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Example 5.11.7. Consider the integral equation
J: e Fily(sydr=—- i u(x)+e ™ —w<x<o. (511.32)
Application of the Fourier transform with respect to x yields
it =-Lago ey 2L
so that

1 8
V27 K*+9°

By the inverse Fourier transform, we obtain

4 0 eikx
Sk
u(x) T Jloo K2+9

u(k)=

To evaluate this integral for x >0 we use a semicircular closed contour in
the lower half of the complex plane. It turns out that

4
u(x)=§e“3x, x> 0.

Similarly, for x <0, we use a closed semicircular contour in the upper half
of the complex plane to obtain

4
u(x)=-e>, x<0.
3
Hence the solution of (5.11.32) is

4
u(x) =3 e 3 (5.11.33)

6.12. Exercises

(1) Determine the fixed points, if any, of the following operators:

(a) T(x)=x+a on any vector space;
(b) T:R’- R’ defined by T(x, y)=(x, 0);
() T:R*-R? defined by T(x, y)=(y, y);
(d) T:R*->R’defined by
T(x,y)=(xcos ¢ +ysin ¢,— x sin ¢ +y cos ¢),

where ¢ is a fixed real number.
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(2) Suppose T is an operator on €([0, 1]) defined by

1

(Tu)(1) =J (u(x))” dx.

0

Show that T is not a contraction on the closed unit ball in €([0, 1]), but
that it is one on the closed ball of radius § in €([0, 1]).

(3) Show that the operator T: €([0, 1]) > €([0, 1]) defined by
(Tx)(t)=x(0)+A J.Orx('r) dr, AR,

is a contraction provided |A|<1.
(4) Show that the non-linear integral equation

f(x)=J1e_S” cos(af(s)) ds, O=x=<1,0<a<l,

0
has a unique solution.
(5) Consider a system of ordinary differential equations
2 ) = G0, 1), B2, -, ()

with the initial data

b (X0) = Yox »
where k=1,2,..., N; and the functions f,(xo, y;,¥2,...,¥n) are con-
tinuous in some domain Q<RM', and (xo, Yor, Yoz, - - ., Yon) € Q.

Moreover, we assume that the functions f; satisfy the Lipschitz condition

|fk(xsylsy29‘-'syN)'—fk(xsZI;ZZ;“';ZN)issup max ‘J’m‘zm|
X 1=m=N

in (). Prove that this system has a unique system of solutions y, = ¢, (x) in
some interval |x — xo| < d.

(6) Use the method presented in Section 5.6 to solve the following
homogeneous Fredholm equation:

fx)=2 J‘] (x+ 1)f (1) dt.

(7) Use the method presented in Section 5.6 to solve the following non-
homogeneous equation:
1

f(x)=¢(x)+A J (mx sin 7t + 27 sin 277t) f(¢) dbt.

Q
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(8) Express the solution of the integral equation
f(x)=¢(x)+A J cos(x+ 1) f(t) dt
0

in the resolvent form

2

F(x) = (x)+A J‘ L(x, £; M)¢(1) dy,

0
where A is not an eigenvalue. Obtain the general solution, if it exists, for
¢(x)=sin x.
(9) Show that the solution of the differential equation
ﬂ+xf'“1 F0)=£'(0)=0
de ) )
satisfies the non-homogeneous Volterra equation
. 1 * .
f(x)ZF'i-J‘ t(t—x)f(t) dt.
™ 0
(10) Transform the problems
af ,
@ ir=x  fo=0, =0,
dx
af ) ,
®) Shir=x O =1, 710,
X
into Fredholm integral equations.

(11) Discuss the solutions of the integral equation
1
f(xy=¢(x)+A J (x+1)f(t) dt.
0
(12) When do the following integral equations have solutions?

1
(@) f(x)=¢(x)+Ar L (1-3xt)f(1) dt.

2w

(b) f(x)=¢(x)+)\J- sin(x+t)f{(t) dt.

]

(c) f(x)=¢(x)+/\J xtf(t) dt.

(d) f(x)=(x)+A J Y. P(x)P.(0)f(1) di,

—1n=1

where P, is the nth degree Legendre polynomial.
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(e) f(x) :x+§f (x+0f(1) dt.

(13) Find the eigenvalues and eigenfunctions of the following integral
equations:

2

(a) f(x)=A J ' cos(x — t)f(t) dt.
0

o) =1 [ s an

(c) f(x)=¢(x)+)\J cos(x+1)f(t) dt.

0

(14) Solve the integral equations

(a) f(x)=¢(x)+/\J‘ tf(1) dt.

1/2

(b) f(x)=x+2A J £(t) dt.

0
(© S =243 L xif(1) d.
(d) f(x)=x+ J‘ (14 xt)f(t) dt.
0
(e) f(x)=e*+A J 2e*Tf(1) dt.
0
(15) Use the separable kernel method to show that
1
f(x)=A J' cos x sin t f(t) dt
0

has no solution except the trivial solution f =0.

