MATH 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment #2

Exercise 2.1.* Sketch F(x) = 1/x - a for a = 2. Then derive a Newton iteration for computing the reciprocal of a positive real number a without performing division. Create a MATLAB m-file to implement the algorithm, and use it with $x_0 = 0.3$ to approximate e^{-1} , where e = 2.7182818284, by calculating x_1, x_2 and x_3 . Repeat for $x_0 = 1.0$.

See the TA for the solution to this problem.

Exercise 2.2.* A completed m-file newton.m has been placed on the class webpage.

- (a) Download this function from the class webpage for use in this homework, and read it carefully so that you understand how it works.
- (b) Use newton.m to find a zero of the function

$$F(x) = \begin{pmatrix} x_1^2 + x_2^2 - 2\\ (x_1 - \frac{1}{2})^2 + (x_2 - 1)^2 - \frac{9}{4} \end{pmatrix},$$

starting at the points $x_0 = (2, 3)^T$, $x_0 = (1, 3)^T$ and $x_0 = (1, 2 + 10^{-8})^T$. What rate of convergence do you observe? Comment on your results.

See the TA for the solution to this problem.

Exercise 2.3.* An eigenvector x of an $n \times n$ matrix A satisfies $Ax = \lambda x$ for some scalar λ . The scalar λ is known as the eigenvalue of A corresponding to the eigenvector x.

(a) If x is an eigenvector of A, show that βx is also an eigenvector. What is the associated eigenvalue? Hence show that the unit vector x/||x|| is an eigenvector of A.

If $Ax = \lambda x$, then clearly $A(\beta x) = \beta(Ax) = \beta(\lambda x) = \lambda(\beta x)$ holds, simply by the properties of scalarvector and scalar-matrix multiplication, and by the definition of an eigenpair. Therefore, if x is an eigenvector then so is βx , and both have the same eigenvalue. Moreover, if x is an eigenvector, we know that $x \neq 0$, so that $||x|| \neq 0$ (property of the norm), so that taking $\beta = 1/||x||$ is well-defined. Therefore, if x is an eigenvector, so is x/||x||, for the same eigevalue.

(b) Define an iteration of Newton's method for the zero of the n + 1 equations

$$(A - \lambda I)x = 0, \qquad x^T x = 1,$$

in the n + 1 unknowns (x, λ) . Use the m-file newton.m to find an eigenvector and eigenvalue for the matrix

$$A = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \text{ starting } atx_0 = \begin{pmatrix} -\frac{5}{1} \\ -\frac{1}{5} \\ \frac{4}{5} \\ 1 \end{pmatrix}.$$

See the TA for the solution to this part of the problem.

Exercise 2.4. One way to make Newton's method more robust for a given nonlinear equation F(x) = 0, where $F : \mathbb{R}^n \to \mathbb{R}^n$, is to construct an associated minimization problem such that the minimum occurs at the solution to the original nonlinear equation. A standard choice for the function to minimize is:

$$f(x) = \frac{1}{2} \|F(x)\|^2 = \frac{1}{2} F(x)^T F(x)$$

This is a real-valued function of several variables, and we can form its derivatives, as long as F(x) is differentiable.

(a) Show that the following is true:

$$\nabla f(x) = F'(x)^T F(x).$$

We can either compute each component $\partial f(x)/\partial x_k$, k = 1, ..., n of the gradient vector $\nabla f(x)$, or we can compute them all at once using the technique in class that was called *variational differentian*, which also goes by the name *directional* or *Gateaux* differentiation:

$$\begin{split} (\nabla f(x),p) &= \left. \frac{d}{dt} f(x+tp) \right|_{t=0} \\ &= \left. \frac{d}{dt} \frac{1}{2} (F(x+tp),F(x+tp))_{t=0} \\ &= \left. \frac{1}{2} \frac{d}{dt} (F(x)+tF'(x)p+O(t^2)),F(x)+tF'(x)p+O(t^2)) \right)_{t=0} \\ &= \left. \frac{1}{2} \frac{d}{dt} (F(x)+tF'(x)p+O(t^2)),F(x)+tF'(x)p+O(t^2)) \right)_{t=0} \\ &= \left. \frac{1}{2} \frac{d}{dt} [(F(x),F(x))+t(F(x),F'(x)p)+O(t^2) \\ &+ t(F'(x)p,F(x))+t^2(F'(x)p,F'(x)p)+O(t^3)]_{t=0} \\ &= \left. \frac{1}{2} [(F(x),F'(x)p)+(F'(x)p,F(x)+2t(F'(x)p,F'(x)p)+O(t^2)]_{t=0} \\ &= \left. \frac{1}{2} [(F(x),F'(x)p)+(F'(x)p,F(x))+2t(F'(x)p,F'(x)p)+O(t^2)]_{t=0} \\ &= \left. \frac{1}{2} [(F(x),F'(x)p)+(F'(x)p,F(x))] \\ &= (F(x),F'(x)p) \\ &= (F'(x)^TF(x),p). \end{split}$$

Therefore, we have that $\nabla f(x) = F'(x)^T F(x)$.

(b) Now, recall that a direction of decrease y at x for such a real-valued function satisfies

$$f(x + \lambda y) < f(x),$$

for some $\lambda > 0$. More over, a descent direction y at x always satisfies $y^T \nabla f(x) < 0$. Show that a descent direction is always a direction of decrease. (Hint: Taylor series.)

