Math 292C (Spring 1998, Instructor: M. Holst)
Final Project (A posteriori error estimates and multigrid)

Handed out: 3 June 1998
Due in class: 12 June 1998
You have been provided with the MATLAB finite element code FEMBIF which can treat the following class of

problems numerically (for d = 2):

-V - (a(z)Vu(z)) + b(z,u) = f(z), inQcR?
n(z) - (a(z)Vu(z)) + c(z,u) = h(z), on InQ,
u(x) = g(z), ondpQ,
0} = 0pQUOINQ,
{} = 0pQnonQ.

The MATLAB code FEMBIF discretizes this problem with Petrov-Galerkin finite element methods, based on
piecewise-linear basis functions with local support. The resulting implicit nonlinear algebraic equations are then
solved with a Newton iteration. Each Newton iteration requires the solution of a large, sparse, unstructured linear
algebraic system of equations (the linearization or Jacobian system). These equations are solved using MATLAB’s
builtin sparse direct solver (some variant of sparse Gaussian elimination), or any of the iterative methods (classical,
CG, or multigrid) that you implemented in the previous homeworks. In the previous homework, you extended the
refinement routine to handle selective refinement, in that you can now mark a subset of the total set of elements,
and then refine (via bisection) this subset, independent of the remaining unmarked elements. (You also implemented
a conformity generator, which then does a small amount of additional refinement around the marked region just to
ensure that the final mesh is conforming.)

Our tasks in this homework are to implement the residual-based error estimator that we derived this quarter,
and to modify the multigrid routine you wrote last quarter to be more suitable for the new adaptive nature of the
code.

e Problem 1. (A posteriori error estimation.)
Implement the residual-based error estimator to use as a marking procedure, just before calling the refine-
ment routine as you go through the solve-mark-refine loop in the code. The error estimator satisfied the
following approximation theorem, for a piecewise-linear galerkin discretization of the problem above, for
the case of: d =2,a=1,b=c=g=h =0, and Ip = IN.
THEOREM 0.1. Let T}, be a shape-reqular triangulation with shape parameter k. Then there exists a constant
C = C(k,Q) such that

1/2
[lw — unllm1(a) SC{Z UE,R} )

T7€TH
and
1/2
ek sc{nu—uhniﬂ(u,ﬁ > hiuf—fhn‘iz(fl)} :
T'Cwr
where

1/2

1

oo = {hiuanizm = henReniz(e)} . Te.
e€oT

Buh

R, =R, (up) =Viun+ f=f—(=V°u), Re=Re(us)= [%

| =vul, ne,

w, = U {T' € Ty|T = 7, or the two have a common edge} ,  We = U {T' € Thle € 87"} .



Hints: You need to write a (very) short routine that traverses the elements one time, and produces a single
real number, call it ERR, for each element. Assuming you want the error (in the H'-form) in each element
to fall under some tolerance TOL, you then place any element when fails the test (ERR < TOL) into the
refinement queue.

To produce the indicator ERR, you just need to computer 7, r for each element, using numerical quadrature,
as described in class. Note that you have everything available in the routine assem.m to evaluate the

indicator

1/2
1
ERR = 7,5 = {hianniz(T) 5 henReniz(e)}

e€oT

on an arbitrary element 7. In particular, you can use the quadrature rules for the volume and edge integrals
that we use to produce the stiffness matrix. In fact, you should probably start with cp assem.m estim.m,
and then start editing estim.m...

Problem 2. (Multigrid — extra credit.)

Implement the algebraic representation of the hierarchical basis multigrid method discussed in class, as a
replacement for the multigrid iteration we wrote for the uniform refinement case.

Note that you have everything already in place, since the key matrix S, the basis-transformation matrix, is
formed from the prolongation matrix produced in your refinement routine in a very simple way, as follows.

If the prolongation matrix P that you are using now has the form:

then the new matrix S takes the form:

“1)-(12)

You can easily block the nodal stiffness matrix as follows:

[ AN AY
Ay oAy )

since you know exactly how many unknowns there were before you refined the mesh. You could (but

wouldn’t want to do this!) form the hierarchical system as follows:
aH _gTaNg__ [ 1 P Al AL I o) _[ AL Ab
(N A3y A P I Al Al )

AR = AN + PTAY + AN P + PTANP

where

At = AY, + PTAY,

AT =AY + ALP

H N
Az = Ay



