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One of the simple nonlinear partial differential equations which exhibits
the transition phenomena shown in Figure 8.3 is

U, =Vu+iu+u® in D, (8.9.20)
u=0  onaD, (8.9.21)

where D is a smooth bounded domain in R™. The equilibrium states of
(8.9.20) are given by solutions of the time-independent equation (u, = 0).
One solution is obviously u =0, which is valid for all A; this solution
becomes unstable at A = A,, the first eigenvalue of the Laplacian on D:
Vu,+Au;,=0, u,=0 on 9 D. For A > A, there are at least three solutions
of the nonlinear equilibrium equation. The nature of the solution set in the
neighborhood of (A,, 0) is given in Figure 8.3; the new bifurcating solutions
are stable. The Laplacian has a set of eigenvalues A, <A;<A3<--- which
tend to infinity, and all of these eigenvalues are potential bifurcation points.

In the theory of Calculus in Banach spaces, the following version of the
Implicit Function Theorem is concerned with the existence, uniqueness and
smoothness properties of the solution of the Equation (8.9.1).

Theorem 8.9.1 (Implicit Function Theorem). Suppose A, E, B are real
Banach spaces and F is a Fréchet differentiable mapping from a domain
D < AXE to B. Assume F(Ay, u,) =0 and the Fréchet derivative F'(Aq, ug)
is an isomorphism from E to B. Then, locally, for |X — \,|| sufficiently small,
there is a differentiable mapping u(\) from A to E, with (A, u(A)) e D, such
that F(A, u(A))=0. Moreover, (A, u(A)) is the only solution of F=0ina
sufficiently small neighborhood D'< D. If Fis C" then u is C". If A, E, and
B are complex Banach spaces and F is Fréchet differentiable, then F is analytic
and u is analytic in A.
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FiGURe 83. Bifurcation diagram where unstable solutions are represented by
dashed lines.
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The proof of the theorem is beyond the scope of this book. However,
the theorem can be proved by using a contraction mapping argument and
is adequate for most physical applications. The reader is referred to Sattinger
(1973) and Dieudonné (1969) for a detailed discussion of proofs.

Bifurcation phenomena typically accompany the transition to instability
when a characteristic parameter crosses a critical value, and hence they
play an important role in applications to mechanics. Indeed the area of
mechanics is a rich source of bifurcation and instability phenomena, and
the subject has always stimulated the rapid development of functional
analysis.

8.10. Exercises

(1) Let H, and H, be real Hilbert spaces. Show that if T is a bounded
linear operator from H, into H,, and f is a real functional on H, defined by
J(x)=llu—Tx]|,
where u is a fixed vector in H,, then f has a Fréchet derivative at every

point given by
fi(x)=="2T*u+2T*Tx,

where T* is the adjoint of T.

(2) Suppose T: B, — B, is Fréchet differentiable on a open set < B,. Show
that if x € and h e B, are such that x+ the Q for every 1[0, 1], then

ITG+m) =TI =[] sup | T'Go+ah)],

(3) Suppose T is a twice Fréchet differentiable on an open domain Q in
a Banach space B,. Let x € and x+ ah € Q for every a €[0, 1]. Prove that

IT(x+H)=T(x)~T'(x)h] S%llh”zoiugl IT"(x+ah)].

(4) Find the extrema of the following functionals:

2

(a) I(y)=j (VY =2xy)dx,  y(1)=0,y(2)=-1;

1

1

(b) I(y)=j e () =y ~y) dx, y(0)=0,y(1):§;

0
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(c) I(y)=J ((¥)=yHdx,  y(0)=1,y2m)=1,

0

a

(d) I(y)=j ()=yDdx, y(0)=1,y(a)=1, a#km

0

(B) Find the extrema of the following functional:
2

I(u(x),v(y)) = j (W) + 0" +(v')?) dx,

u(l)=1, u2)=2, v(1)=0, v(2)=1.

(6) Determine the extrema of the functional

uw=f§u+w¥ﬂﬂu

a

which passes through the given points (a, y,) and (b, y,) in the upper half
plane.

(7) Find the shortest distance from the point (1, 1, 1) to the sphere
X+y+z=1.

(8) Solve the following isoperimetric problem: Minimize the functional
1
1(y) =J ()’ =) dx,
0
subject to 3 V1+(y")* dx =v2, y(0)=0, y(1)=1.

(9) Find the minimum of the functional

Mw=fW@¥uwm

0
subject to the condition | y*(x) dx=1, y(0)=0, y(w)=0.

