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Since, by Theorem 2.4.2, lim,,,‘,uIlf(t—y)—f(—y)] dy =0, the proof is
complete.

2.16. Exercises

(1) Denote by  the family consisting of all finite unions of semi-open
intervals [a, b) and the empty set. Prove the following properties of «f:

(a) If A,,..., A, e, then A, U U Aed.
(b) If A,,..., A, €, then AN NnA,ed.
(c) If A, Be o, then A\Be .

(2) Show that step functions form a vector space.

(3) Prove that the integral of a step function is independent of a particular
representation (2.2.1).

(4) Show that for any step functions f and g we have

(a) supp(f+g)<supp fusuppg,
(b) supp fg = supp f nsupp g,

(c) supp|f|=suppy,

(d) supp Af=supp f, X €R, A #0,
(e) If |f]=|g|, then supp f < supp g.

(5) Prove Lemma 2.2.1.
(6) Prove Theorem 2.4.2 for step functions,

(7) Expand the following functions into a series of step functions (i.e., find
step functions f,, f,, ... such that f=fi+ £+ - )

1 if x =0,
(@) fx) = {0 if x #0.
1 if xe[a, b],
) 1o9-{; releth

(c) f(x)=max{0, 1~|x|}.

(d) f is a piecewise continuous function with bounded support.

(8) Show that fe L'(R) if any only if there are intervals [a,, b,), [a,, b,), . ...
and numbers Ay, A,, ... such that

szIX[a;,b,)‘*’)\zX[az,bz)ﬂL' ‘e
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(9) Show that if f=f,+f,+: - then f+g=g+f+f,+ - for any step
function g. In particular, if f=f,+f,++ - then

f=fi— =St fosat

(1 0) If fe L‘(R) and f vanishes outside of a bounded interval J, then there
are step functions f;, f5, ... vanishing outside of J such that f=f,+ f,+- - -.

(11) If fe L'(R) and f=0, is it always possible to find non-negative step
functions f,, f>, . ..such that f=fi+f,+ - ?

(1 2) Show that the characteristic function of the set of all rational numbers
is Lebesgue integrable but not Riemann integrable.

(13) Define f*=max{0, f} and f~ =max{0, —f}. Prove that fe L'(R) if
any only if f*e L'(R) and f~ € L'(R).

(14) Show that if f is a continuous integrable function, then there are step
functions fi, f», ... such that f=fi+f+ - and |f|=|fi|+]A]+ .

(1 5) By a tent function we mean a function of the form

2(x—a)/(b—a) ifasx=(a+b)/2,
f(x)={2(b—x)/(b—a) if(a+b)/2=x=b,
0 otherwise,

where a <b. Show that fe L'(R) if and only if there exist tent functions
fi, /2, ... and numbers A, A,,...such that f=A, fi+A,/0+ -

FIGURE 2.3.

(16) Show that the relation
f~g if J |f—gl=0
is an equivalence in L'(R).

(17) Prove the following:

(a) Every countable subset of R is a null set.
(b) A countable union of null sets is a null set.
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(18) Prove the following properties of convergence almost everywhere:

(a) If f, > fa.e. and A €R, then Af, > \f ace..
(b) If f,>fae. and g,>g a.e., then f, +g, >f+gae.
(c) If f, > fae, then |f,|>|f] ae..

(19) Show that every Lebesgue integrable function can be approximated
in norm and almost everywhere by a sequence of continuous functions,

(20) Let fe L'(R). Define
_[f(x) if |x| = n,
Jalx)= {0 otherwise.

Show that f,, > fin..
(21) Show that there exists an unbounded continuous function feL'(R).

(22) Show that if f is a uniformly continuous function on R and feL'(R),
then f is bounded and limjy.. f(x) =0.

(23) Show that locally integrable functions form a vector space.

(24) Let f€ L'(R) and let g be a bounded locally integrable function. Show
that fg € L'(R) and [|fg| = sup.crlg(x)| f|/].

(25) Show that the space L'(J) is complete for any interval J < R.

