u‖1 ≤
√
n‖u‖2 ≤ n‖u‖∞, ∀u ∈ Rn. (1)

(b) Use these inequalities to show that if A ∈ Rn×n, then the corresponding matrix norms also have
equivalence relationships:

‖A‖1 ≤
√
n‖A‖2 ≤ n‖A‖1, (2)

‖A‖∞ ≤
√
n‖A‖2 ≤ n‖A‖∞. (3)

(c) Derive the analogous equivanence relationships for the corresonding condition numbers (assume
now that A is inverible).

(d) Show that for any norm ‖ · ‖ on Rn, if ρ(A) is the spectral radius of A ∈ Rn×n, then

ρ(A) ≤ ‖A‖.

2. (Gaussian Elimination and LU Factorization)

Let A ∈ Rn×n be a real, square, n× n nonsingular matrix, and let x ∈ Rn be an n-vector.

(a) Show that matrix-vector multiplication y = Ax can be expressed as inner-products involving the
rows of A.

(b) Show that matrix-vector multiplication y = Ax can be expressed as a linear combination of the
columns of A.

(c) If we have computed the LU decomposition of A, so that A = LU with L lower-triangular, and
U upper-triangular, give the two-step algorithm that produces the solution to the system Ax = b,
by solving only systems involving L and U .

(d) Without any assumptions on the nonzero structure of A, what is the complexity of the factorization
step, and the complexities of the forward/backsolve steps?
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3. (QR Decomposition and Least Squares)

Let Q ∈ Rn×n be an orthogonal matrix, so that QT = Q−1.

(a) Show that if Q is orthogonal, then Q−1 is also orthogonal.

(b) Show that if Q1 and Q2 are othogonal, then so is Q1Q2.

(c) Prove that: (Qx,Qy)2 = (x, y)2, ∀x, y ∈ Rn.

(d) Prove that: ‖Qx‖2 = ‖x‖2, ∀x ∈ Rn.

(e) Prove that: ‖Q‖2 = ‖Q−1‖2 = 1, so that κ2(Q) = 1.

Let P ∈ Rn×n be a projector. Recall that this means P is idempotent (P 2 = P ). Recall also that to
be an orthogonal projector, P would also have to be self-adjoint (P = P ∗), and it would not mean that
P is an orthogonal matrix.

(f) Show that if P is a non-zero projector, then ‖P‖2 ≥ 1, with equality if and only if P is self-adjoint.

Consider the overdetermined system: Ax = b, A ∈ Rm×n, m ≥ n.

(g) Show that ATA is nonsingular if and only if A has full rank.

Consider finally the particular instance of this overdetermined system:[
1
1

]
[ x ] =

[
9
5

]
. (4)

(h) Before doing any calculation, look at the two equations represented in the system individually,
and predict what the least-squares solution will be.

(i) Calculate a QR decomposition of the coefficient matrix, where Q is a 2× 2 rotator (or reflector),
and R is 2× 1.

(j) Use the QR decomposition to calculate the least squares solution to (4).

(k) Instead of using the QR decomposition, form and solve the normal equations to produce the least
squares solution to (4).

(l) Give the general expression for the pseudo-inverse A+, and then give the particular instance you
formed in solving the problem above.

4. (Eigenvalue Problems)

Below we assume A ∈ Rn×n unless otherwise noted.

(a) Let A ∈ Rn×n be symmetric. Show that the eigenvalues of A are real, and that eigenvectors
corresponding to distinct eigenvalues are real and orthogonal.

(b) Assume again that A ∈ Rn×n is symmetric. State precisely the general existence theorem for the
Spectral decomposition of A.

Consider now the following matrix:

A =

(
2 −1
0 1

)
.

(c) Starting with the seed vector q0 = [1, 1]T , perform two steps of the power method with A to get
an approximation to the eigenvector corresponding to the largest eigenvalue of A.

(d) Take your result from part (a) and compute the associated Raleigh quotient, so as to get a
corresponding approximation to the largest eigenvalue of A. Of course, we can easily determine
the eigenvalues exactly with no computing, due to the form of A. Therefore, comment on how
good the approximation is to the largest eigenvalue, after only two steps.
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5. (Conditioning and Stability)

Let A ∈ Cn×n be nonsingular, and consider the problem:

Ax = b, (5)

given A, and also either x or b. Our concern here is the impact on the problem when there is error in
one of the three quantities regarded as given as part of the problem specification.

