Math 292A (Fall 1997, Instructor: M. Holst)

Homework #1 (Classical PDE and functional analysis)

Handed out: 10 October 1997 Due in class: 17 October 1997

• Problem 1. (Separating out algebraic structures from sets we commonly work with.)

Recall that a vector space V is simply a set V with some additional algebraic structure involving an associated field K, namely the structure given by the ten rules presented in class.

- Taking $V=\mathbb{R}^2$, $K=\mathbb{R}$, suppose that vector-addition in \mathbb{R}^2 adds an extra one to each component, so that (3,1)+(5,0)=(9,2) rather than (8,1). With scalar-vector multiplication the usual one, which vector space rules are broken?
- Taking $V = \mathbb{R}$, $K = \mathbb{R}$, show that the set of all positive real numbers, with x + y and $c \cdot x$ redefined to the usual xy and x^c , respectively, is a vector space. What is the "zero" vector in this new space?
- **Problem 2.** (In class we proved the Lax-Milgram Theorem by changing a bilinear-form equation into a linear operator equation, and then employing the Contraction Mapping Theorem. This argument was presented quite quickly in class; reproduce it more carefully here.)

Let H be a Hilbert space. If $a(\cdot, \cdot)$ is a bounded and coercive bilinear form on H, and $f(\cdot)$ is a bounded linear functional on H, prove that the problem

Find
$$u \in H$$
 such that $a(u, v) = f(v)$, $\forall v \in H$,

is equivalent to the problem

Find
$$u \in H$$
 such that $Au = F \in H$

where $F \in H$ is related to the linear form $f(\cdot)$ through the Riesz Representation Theorem, and the bounded linear operator A is related to the bilinear form $a(\cdot, \cdot)$ through the Bounded Operator Theorem (my name in class for the result analogous to the Riesz theorem).

• **Problem 3.** (This problem will help us handle systems of differential equations later.) Let H_1, \ldots, H_J be inner-product spaces equipped with inner-products $(\cdot, \cdot)_{H_J}$. Define $H = H_1 \times \cdots \times H_J$, so that if $x \in H$, then $x = [x_1, \ldots, x_J]$, with $x_k \in H_k$. prove that

$$(x,y)_H = (x_1,y_1)_{H_1} + \cdots + (x_J,y_J)_{H_J}$$

defines an inner-product on H. (I.e., show that $(\cdot, \cdot)_H$ satisfies the inner-product properties.) If $H_k, 1 \leq k \leq J$ are Hilbert spaces, prove that H is also a Hilbert space. Show that norm on H induced by $(\cdot, \cdot)_H$ can be written as

$$||x||_H = \left(\sum_{k=1}^J ||x_k||_k^2\right)^{1/2}$$

• Extra Credit. (This result is useful in finite element theory; the proof can be accomplished by showing inequality in both directions, using the Cauchy-Schwarz inequality in one direction, and the properties of the sup in the other.)

Let H be a Hilbert space, equipped with the inner-product $(\cdot, \cdot)_H$, inducing the norm $\|\cdot\|_H$. Prove that for any $x \in H$, it holds that

$$||x||_H = \sup_{||y||=1} |(x,y)_H|.$$

1