Howework # 2 Solutions

11.4

- 1. (a) We cannot say anything about $\sum a_n$. If $a_n > b_n$ for all n and $\sum b_n$ is convergent, then $\sum a_n$ could be convergent or divergent. (See the note after Example 2.)
 - (b) If $a_n < b_n$ for all n, then $\sum a_n$ is convergent. [This is part (i) of the Comparison Test.]
- **2.** (a) If $a_n > b_n$ for all n, then $\sum a_n$ is divergent. [This is part (ii) of the Comparison Test.]
 - (b) We cannot say anything about $\sum a_n$. If $a_n < b_n$ for all n and $\sum b_n$ is divergent, then $\sum a_n$ could be convergent or divergent.

16.
$$\frac{1}{\sqrt{n^3+1}} < \frac{1}{\sqrt{n^3}} = \frac{1}{n^{3/2}}$$
, so $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$ converges by comparison with the convergent p -series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ $(p=\frac{3}{2}>1)$.

$$\frac{\mathbf{n}!}{\mathbf{n}^n} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1)n}{n \cdot n \cdot n \cdot n \cdot n \cdot n} \le \frac{1}{n} \cdot \frac{2}{n} \cdot 1 \cdot 1 \cdot \dots \cdot 1 \text{ for } n \ge 2, \text{ so since } \sum_{n=1}^{\infty} \frac{2}{n^2} \text{ converges } (p=2>1), \sum_{n=1}^{\infty} \frac{n!}{n^n} \text{ converges also by the Comparison Test.}$$

- 37. Since $\frac{d_n}{10^n} \le \frac{9}{10^n}$ for each n, and since $\sum_{n=1}^{\infty} \frac{9}{10^n}$ is a convergent geometric series $(|r| = \frac{1}{10} < 1)$, $0.d_1d_2d_3... = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$ will always converge by the Comparison Test.
- Yes. Since $\sum a_n$ converges, its terms approach 0 as $n \to \infty$, so for some integer N, $a_n \le 1$ for all $n \ge N$. But then $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{N-1} a_n b_n + \sum_{n=N}^{\infty} a_n b_n \le \sum_{n=1}^{N-1} a_n b_n + \sum_{n=N}^{\infty} b_n$. The first term is a finite sum, and the second term converges since $\sum_{n=1}^{\infty} b_n$ converges. So $\sum a_n b_n$ converges by the Comparison Test.

11.5

8.
$$b_n = \frac{2n}{4n^2+1} > 0$$
, $\{b_n\}$ is decreasing [since

$$b_n-b_{n+1}=\frac{2n}{4n^2+1}-\frac{2n+2}{4n^2+8n+5}=\frac{8n^2+8n-2}{(4n^2+1)(4n^2+8n+5)}>0 \text{ for } n\geq 1], \text{ and }$$

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{2/n}{4+1/n^2}=0, \text{ so the series }\sum_{n=1}^{\infty}(-1)^n\frac{2n}{4n^2+1} \text{ converges by the Alternating Series Test.}$$

Alternatively, to show that $\{b_n\}$ is decreasing, we could verify that $\frac{d}{dx}\left(\frac{2x}{4x^2+1}\right)<0$ for $x\geq 1$.

15.
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^{3/4}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/4}}.$$
 $b_n = \frac{1}{n^{3/4}}$ is decreasing and positive and $\lim_{n \to \infty} \frac{1}{n^{3/4}} = 0$, so the series converges by the Alternating Series Test.

24. The series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^4}$$
 satisfies (i) of the Alternating Series Test because $\frac{1}{(n+1)^4} < \frac{1}{n^4}$ and

(ii)
$$\lim_{n\to\infty}\frac{1}{n^4}=0$$
, so the series is convergent. Now $b_5=1/5^4=0.0016>0.001$ and

 $b_6 = 1/6^4 \approx 0.00077 < 0.001$, so by the Alternating Series Estimation Theorem, n = 5.

11.6

- 7. $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \frac{n}{5+n} = \lim_{n\to\infty} \frac{1}{5/n+1} = 1$, so $\lim_{n\to\infty} a_n \neq 0$. Thus, the given series is divergent by the Test for Divergence.
- **16.** $n^{2/3} 2 > 0$ for $n \ge 3$, so $\frac{3 \cos n}{n^{2/3} 2} > \frac{1}{n^{2/3} 2} > \frac{1}{n^{2/3}}$ for $n \ge 3$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$ diverges $(p = \frac{2}{3} \le 1)$, so does $\sum_{n=1}^{\infty} \frac{3 \cos n}{n^{2/3} 2}$ by the Comparison Test.
- 33. (a) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = |x| \cdot 0 = 0 < 1$, so by the Ratio Test the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all x.
 - (b) Since the series of part (a) always converges, we must have $\lim_{n\to\infty}\frac{x^n}{n!}=0$ by Theorem 12.2.6 [ET 11.2.6].
- 37. Summing the inequalities $-|a_i| \le a_i \le |a_i|$ for $i = 1, 2, \ldots, n$, we get $-\sum_{i=1}^n |a_i| \le \sum_{i=1}^n a_i \le \sum_{i=1}^n |a_i|$ $\Rightarrow -\lim_{n \to \infty} \sum_{i=1}^n |a_i| \le \lim_{n \to \infty} \sum_{i=1}^n a_i \le \lim_{n \to \infty} \sum_{i=1}^n |a_i| \Rightarrow -\sum_{n=1}^\infty |a_n| \le \sum_{n=1}^\infty a_n \le \sum_{n=1}^\infty |a_n| \Rightarrow |\sum_{n=1}^\infty a_n| \le \sum_{n=1}^\infty |a_n|.$

11.8

Thus, I = [-5, 5].