(10) Derive Newton’s Second Law of Motion from Hamilton’s principle.

(11) Derive the equation of a simple harmonic oscillator in a non-resisting
medium from Hamilton’s principle.

(12) Find the curve y =y(x), 0=x=1, with y(0)=0, y(1)=0, and fixed
arc length L that has maximal area

A= jl y(x) dx.

0

Optimization Problems and Other Applications 473

(13) Show that the potential function u(x, y) which minimizes the func-
tional

I(”)z‘[‘[%(ui—kui) dx dy, QR
Q

satisfies the Laplace equation u,,+u,, =0.

(14) The distance between two points on a sphere is given by

ds=va> do*+a’sin® 6 dop>,

Show that the shortest curve between the two points on a sphere lies on a
great circle,
(1 5) The kinetic and potential energies of a spherical pendulum are
given by

T=3(126*+ I’ sin® 6 ¢2), V = mgl(1—cos ).
Find the equation of motion.
(16) Complete the proof of Theorem 8.6.1 by showing that the equation

Ax — Ax =y has a solution given by (8.6.14) if only « is not an eigenvalue
of A and a #0.

(17) Show that the Chebyshev polynomial T, is even for even n, and odd
for odd n.

(18) Show that T,.,(x) =2xT,(x) — T,_,(x) for n=2,3,....

(19) Show that
To(x)=1,
Ty(x)=x,
Tr(x)=2x>—1,
Ty(x) =4x"—3x,
T.(x)=8x*—8x"+1,
Ts(x) = 16x"—20x"+5x.

(20) Find the best approximation of f(x) =x""? out of II,.

(21) Prove that, for every neN, T, satisfies the differential equation
(1—-x%)y"(x)—xy'(x)+n’y(x)=0.
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(22) Show that every P(x)eI, has a unique representation of the form
P(x)=}_ a/T(x).
k=0

(23) Show that

T,(x)=x" —(;)x"‘2(1 —-x%)+ (:)x"_4(1 —x?)—. ..

(24) (a) Let L,f denote the polynomial of degree less than or equal to n
which agrees with a given function fe €([a, b]) at the fixed nodes
Xo, X1,.-., X, €[a, b]. Show that L, is a linear operator on é([a, b)).

(b) Show that L,P= P if and only if P is a polynomial of degree less
than or equal to n.

(c) Show that the error in the Lagrange interpolation is

(Luf =)(x)= Y [f(x) = £ () 1(%).
where
k) = T1 L=/ 0y = x0)

(25) Prove that the Lagrange interpolating polynomial for nodes defined
as zeros of T,(x) is

1)*'sin 6,

P() = Y. fi) 2

X
where x; = cos 6 and 6, = (2k —1)/2n.
(26) Show that the least-squares approximation of degree n —1 to f(x) = x”
is QF ,=x"—P,(x), where P, is the orthogonal polynomial of degree n
determined by w(x) and (8.7.16).
(27) Show that another form of (8.7.18) is
__(B, Py
(Pk—] b Pk—l)

k

(28) Prove that, if w(x) = 1, the orthogonal polynomials defined by (8.7.16)
satisfy

(ﬁnaﬁn)~ ﬁi(l), n=0,1,2,....

T on+1
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(29) Prove Rodrigues’ formula:

1
2"n!

Py(x)==—D"[(x*~1)"],

where P, is the nth degree Legendre polynomial.

(30) Show that the Legendre polynomials can be represented in the

following form:
1 A <n 2n—-2k
Pn - _lk n~2k.
0=y L () ()

Use this result to show that
Py(x) =1,
Py(x)=1x,
Py(x) =3x"~3,
Ps(x) :%XS—%X,
Py(x) =Fx*~Lx2+3,

Sketch graphs of these polynomials.

(31) Prove the following recurrence relations for Legendre polynomials:
(@) (n+1)P,,(x)=2n+1)xP,(x)— nP,_(x),
(b) P(x)=xP,_,(x)+nP,_,(x).

(32) Show that (P,, P,)=2/(2n+1), n =0,1,2,....

(33) Show that
(a) P;H(x)—Pi,kl(x)=(2n+1)P,,(x),
(b) xP(x)~P)_,(x)=nP,(x).

(34) Show that

i (a) (xz—l)P;(x)=nxP,,(x)—nP,,*l(x),

1—x2 1-

[PL()P+[P,(x)] =

PO+ Py (x)F.