We did this in class, which was stated as a lemma. The proof was essentially just writing down the Taylor expansion:

$$f(x + \lambda y) = f(x) + \lambda f'(x)y + O(\lambda^2) = f(x) + \lambda [f'(x)y + O(\lambda)].$$
(2.1)

If $f'(x)y = y^T \nabla f(x) < 0$, then for sufficient small (but positive) $\lambda > 0$, we can force:

$$f'(x)y + O(\lambda) < 0$$

which in term forces:

 $\lambda[f'(x)y + O(\lambda)] < 0,$

and so that finally equation (2.1) ensures that for this same λ ,

$$f(x + \lambda y) < f(x).$$

(c) Prove that the Newton direction $y = -F'(x)^{-1}F(x)$ at x is always a direction of decrease for f(x) at (Hint: Show y is a descent direction and use (b).)

We just need to show that

$$f'(x)y = y^T \nabla f(x) = (\nabla f(x), y) < 0$$

for our specific $f(x) = ||F(x)||^2/2$, and our specific $y = -F'(x)^{-1}F(x)$. So let us check that:

$$(\nabla f(x), y) = (F'(x)^T F(x), -F'(x)^{-1} F(x))$$

= $-(F'(x)^T F(x), F'(x)^{-1} F(x))$
= $-(F(x), F'(x) F'(x)^{-1} F(x))$
= $-(F(x), [F'(x) F'(x)^{-1}] F(x))$
= $-(F(x), F(x))$
= $-\|F(x)\|^2$
< 0.

as long as $F(x) \neq 0$ (i.e., x is not a solution to F(x) = 0). So, we have show that the Newton direction y is a descent direction for this particular f(x), and by our lemma in the previous part, this also means that the Newton direction y is a direction of decrease for this f(x). That means we can do back-tracking (or *damping*) as described in class to make Newton's method more globally convergent.

(d) If you don't solve the Newton equations exactly (e.g., you are left with some residual r = -F(x) - F(x) $F'(x)\delta \neq 0$, how does this effect the situation?

We again just need to show that

$$f'(x)y = y^T \nabla f(x) = (\nabla f(x), y) < 0,$$

for our specific $f(x) = ||F(x)||^2/2$, but now we have to use a potentially incorrect Newton direction: y = $-F'(x)^{-1}[F(x)-r]$. (From above, r=-F(x)-F'(x)y, and we have just solved for the direction y.) Let's just check things as we did earlier:

$$(\nabla f(x), y) = (F'(x)^T F(x), -F'(x)^{-1} [F(x) - r])$$

= $-(F'(x)^T F(x), F'(x)^{-1} [F(x) - r])$
= $-(F(x), F'(x)F'(x)^{-1} [F(x) - r])$
= $-(F(x), [F'(x)F'(x)^{-1}] [F(x) - r])$
= $-(F(x), F(x) - r)$
= $-[||F(x)||^2 - (F(x), r)].$

Since ||F(x)|| is always non-negative when x is not a solution to F(x) = 0, the only thing we have to worry about is making sure that r is small enough so that:

$$||F(x)||^2 - (F(x), r) > 0,$$

when $F(x) \neq 0$. We can ensure this by enforcing the necessary and sufficient condition:

$$(F(x), r) < ||F(x)||^2.$$

A simpler sufficient condition comes from enforcing the right-most inequality below:

$$(F(x), r) \le ||F(x)|| ||r|| < ||F(x)||^2,$$

which after division by ||F(x)|| (again, for $F(x) \neq 0$) leads to:

$$\|r\| < \|F(x)\|. \tag{2.2}$$

If one solves the linear system in Newton iteration accurately enough so that (2.2) holds, then the backtracking step for moving downhill in f(x) = ||F(x)|| is still mathematically guaranteed to work.

Exercise 2.5. Consider a vector-valued function F. The back-tracking step length criterion discussed in Professor Gill's notes (pages 62-63) enforces sufficient descrease in the norm of the nonlinear function. It requires that the reduction in ||F(x)|| is not worse than μ times the reduction in $||L_k(x)||$, i.e.,

$$\frac{\|F(x_k)\| - \|F(x_k + \alpha p_k)\|}{\|L_k(x_k)\| - \|L_k(x_k + \alpha p_k)\|} \ge \mu,$$

where μ is a pre-assigned constant such that $0 < \mu < 1$. Let p_k be the Newton step associated with a point x_k at which $F'(x_k)$ is nonsingular. Show that this condition on α_k is equivalent to the condition

$$\|F(x_k + \alpha_k p_k)\| \le (1 - \alpha_k \mu) \|F(x_k)\|.$$
(2.3)

Hint: Read pages 59-63 of Professor Gill's notes!

The solution is contained entirely in the printed class notes, around page 62, above equation 2.6.4.

Exercise 2.6.* Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable in \mathbb{R}^n . Write a MATLAB m-file that finds the zero of a function F using Newton's method with backtracking. I.e., you should modify the m-file newton.m from the class webpage so that it implements Algorithm 2.6.1 in Professor Gill's notes (page 63). Use $\mu = \frac{1}{4}$ to define the sufficient-decrease criterion, equation (2.3), in the backtracking algorithm. The step length α_k is chosen as the first member of the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, that satisfies (2.3). The algorithm should be terminated when either $||F(x_k)|| \leq 10^{-8}$, or 50 iterations are performed. The backtracking "while" or "for" loop must include a test that will terminate the loop if it is executed more than 20 times (this will keep you for burning a lot of CPU time if something goes wrong...) At each iteration, print k, α_k and $||F(x_k)||$.

Use your m-file to find a zero the function

$$F(x) = \begin{pmatrix} e^{x_1}(4x_1^2 + 2x_2^2 + 4x_1x_2 + 6x_2 + 8x_1 + 1) \\ e^{x_1}(4x_2 + 4x_1 + 2) \end{pmatrix}$$

starting at $x_0 = (3, 0)^T$.

See the TA for the solution to this problem. One helpful tip is that in MATLAB, to call a function in another file, you need to put an "@" sign in front of the function name.