Hmework # 2 Solwriens

1. (a) We cannot say anything about 3 a,,. If a,, > b,, for all n and 2 bn is convergent, then ¥~ a,, could be
- convergent or divergent. (See the note after Example 2.)

(b) If an < by, forall n, then 3 an, is convergent. [This is part (i) of the Comparison Test.]

2. (a) If a, > b, for all n, then Y anis divergent. [This is part (ii) of the Comparison Test.]

(b) We cannot say anything about } Gn. If an < by forall nand ) b, is divergent, then 3" a,, could be
convergent or dxvergent
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converges also by the Comparison Test.
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& Yes. Since Y a, converges, its terms approach 0 as n — oo, so for some integer N, a, < 1forallm > N. But
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the second term converges since Y-r° , bn converges. So Y anbn converges by the Comparison Test.

2n

T2 1 > 0, {bn} is decreasing [since

8. b, =

on on +2 8n% +8n—2
= e = > 0forn > 1], and
bn = bnt1 = 4n2+1 4n?2+8n+5 (4n2+1)(4n?+8n+5)

i i A s P s by the Alternating Series Test.
ﬂl_xg;o bn = nanéo m = 0, so the series Y (—1) T3 1 converges by g

d 2z |
Alternatively, to show that {b, } is decreasing, we could verify that — = ( yr g 1) < Oforz > 1. :

X cosnm (=)™ 1 1 :
15. nz=:1 e ngl yrel b= oy —37z s decreasing and positive and nll;ngo 7 0, so the series converges by

the Alternating Series Test.

1
. s . . . — &
24. The series Z(—l)"'H ;Ll—4 satisfies (i) of the Alternating Series Test because 1)

n=1

(i) lim —1‘; = 0, so the series is convergent. Now bs = 1/54 = 0.0016 > 0.001 and
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16. n?/3 — 2> 0forn > 3, s0 —75 forn > 3. Since Z 5 diverges (p =3 < 1), 50
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(b) Since the series of part (a) always converges, we must have lim i:z—' = 0 by Theorem 12.2.6 [ET 11.2.6].
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2. (a) Given the power series )~ cn(z — a)", the radius of convergence is:
(i) O if the series converges only whenz = a
(ii) oo if the series converges for all z, or
(iii) a positive number R such that the series converges if |z — a| < R and diverges if |z — a| > R.

In most cases, R can be found by using the Ratio Test.

(b) The interval of convergence of a power series is the interval that consists of all values of x for which the series
converges. Corresponding to the cases in part (a), the interval of convergence is: (i) the single point {a}, (ii) all
real numbers; that is, the real number line (—00, 00), or (iii) an interval with endpoints @ — R and a + R which
can contain neither, either, or both of the endpoints. In this case, we must test the series for convergence at each

endpoint to determine the interval of convergence.
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the series converges when |z] /5 <1 & |z| <5,s0R= 5: When & s o =3
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which converges by the Alternating Series Test. When 2 = 5, we get the convergent p-series 1?:1 oy (p )

Thus, I = [-5,5].




29. (a) We are given that the power series Yo o cnx™ is convergent for ¢ = 4. So by Theorem 3, it must converge for

at least —4 < z < 4. In particular, it converges when z = —2; that is, cn(—2)™ is convergent.
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(b) It does not follow that 3> | c,(—4)™is necessarily convergent. [See the comments after Theorem 3 about
convergence at the endpoint of an interval. An example is ¢, = (—1)"/ (n4™).]
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[by (12.2.4) [ET (11.2.4)] with r = z*] for |z4; <1 < |z|] < 1. AlsO S4n, S4n41, Sant2 have the same limits

(for example, S4rn = San—1 + coz?™and z4* — 0 for || < 1). So if at least one of o, c1, cz, and c3 is nonzero,
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(b) By Theorem 10.4.2 [ET 9.4.2], the only solution to the differential equation d f(z) /dz = f(z) is f(z) = Ke®
but f(0) = 1,50 K = 1and f(z) = e”.
Or: We could solve the equation d f(z) /dz = f(z) as a separable differential equation.