(a) Show that:
‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

,

where Ax = b, and where A(x + δx) = (b + δb). In other words, show that the relative error in
the solution to the system Ax = b was bounded by the condition number times the relative error
in the data b.

(b) Consider now also the case that x is given, and we want to calculate b from the product b = Ax.
Show that if x contains error, i.e. comes to us as x+ δx, then the relative error in b satisfies the
same inequality:

‖δb‖
‖b‖

≤ κ(A)
‖δx‖
‖x‖

.

(c) Consider finally the third case, namely that there is error δA in representing A, so that in effect
we again solve the wrong system: (A+ δA)(x+ δx) = b. Show that

‖δx‖
‖x‖

≤ κ(A)
‖δA‖
‖A‖

.

Let us examine these ideas more generally.

(d) Give a precise definition of what it means to say that a mathematical problem is “well-posed”.

(e) Can an ill-conditioned problem still be “well-posed”? Explain your reasoning about this.
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6. (Iterative Methods for Linear Systems)

Let A ∈ Rn×n be a symmetric positive definite (SPD) matrix, which as we know means it is also
invertible. Assume that A is also very large (e.g. n ≥ 106) and sparse (having O(1) nonzeros per row
and column). We would like to solve the linear system Ax = b for x ∈ Rn, given b ∈ Rn. For this
problem, we will need to make use of the splitting A = D − L− U, where D is the diagonal of A, L is
the (negative) strictly lower triangle of A, and U is the (negative) strictly upper triangle of A.

(a) Assuming we can find some B ≈ A−1 and can pick some initial approximation x0 ≈ x, show how
the Basic Linear Method (BLM):

xk+1 = (I − αBA)xk + αBb, 0 6= α ∈ R,

arises naturally by deriving some identities that follow from Ax = b.

(b) Using Part (a), derive the error propogation equation: x− xk+1 = E(x− xk), where you need to
specify what exactly E is.

(c) Using Part (b), derive bounds on the norm of the error at step k+ 1 in terms of the error at step
k, and in terms of the error at step k = 0.

(d) Use the Banach Fixed-Point Theorem to prove that the BLM converges of α is suitably restricted.

(e) Derive a simplified expression for the error propogator in terms of κA(BA) when α is chosen to
be optimal in terms of maximizing the convergence rate.

(f) Use the splitting of A to specify B ≈ A−1 for the Jacobi and Gauss-Seidel Methods.

(g) What is the complexity of one iteration of each of the Jacobi and Gauss-Seidel methods for this
particular matrix A?

In lecture we derive the Conjugate Gradient method (CG) by starting with the Cayley-Hamilton
Theorem, writing the inverse of A as a matrix polynomial in A, and then doing a combination of
Gram-Schmidt and orthogonal projection at each step of an iteration. Since A was assumed to be
SPD, an alternative mathematically equivalent derivation arises from consider Ax = b as arising as the
condition for stationarity of an associated veriational problem.

(h) Show that the linear system Ax = b arises as the necessary condition for minimizing the following
energy functional:

J(x) =
1

2
xTAx− xT b.

(i) Write down a complete algorithm (usually called the Steepest Descent algorithm) as a very simple
iteration that steps forward in the direction pk = −∇J(xk) = b − Axk =: rk, starting from an
arbitrary initial approximation x0.

(j) Derive the expression for the step-length αk that minimizes J(xk + αkp
k) at each step k:

αk =
(pk)T rk

(pk)TApk
.

(k) Finally, develop a conjugate gradient iteration by modifying the steepest descent algorithm at
each iteration, by adding a Gram-Schmidt orthogonalization at each step to force the direction
vectors pk to be mutually A-orthogonal.

(l) Compare the resulting CG iteration to the one we derived in the lectures and the homeworks:

(The Conjugate Gradient Algorithm)
Let x0 ∈ H be given.
r0 = b−Ax0, s0 = Br0, p0 = s0.
Do k = 0, 1, . . . until convergence:

αk = (rk, pk)/(pk, pk)A
xk+1 = xk + αkp

k

rk+1 = rk − αkAp
k

sk+1 = Brk+1

βk+1 = −(BApk, pk)A/(p
k, pk)A

γk+1 = −(BApk, pk−1)A/(p
k−1, pk−1)A

pk+1 = BApk + βk+1p
k + γk+1p

k−1

End do.

(m) Extra Credit: Show that these two algorithms are mathematically equivalent.


