
Math 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment #2

Exercise 2.1.∗ Sketch F (x) = 1/x − a for a = 2. Then derive a Newton iteration for computing the
reciprocal of a positive real number a without performing division. Create a Matlab m-file to implement
the algorithm, and use it with x0 = 0.3 to approximate e−1, where e = 2.7182818284, by calculating x1, x2
and x3. Repeat for x0 = 1.0.

See the TA for the solution to this problem.

Exercise 2.2.∗ A completed m-file newton.m has been placed on the class webpage.

(a) Download this function from the class webpage for use in this homework, and read it carefully so that
you understand how it works.

(b) Use newton.m to find a zero of the function

F (x) =

(
x21 + x22 − 2

(x1 − 1
2 )2 + (x2 − 1)2 − 9

4

)
,

starting at the points x0 = (2, 3)T , x0 = (1, 3)T and x0 = (1, 2 + 10−8)T . What rate of convergence
do you observe? Comment on your results.

See the TA for the solution to this problem.

Exercise 2.3.∗ An eigenvector x of an n× n matrix A satisfies Ax = λx for some scalar λ. The scalar λ is
known as the eigenvalue of A corresponding to the eigenvector x.

(a) If x is an eigenvector of A, show that βx is also an eigenvector. What is the associated eigenvalue?
Hence show that the unit vector x/‖x‖ is an eigenvector of A.

If Ax = λx, then clearly A(βx) = β(Ax) = β(λx) = λ(βx) holds, simply by the properties of scalar-
vector and scalar-matrix multiplication, and by the definition of an eigenpair. Therefore, if x is an
eigenvector then so is βx, and both have the same eigenvalue. Moreover, if x is an eigenvector, we
know that x 6= 0, so that ‖x‖ 6= 0 (property of the norm), so that taking β = 1/‖x‖ is well-defined.
Therefore, if x is an eigenvector, so is x/‖x‖, for the same eigevalue.

(b) Define an iteration of Newton’s method for the zero of the n+ 1 equations

(A− λI)x = 0, xTx = 1,

in the n + 1 unknowns (x, λ). Use the m-file newton.m to find an eigenvector and eigenvalue for the
matrix

A =

 4 2 1
2 3 0
1 0 1

 , starting atx0 =


1
5

− 1
5
4
5

1

 .

See the TA for the solution to this part of the problem.



Exercise 2.4. One way to make Newton’s method more robust for a given nonlinear equation F (x) = 0,
where F : Rn 7→ Rn, is to construct an associated minimization problem such that the minimum occurs at
the solution to the original nonlinear equation. A standard choice for the function to minimize is:

f(x) =
1

2
‖F (x)‖2 =

1

2
F (x)TF (x).

This is a real-valued function of several variables, and we can form its derivatives, as long as F (x) is
differentiable.

(a) Show that the following is true:
∇f(x) = F ′(x)TF (x).

We can either compute each component ∂f(x)/∂xk, k = 1, . . . , n of the gradient vector ∇f(x), or we
can compute them all at once using the technique in class that was called variational differentian, which
also goes by the name directional or Gateaux differentiation:

(∇f(x), p) =
d

dt
f(x+ tp)

∣∣∣∣
t=0

=
d

dt

1

2
(F (x+ tp), F (x+ tp))t=0

=
1

2

d

dt
(F (x) + tF ′(x)p+O(t2)), F (x) + tF ′(x)p+O(t2)))t=0

=
1

2

d

dt
(F (x) + tF ′(x)p+O(t2)), F (x) + tF ′(x)p+O(t2)))t=0

=
1

2

d

dt
[(F (x), F (x)) + t(F (x), F ′(x)p) +O(t2)

+ t(F ′(x)p, F (x)) + t2(F ′(x)p, F ′(x)p) +O(t3)]t=0

=
1

2
[(F (x), F ′(x)p) + (F ′(x)p, F (x) + 2t(F ′(x)p, F ′(x)p) +O(t2)]t=0

=
1

2
[(F (x), F ′(x)p) + (F ′(x)p, F (x)]

= (F (x), F ′(x)p)

= (F ′(x)TF (x), p).

Therefore, we have that ∇f(x) = F ′(x)TF (x).

(b) Now, recall that a direction of decrease y at x for such a real-valued function satisfies

f(x+ λy) < f(x),

for some λ > 0. More over, a descent direction y at x always satisfies yT∇f(x) < 0. Show that a
descent direction is always a direction of decrease. (Hint: Taylor series.)

We did this in class, which was stated as a lemma. The proof was essentially just writing down the
Taylor expansion:

f(x+ λy) = f(x) + λf ′(x)y +O(λ2) = f(x) + λ[f ′(x)y +O(λ)]. (2.1)

If f ′(x)y = yT∇f(x) < 0, then for sufficient small (but positive) λ > 0, we can force:

f ′(x)y +O(λ) < 0,

which in term forces:
λ[f ′(x)y +O(λ)] < 0,

and so that finally equation (2.1) ensures that for this same λ,

f(x+ λy) < f(x).
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(c) Prove that the Newton direction y = −F ′(x)−1F (x) at x is always a direction of decrease for f(x) at
x.
(Hint: Show y is a descent direction and use (b).)