(26) Prove: If a sequence of locally integrable functions {f.} converges
almost everywhere to a function f and |f,|<h for every n €N, where h is
a locally integrable function, then f is locally integrable.

(27) In Example 2.7.2 we define a sequence of functions {f.} convergent
to 0 in norm but divergent at every point of R. Find a subsequence of {f,}
convergent to 0 almost everywhere.

(28) Prove: If {f,} is a sequence of integrable functions which is non-
decreasing almost everywhere and Hf,,ls M for some constant M and all
neN, then there exists an integrable function f such that f, - f i.n. and
f.—f ae.. Moreover, we have |ff|s M.

(29) Prove: If a sequence of integrable functions {f,} converges almost
everywhere to a function f and |f,(x)| = h(x) for almost all x € R,all neN,
and some integrable function h, then f is integrable and f, > fi.n..
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(30) Show that the function

sin x

fx)=4{ x
1 if x=0,

if x#0,

is not Lebesgue integrable, although the improper Riemann integral
§* f(x) dx converges.

(31 ) Let J# denote the collection of all measurable subsets of R. Prove the
following:

(a) O, Re L. .
(b) If A, A,,...€ M, then U, A, e M
(c) If A, A,,...€ M, then () _ A, M
(d) If A, Be M, then A\Be M.

(e) Intervals are measurable sets.

(f) Open subsets of R are measurable.
(g) Closed subsets of R are measurable.

(32) Let # be the collection of all measurable subsets of R and let u be
the Lebesgue measure on R. Prove the following:

(a) If Ay, A,,...e M, then (U _, A,.)SZT_1 w(A,).

(b) If A, Be.M and AS B, then u(B\A) = u(B)~ p(A).

() If A,,A,,...cM and A,cA,cAsc---, then u(US , A,)=
1im o0 1 (A,).

(33) Let f be a real valued function on R. Show that the following
conditions are equivalent:

(a) f is measurable;

(b) {xeR: f(x)=a} is measurable for all @ €eR.
(c) {xeR: f(x)<a} is measurable for all « €R.
(d) {xeR: f(x)=a} is measurable for all « eR.
(e) {xeR: f(x)> a}is measurable for all @ €R.

(34) Prove: Let A;, A, ... be measurable sets such that lim,_« u(A,)=0.
Then for every fe L'(R) we have

lim J f=0.

n-oo
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(35) Let

1/Vx  for0<|x|<1,
0 otherwise.

g(x)= {
Show that g L'(R) but g’ L'(R).
(36) Let f(x)=min{1, 1/|x[}. Show that f ¢ L'(R) but fe L*(R).
(37) Show that L*([a, b])< L'([a, b]) for any bounded interval [a, b].
(38) Let £, g, he L'(R). Show that (f+g)*h=fxh+f«h,

(39) Let f be the characteristic function of the interval [—1, 1]. Calculate
the convolutions f*f and fxf* f.

(40) Let feL'(R) and let g be a bounded continuously differentiable
function on R. Show that f* g is differentiable. If, in addition, g’ is bounded
show that (fxg)' =fxg’

(4.-1 ) Let f be a locally integrable function on R and let g be a continuously
differentiable function with bounded support in R. Show that fxg is
differentiable and (f*g)' =fxg’.

CHAPTER 3

Hilbert Spaces and
Orthonormal Systems

3.1. Introduction

The theory of Hilbert spaces was initiated by David Hilbert (1862-1943)
in his 1912 work on quadratic forms in infinitely many variables which he
applied to the theory of integral equations. After many years John von
Neumann (1903-1957) first formulated an axiomatic theory of Hilbert spaces
and developed the modern theory of operators on Hilbert spaces. His
remarkable contribution to this area has provided the mathematical founda-
tion of quantum mechanics. Von Neumann’s work has also provided an
almost definite physical interpretation of quantum mechanics in terms of
abstract relations in an infinite dimensional Hilbert space.

This chapter is concerned with inner product spaces (called also pre-
Hilbert spaces) and Hilbert spaces. The basic ideas and properties will be
discussed with special attention given to orthonormal systems. The theory
is illustrated by numerous examples.
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