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Following the argument similar to that employed in Example 6.5.6, we
write the solution in the form

u=13 a,(t)$.(x )
n=1
and we assume that

6, 9) =Y fuda(%, 7).

n=1
Consequently, the functions a, satisfy
a,(t)=-A,a,(t)
so that
a,(t)=A,e ",

We choose A, =f, to obtain the solution
u(x, )= Y fue M bu(x,y). (6.5.73)
n=1

A simple check reveals that (6.5.73) satisfies the differential equation and
the boundary and initial conditions.

6.6. Exercises

(1) Let f and g be continuous functions on R™. Show that if

JRNf(x)¢(X) dx = f g(x)$(x) dx

for every ¢ € €°(R") with compact support, then

f(x)=g(x)  for every xe RN
{2) Show that a test function ¢ is of the form ¢(x) = (x¢(x))’, where ¢ is
a test function, if and only if

0 w
f Y(x)dx=0 and J P(x) dx=0.

0

(3) Show that @ is a vector space.
(4) Show that if ¢, ¢y € P, then

(a) fé € D for every smooth function f,
(b) {¢p(Ax)}e D for every affine transformation A of R™ onto R",
() ¢*ye
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(B) Construct a test function ¢ such that ¢(x)=1for |x| =1, and ¢(x) =0
for |x|=2.

(6) Which of the following expressions define a distribution?

@) (L )= (0

®) (=" $(xa), x1,..., %, €R are fixed;
(© h )= o0

(d) ¢>=ZT=1 ¢(X), X1,%,,...€R are fixed;
(e) {f, ¢>)=Z:‘=1 ¢ (x,), %1,..., X, €R are fixed;
() {f d)=((0)%

(g) {f, #)=sup ¢;

(h) (f, o)=1"11b(1)| dt;

() fe)=1. ¢(1) dr;

() (Kd)=Y__, ¢(x,), where lim, ., x, =0.

(7) Let ¢,2 ¢ and 4,2 . Prove the following:

(a) a¢,+ by, 2> agp+ by for any scalars a, b,

(b) fb,2 f¢ for any smooth function f defined on R",

(c) ¢.° A3 $o A for any affine transformation A of R™ onto RY,
(d) D*¢, 2 D¢ for any multi-index a.

(8) Let f be a locally integrable function on R™. Prove that the functional
F on 9 defined by

(F, ¢)= j L
N
is a distribution.
{9) Find the nth distributional derivative of f(x) = |x|.
(10) Let f,(x)=sin nx. Show that f, -0 in the distributional sense.

(11) Let {f,} be the sequence of functions on R defined by
0, if x<-1/2n;
fi(x)=4n, if =1/2n=x=1/2n;
0, if x>1/2n.

Show that the sequence converges to the Dirac delta distribution.
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(12) Show that the sequence of Gaussian functions on R defined by & (18) (a) Show that the fundamental solution G(x, ¢ ) for the Cauchy
i problem
L= n=12, Gu=CGay —0<X<®,1>0,

G(x,0)=0,  Gi(x0)=58(x~-§),
converges to the Dirac delta distribution. .
is

(1 3) Show that the sequence of functions on R defined by G(x, & 1) _L [H(x—é+ct)— H(x—é—ct)] i
P> 2¢ ‘ i

sin nx i

fulx)= T n=1,2,..., (b) Use this fundamental solution to solve a more general wave problem i :

u,,:czuxx, —0<x<00, t>0, 1: :

converges to the Dirac delta distribution.
u(x,0)=0,  u(x,0)=g(x).

(14) Let $oc D(R) F’e a fixed test function such thatL?o $o(x) dx =1.Show (19) Prove the existence of the weak solution of the Dirichlet boundary
that every test function ¢ € 2(R) can be represented in the form : value problem

¢ =Kot b1, ‘ ~Vu+cu=f in Q=R? u=0 ondQ,
where K is a constant and ¢, is a test function such that 1 i(x) dx =0. where ¢ is a positive function of x and y. Show that the weak solution is
Moreover, the representation is unique. given by

j v(—Vu+cu) d7=J fodr,
o o

(15) The fundamental solution of the one dimensional diffusion equation

satisfies the equation
d where u, ve Hy(Q).