2
I

(b)

2
n

(35) Show that

(a) 'Iﬂn(x):Un(x)_‘XUN*}(x):
(b) (]"'XZ)U,,,](X):X’T"(X)“’Tn_H(X).
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( 36) Show that U, (x) is generated by the following three-term recurrence
relation:

Un(x):2XUn—l(x)_ Un—2(x)’ n—>‘2,
Uy(x)=1, U(x)=2x.

(37) Find the general solution of the system
X=y+x(1-x*=p%),  y=-x+y(1-x>—)?.

Show that the unit circle is the orbit of a solution of the system. |

(38) Show that the equilibrium points of the Volterra system

X=ax—Ax’—bxy,  y=—cy+dxy

oo (5 55(-2)

(39) Consider a diffusion-reaction system

u, = Lu, u(0, t)=u(1,1)=0,

are

in a Hilbert space L*([0, 1]) where Lu = U+ a(x)u. If a is a constant, show
that the eigenvalues of L are a —n7?, n=1, 2, 3,.... Hence show that the
equilibrium solution is stable or unstable according as a <#” or a> 7> If
a is a not a constant, discuss the stability of the system.

(40) Find the non-trivial solutions of the linear eigenvalue problem
W'+ Aw =0, O=sx=m,
w(0)=w(w)=0.

Draw the bifurcation diagram.
(41) Find small non-trivial solutions of the nonlinear eigenvalue problems

(a) w'+ [)\ —% ‘[w w?(x) dx]w(x)-—-O, O=x=am,

2 a
(b) [——J w3(x) dx]w”+)\w=0, O=x=m;
T Jo

with the boundary conditions w(0)=w(w)=0. Draw the bifurcation
diagrams in each case.
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(42) Find small non-trivial solutions of the nonlinear eigenvalue problem
u'+Au—u’=0, O=x=1,
u(0)=u(1)=0.
Discuss their behavior as a function of A.

(43) The Euler elastic equation for the displacement of a thin elastic rod
with end-shortening proportional to A is

1 1
w”+<)\ _E,[ (w')? ds)w=0, O0=x=1,
0

w(0) = w(1) =0,
Describe the behavior of the solution as a function of A.
(44) Consider the nonlinear boundary value problem for a pinned inexten-
sible rod subject to prescribed axial thrust. The shape of the rod is deter-
mined by 6(x), the angle between the centerline of the deformed rod and
the x-axis, and the displacements u(x) and w(x) parallel and normal to

the x-axis, respectively. The governing equations of the problem for the
elastica are

6"+ A sin 6 =0, 0=x=1,
6'(0)=6'(1) =0,
u'=cos -1, w’=gin 6, O=x=1,
u(0)=w(0)=w(1)=0,
where the constant A is proportional to the applied thrust.

Find the eigenvalues and eigenfunctions of the linearized problem. Show
that the linearized eigenvalue problem yields the points of bifurcation for
the nonlinear problem.

(45) The nonlinear integrodifferential system
]
u”+[A-2J u’(x) a’x]u:O, u(0) = u(1) =0,
4]
can be solved exactly. Describe its solutions as a function of A

(46) Show that the solution of nonlinear integral equation

1
u=1+)\f u? dx
O
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is

1

u=—[1£v1—4A].

2A
Draw the graph of u as a function of A.
(47) Show that the following boundary value problem has no bifurcation
from any eigenvalue of the linearized problem:

d+tAfut+o(u’+0°)]=0, +A[v—u(u®+0>)]=0,
u(0)=u(a)=0v(0)=v(a)=0.

(48) Consider the nonlinear system
X=y—x(x*+y%),  y=-x—py(+y).

Show that the linearized system has the periodic solution (x,y)=
(acost asint), but the nonlinear system has no non-trivial periodic
solution.

(49) Discuss the stability and bifurcation phenomena for the following
differential equations:

(a) X=ax+x? (b) %=ax=x"
(50) Solve the equation

Xx=1-x7 x(t) =x€ (-1, 1).

Examine the stability of the solution x(¢) =—1 for all «.

Hints and Answers to
Selected Exercises

Hints and Answers to 1.9. Exercises

(B) Consider the function f(x)=(1/p)x+1/q—x"?. Show that f is
decreasing on [0, 1] and f(1) =0.

(6) If [x| <1, then |x9|=|x|”. Consider the sequence {n "/7}.

(7) The system

AT A+ A =X,

has a solution for any (x;, X, x;) € R®.

(9) Prove that A,2+ A x+---+A,x" =0, for all x, implies Aj=A,=-- =
A, =0.

(10) Prove that Ao+Ae*+A.e* +- - -+1,e™ =0, for all x, implies A,
M= =, =0,
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