We just need to show that
f ′(x)y = yT∇f(x) = (∇f(x), y) < 0,

for our specific f(x) = ‖F (x)‖2/2, and our specific y = −F ′(x)−1F (x). So let us check that:

(∇f(x), y) = (F ′(x)TF (x),−F ′(x)−1F (x))

= −(F ′(x)TF (x), F ′(x)−1F (x))

= −(F (x), F ′(x)F ′(x)−1F (x))

= −(F (x), [F ′(x)F ′(x)−1]F (x))

= −(F (x), F (x))

= −‖F (x)‖2

< 0,

as long as F (x) 6= 0 (i.e., x is not a solution to F (x) = 0). So, we have show that the Newton direction
y is a descent direction for this particular f(x), and by our lemma in the previous part, this also means
that the Newton direction y is a direction of decrease for this f(x). That means we can do back-tracking
(or damping) as described in class to make Newton’s method more globally convergent.

(d) If you don’t solve the Newton equations exactly (e.g., you are left with some residual r = −F (x) −
F ′(x)δ 6= 0), how does this effect the situation?

We again just need to show that

f ′(x)y = yT∇f(x) = (∇f(x), y) < 0,

for our specific f(x) = ‖F (x)‖2/2, but now we have to use a potentially incorrect Newton direction: y =
−F ′(x)−1[F (x)− r]. (From above, r = −F (x)− F ′(x)y, and we have just solved for the direction y.) Let’s
just check things as we did earlier:

(∇f(x), y) = (F ′(x)TF (x),−F ′(x)−1[F (x)− r])
= −(F ′(x)TF (x), F ′(x)−1[F (x)− r])
= −(F (x), F ′(x)F ′(x)−1[F (x)− r])
= −(F (x), [F ′(x)F ′(x)−1][F (x)− r])
= −(F (x), F (x)− r)
= −[‖F (x)‖2 − (F (x), r)].

Since ‖F (x)‖ is always non-negative when x is not a solution to F (x) = 0, the only thing we have to worry
about is making sure that r is small enough so that:

‖F (x)‖2 − (F (x), r) > 0,

when F (x) 6= 0. We can ensure this by enforcing the necessary and sufficient condition:

(F (x), r) < ‖F (x)‖2.

A simpler sufficient condition comes from enforcing the right-most inequality below:

(F (x), r) ≤ ‖F (x)‖‖r‖ < ‖F (x)‖2,

which after division by ‖F (x)‖ (again, for F (x) 6= 0) leads to:

‖r‖ < ‖F (x)‖. (2.2)

If one solves the linear system in Newton iteration accurately enough so that (2.2) holds, then the back-
tracking step for moving downhill in f(x) = ‖F (x)‖ is still mathematically guaranteed to work.
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Exercise 2.5. Consider a vector-valued function F . The back-tracking step length criterion discussed in
Professor Gill’s notes (pages 62-63) enforces sufficient descrease in the norm of the nonlinear function. It
requires that the reduction in ‖F (x)‖ is not worse than µ times the reduction in ‖Lk(x)‖, i.e.,

‖F (xk)‖ − ‖F (xk + αpk)‖
‖Lk(xk)‖ − ‖Lk(xk + αpk)‖

≥ µ,

where µ is a pre-assigned constant such that 0 < µ < 1. Let pk be the Newton step associated with a point
xk at which F ′(xk) is nonsingular. Show that this condition on αk is equivalent to the condition

‖F (xk + αkpk)‖ ≤ (1− αkµ)‖F (xk)‖. (2.3)

Hint: Read pages 59-63 of Professor Gill’s notes!

The solution is contained entirely in the printed class notes, around page 62, above equation 2.6.4.

Exercise 2.6.∗ Let F : Rn → Rn be continuously differentiable in Rn. Write a Matlab m-file that finds the
zero of a function F using Newton’s method with backtracking. I.e., you should modify the m-file newton.m
from the class webpage so that it implements Algorithm 2.6.1 in Professor Gill’s notes (page 63). Use µ = 1

4
to define the sufficient-decrease criterion, equation (2.3), in the backtracking algorithm. The step length αk

is chosen as the first member of the sequence 1, 1
2 , 1

4 , 1
8 , . . . , that satisfies (2.3). The algorithm should be

terminated when either ‖F (xk)‖ ≤ 10−8, or 50 iterations are performed. The backtracking “while” or “for”
loop must include a test that will terminate the loop if it is executed more than 20 times (this will keep you
for burning a lot of CPU time if something goes wrong...) At each iteration, print k, αk and ‖F (xk)‖.
Use your m-file to find a zero the function

F (x) =

(
ex1(4x21 + 2x22 + 4x1x2 + 6x2 + 8x1 + 1)

ex1(4x2 + 4x1 + 2)

)
,

starting at x0 = (3, 0)T .

See the TA for the solution to this problem. One helpful tip is that in Matlab, to call a function in another
file, you need to put an “@” sign in front of the function name.
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