G,—KG,, =8(x—§£)6(t—1), —0< x<00, t>0. :
(20) Show that the Dirichlet problem for the biharmonic operator |
Show that
ow tha Au=f inQ, feLXQ), ;
H(t—7) [ (x—§)2:| i
G , 5 & = - . _8u_ i
567 = ARt m) Pl T 4K (1- 1) =2,=0 ono,
Hence obtain the solution of the non-homogeneous equation where Q < RM, has a weak solution u € H}(Q) given by
i — Kuy, = t - < >0.
‘ e U =1 (x, 1), ©<x<0, >0 ‘ J Au Av dr='[ fodr for every ve H3Q).
9 ' Q Q i
(16) Find the fundamental solution for the one dimensional diffusion :
equation (21) Show that the boundary value problem
an CAu-tu= in RN 2N
N u,—Ku,, =0, —oo0<x<o0,t>0. Autu=f inR% - feLli(RT,
: u->0 as |x| >
(17) Apply the joint Fourier and Laplace transforms to obtain the Green’s has a unique solution ue H'(R") such that
function for the wave equation
Vu: dr+ dr= d:
Gy~ G =8(x)8(1), —00<x <00, t>0, LN uVodr Lv war L~ fods

| G(x,0)=G,(x,0)=0. for all ve H'(RV).
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(22) Let @ =R be a bounded open set. Consider the Robin boundary
value problem

—Autu=f inQ, feLX{Q),
3

il+au:0 on 4Q), a>0.
n

Show that there exists a unique solution ue H}(Q) such that
a(u, v) = (f, v) for every ve H(Q),
where

wdr+a '[ uv dr, u, ve Hy(Q).

a0

a(u, v)zJ Vu-Vvd7+J
Q

Q
(23) Use the Fourier transform method to show that the solution of the
telegrapher’s problem

u,,+au,+bu=c2uxx, —00< X, t <00,

u(0, )=£(),  u (0, 1)=g(1),

0

u(x, t)= i J: I:f(k) cos{xa (k)}+ g(k)

a(k)

sin{xa(k)}] e™ dk,

where

b+ ika — k?
a(k)=T,

and f and g are the Fourier transforms of f and g, respectively.

(24) Find the solution of the Dirichlet problem in the half-plane
U+ u,, =0, —0<x <00, y>0,
u(x, 0) =f(x), —o<x<o0o,
u is bounded as y - oo, u, u, vanish as |x|-> oo,
(25) Find the solution of the Neumann problem in the half-plane
Uyt Uy, =0, —00< x <00, y>0,
u,(x,0)=g(x), —oco<x<oo,
u is bounded as y-> o0, u, u, vanish as |x|- o0,
(26) Find the solution of the system
Upx + Uy, =0, —0<x<o0, 0sy=aq,
u(x,0)=£(x),  u(xa)=g(x).
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(27) Solve the boundary value problem
Uy + 1, =0, —0<x<00, 0<=y=<a,
u(x, 0)=f(x), wu(xa)=0.
(28) Show that the solution of the slow motion of viscous fluid through a

slit governed by the biharmonic equation (6.5.53) with the boundary condi-

tions
dy=g(x)H(a~|x]), =0 ony=0

is

2 00 ’
¥ g(x') dx
U(x,y)= - j_co (x-—x')2+yz.

(29) Use the analysis of Example 6.5.4 to find the solution of the two
dimensional steady flow of an inviscid liquid through a slit in a plane rigid
boundary y = 0. The problem is to find the velocity potential d(x, y) satisfy-
ing the Laplace equation with the boundary conditions

¢ =H(a—|x|), v=—-d)y:(a2—x2)”2H(a—|x|) on y=0.
(30) If E(u, v) is a bilinear form defined by the Dirichlet integral (6.3.36)
of a self-adjoint operator L, prove that

-(a) E(au+Bu, au+ pv)=a’E(u, v)+2aBE(u, v)+ B2E(v, v), where a
and B are constants;
(b) (E(u, v)y’=<E(u, u)E(v, v), if =<0 and L is an elliptic operator.