(16) Obtain the Neumann n series solutions of the following equations:

(a) f(x):x+%J‘ (t+x)f(1) dt.
-1

(b) f(x)=x+J-0 (t—x)f(¢) dt.

(c) f(x):x—L (t—x)f(2) dt.

(d) f(x)=1-2 j (1) dt

0
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(17) If Lu = u"+ »’u, show that L is formally self-adjoint and the concomi-
tant is J(u, v) = vu'— uv’. Moreover, if u is a solution of Lu=0 and v is a
solution of L*v =0, then the concomitant of u and v is a constant.

(18) Let L be a self-adjoint differential operator given by (5.8.15). If u,
and u, are two solutions of Lu =0, and J(u,, u,)=0 for some x for which
ay(x) #0, then u; and u, are linearly independent.

(19) Consider the differential operator
L=e*D’+e*D, D=—, 0=x=<1,

u'(0)=0, u(1)=0.
Show that L is formally self-adjoint.
(20) Prove continuity of the Green’s function defined in Theorem 5.10.1.
(21) Find eigenvalues and eigenfunctions of the following Sturm-Liouville
system:
u"+Au=0, O=x=m,

u(0)=u'(w)=0.

{(22) Transform the Euler equation
Xu"+xu'+Au=0, l=x=e,
with the boundary conditions
u(l)=u(e)=0

into the Sturm-Liouville system

d du| 1

~d—x I:XE] +; Au=0,

u(1)=u(e)=0.

Find the eigenvalues and eigenfunctions.

(23) Prove that A =0 is not an eigenvalue of the system defined in Example
5.9.1.

(24) Show that the Sturm-Liouville operator L=DpD+q, D=d/dx is
positive if p(x)>0 and g(x)=0 for all x&[a, b].
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(25) Show that the Sturm-Liouville operator L in L*([a, b]) given by
1
L=——(DpD+q)
r(x)
is not symmetric.
(26) Use the Fourier transform to solve the forced linear harmonic oscil-
lator
X+ w’x =a sin Ot t1>0,0#Q,  x(0+)=0=x(0+).
Examine the case when w =Q.

(27) Solve the problem discussed in Example 5.11.1 with E(1)=
Eoe 'sin wt H(t) and I(0+)=1I,.
(28) If there is a capacitor in the circuit discussed in Example 5.11.1, then
the current I(t) satisfies the following integrodifferential equation:
dr 1 ! ]
L—+RI+— + | I(t)dt|=E(1),
PRI [qo j (1) dt | = E(1)
where g is the initial charge on the capacitor so that
!
q= %"’J‘ I() dt
0

is the charge and dq/dt=I.
Solve this problem using the Fourier transform and the following condi-
tions

I=q=E=0 for t <0,
1(0+) = I, and q(0+) = qo.

Examine the special case when E(t)= H(t).

(29) Use the Fourier transform to solve the following problem:
Y'+3y'+2y=e", x>0, y(0+) = yoand y'(0+) = ygo.
(30) Use the Fourier transform to solve the following pair of coupled
differential systems for ¢ >0:
x'+y —x+3y=e”,
x+y +2x+y=e%,

x(0+)=x, and y(0+)=y,.
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(31) (a) Show that the solution of the integral equation

u(x)—)\fr e Pyt dr=e

—00

e—m—um 1
=—— <-.
u(x) T=3x for A 2
(b) If
Tu = J e " u(r) ar
show that || T||<2; ||- || denotes the norm in L¥(R).

(32) Prove the following properties of the Hilbert transform ¢(x)=
H{¢p(1); x}.

(a) #{p(t+a); x}=H{¢(t); x+a};

(b) H{¢(at); x}=H{$(1); ax}, a>0;

(e} H{p(—1); x}=—H{p(t); —x};

(d) #{p'(t); x}=(d/dx)p(x);

(e) F{tp(1); x}=xd(x)+(1/m) [, () dt.

(33) Show that if fe L*(R) then %{ f}e L*(R) and | %{ f}||= ]|

(34) Show that F{H#{ f}} = (—isgn k)F{ f}.

CHAPTER 6

Generalized Functions and
Partial Differential Equations

6.1. Introduction

In this chapter, we shall first discuss briefly the basic concepts and properties
of distributions. The theory of distributions was initiated by the Russian
mathematician S. L. Sobolev in 1936. The comncept of distributions was
independently introduced by the French mathematician L. Schwartz in the
1950s. Since Schwartz was the cne who developed the theory almost to its
present form, distributions are often called Schwartz distributions. Distribu-
tions have found applications in many areas of mathematics, including
differential and integral equations.

The rest of this chapter deals with Green’s functions for partial differential
equations of most common interest. This is followed by the form of the
Green’s identity associated with partial differential operators. Section 6.4
discusses weak solutions of elliptic boundary value problems. The final
section is devoted to applications of the Fourier transform to partial differen-
tial equations of physical interest.

6.2. Distributions

Consider a partial differential operator L of order m in N variables
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