- **2.** (a) Given the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$, the radius of convergence is:
 - (i) 0 if the series converges only when x = a
 - (ii) ∞ if the series converges for all x, or
 - (iii) a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R. In most cases, R can be found by using the Ratio Test.
 - (b) The interval of convergence of a power series is the interval that consists of all values of x for which the series converges. Corresponding to the cases in part (a), the interval of convergence is: (i) the single point $\{a\}$, (ii) all real numbers; that is, the real number line $(-\infty, \infty)$, or (iii) an interval with endpoints a-R and a+R which can contain neither, either, or both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of convergence.
- 12. $a_n = \frac{x^n}{5^n n^5}$, so $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{5^{n+1} (n+1)^5} \cdot \frac{5^n n^5}{x^n} \right| = \lim_{n \to \infty} \frac{|x|}{5} \left(\frac{n}{n+1} \right)^5 = \frac{|x|}{5}$. By the Ratio Test,

the series converges when $|x|/5 < 1 \Leftrightarrow |x| < 5$, so R = 5. When x = -5, we get the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^5}$,

which converges by the Alternating Series Test. When x=5, we get the convergent p-series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ (p=5>1).

- **29.** (a) We are given that the power series $\sum_{n=0}^{\infty} c_n x^n$ is convergent for x=4. So by Theorem 3, it must converge for at least $-4 < x \le 4$. In particular, it converges when x=-2; that is, $\sum_{n=0}^{\infty} c_n (-2)^n$ is convergent.
 - (b) It does not follow that $\sum_{n=0}^{\infty} c_n(-4)^n$ is necessarily convergent. [See the comments after Theorem 3 about convergence at the endpoint of an interval. An example is $c_n = (-1)^n / (n4^n)$.]

36.
$$s_{4n-1} = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_0 x^4 + c_1 x^5 + c_2 x^6 + c_3 x^7 + \dots + c_3 x^{4n-1}$$

$$= \left(c_0 + c_1 x + c_2 x^2 + c_3 x^3\right) \left(1 + x^4 + x^8 + \dots + x^{4n-4}\right) \to \frac{c_0 + c_1 x + c_2 x^2 + c_3 x^3}{1 - x^4} \text{ as } n \to \infty$$
[by (12.2.4) [ET (11.2.4)] with $r = x^4$] for $|x^4| < 1 \iff |x| < 1$. Also $s_{4n}, s_{4n+1}, s_{4n+2}$ have the same limits (for example, $s_{4n} = s_{4n-1} + c_0 x^{4n}$ and $x^{4n} \to 0$ for $|x| < 1$). So if at least one of c_0, c_1, c_2 , and c_3 is nonzero, then the interval of convergence is $(-1, 1)$ and $f(x) = \frac{c_0 + c_1 x + c_2 x^2 + c_3 x^3}{1 - x^4}$.

11.9

7.
$$f(x) = \frac{1}{x-5} = -\frac{1}{5} \left(\frac{1}{1-x/5} \right) = -\frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{x}{5} \right)^n \text{ or equivalently, } -\sum_{n=0}^{\infty} \frac{1}{5^{n+1}} x^n. \text{ The series converges when } \left| \frac{x}{5} \right| < 1; \text{ that is, when } |x| < 5, \text{ so } I = (-5, 5).$$

16. We know that
$$\frac{1}{1-2x} = \sum_{n=0}^{\infty} (2x)^n$$
. Differentiating, we get $\frac{2}{(1-2x)^2} = \sum_{n=1}^{\infty} 2^n n x^{n-1} = \sum_{n=0}^{\infty} 2^{n+1} (n+1) x^n$, so
$$f(x) = \frac{x^2}{(1-2x)^2} = \frac{x^2}{2} \cdot \frac{2}{(1-2x)^2} = \frac{x^2}{2} \sum_{n=0}^{\infty} 2^{n+1} (n+1) x^n = \sum_{n=0}^{\infty} 2^n (n+1) x^{n+2} \text{ or } \sum_{n=2}^{\infty} 2^{n-2} (n-1) x^n,$$
 with $R = \frac{1}{2}$.

26. By Example 7,
$$\int \tan^{-1}(x^2) dx = \int \sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{2n+1}}{2n+1} dx = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+3}}{(2n+1)(4n+3)} \text{ with } R = 1.$$

35. (a)
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 \Rightarrow $f'(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = f(x)$

(b) By Theorem 10.4.2 [ET 9.4.2], the only solution to the differential equation df(x)/dx = f(x) is $f(x) = Ke^x$, but f(0) = 1, so K = 1 and $f(x) = e^x$.

Or: We could solve the equation df(x)/dx = f(x) as a separable differential equation.