MATH 210C: Mathematical Physics

Instructor: Michael Holst

Spring Quarter 2016

Homework Assignment #3

Due Date: NONE (just some suggested problems to look at to complement the lectures)

Exercise 3.1. (*Tensors*) Explain what is mean by the *contraction* of a pair of indices, one covariant and the other contravariant, of a rank (p,q) tensor, to product a rank (p-1,q-1) tensor.

Exercise 3.2. (*Differential Forms*) Show that the second-rank tensor given in components by $a_i b_j dx^i \otimes dx^j$ has the same values as $\alpha \otimes \beta$ on any pair of vectors, so that

$$\alpha \otimes \beta = a_i b_j dx^i \otimes dx^j.$$

Exercise 3.3. (*Exterior Forms*)

- 1. Define the tensor project of two covariant rank p and rank q tensors.
- 2. Define the subset of rank p covariant tensors that are called p-forms.
- 3. Is the tensor project of a p-form and a q-form a (p+q)-form, a is it now only a rank (p+q) covariant tensor? What goes wrong?
- 4. Define the wedge product of a pq and a q form.
- 5. Is the wedge project of a p-form and a q-form now a (p+q)-form? Why?

Exercise 3.4. (*Exterior Forms*) Show that if α^p is any *p*-form, then it can be expanded as:

$$\alpha^p = \sum_{\underline{I}} \alpha^p(\overline{e}_I) \sigma^I = \sum_{\underline{I}} \alpha(\overline{e}_{i_1}, \dots, \overline{e}_{i_p}) \sigma^{i_1} \wedge \dots \wedge \sigma^{i_p},$$

where as in lecture, \underline{I} represents increasing index order, and \overline{e}_I represents the basis for E, and σ^I represents the dual basis for E^* .

Exercise 3.5. (*Exterior Differentiation*) Define exterior differentiation, giving its four main properties, that take as input a p-form and produce a (p + 1)-form.

Exercise 3.6. (Interior Products of p-forms)

- 1. Give the definition of the *interior product* of a vector \bar{v} and a *p*-form α , producing a (p-1)-form $i_{\bar{v}}\alpha$.
- 2. Explain how this is related to contraction on indices of a general tenesor.

Exercise 3.7. (Anti-derivations) An anti-derivation $f: \bigwedge^p \to \bigwedge^{p-1}$ has the following property:

$$f(\alpha^p \wedge \beta^q) = [f\alpha^p] \wedge \beta^q + (-1)^p \alpha^p \wedge [f\beta^q].$$

- 1. Show that the interior product is an anti-derivation.
- 2. Show that exterior differentiation is an anti-derivation.

Exercise 3.8. Let $\bar{x} = (x, y, z)$ be the orthogonal cartesian coordinate system in \mathbb{R}^3 . Let f be a 0-form (a function), let α^1 be a 1-form associated with a vector \bar{A} , let γ^1 be a 1-form associated with a vector \bar{C} , let β^2 be a 2-form associated with a vector \bar{B} through the relationship:

$$\beta^2 = i_{\bar{B}}$$
 vol,

where $i_{\bar{B}}$ is the interior product, and the volume is the standard one in \mathbb{R}^3 :

$$\operatorname{vol} = \operatorname{vol}^3 = dx \wedge dy \wedge dz.$$

Show that the following relationships between the wedge product, interior product, and exterior differentiation with the standard operations in vector calculus in \mathbb{R}^3 :

- 1. $\alpha^1 \wedge \gamma^1 = i_{\bar{A} \times \bar{C}}$ vol $\iff \bar{A} \times \bar{C}$. 2. $\alpha^2 \wedge \beta^2 = \bar{A} \cdot \bar{C}$ vol. 3. $i_{\bar{C}} \alpha^1 = \bar{C} \cdot \bar{A}$. 4. $i_{\bar{C}} \beta^2 \iff -\bar{C} \times \bar{B}$. 5. $df \iff \nabla f$. 6. $d\alpha^1 = i_{\text{curl } \bar{A}}$ vol $\iff \text{curl } \bar{A}$. 7. $d\beta^2 = \text{div } \bar{B}$ vol $\iff \text{div } \bar{B}$.
- 8. $di_{\text{grad } f}$ vol = $(\nabla^2 f)$ vol $\iff \nabla^2 f$.