AMa104

Homework #2

(Vector Spaces, Normed and Inner-product spaces, Orthogonality, and Linear Transformations)

> Handed out: 22 October 1996 Due in class: 31 October 1996

- **Problem 1.** (Strang 2.1.5) Recall that a vector space V is a collection $V = \langle V, K, \cdot, + \rangle$ which satisfies the ten rules V1-V10 given in class (Strang combines some of them to get eight rules).
 - 1. Taking $V = \mathbb{R}^2$, $K = \mathbb{R}$, suppose that addition in \mathbb{R}^2 adds an extra one to each component, so that (3,1) + (5,0) = (9,2) rather than (8,1). With scalar multiplication unchanged, which vector space rules are broken?
 - 2. Taking $V = \mathbb{R}$, $K = \mathbb{R}$, show that the set of all positive real numbers, with x + y and $c \cdot x$ redefined to the usual xy and x^c , respectively, is a vector space. What is the "zero" vector in this new space?
- **Problem 2.** (Strang 2.3.1) Decide (rigorously) whether or not the following vectors are (1) linearly independent and (2) span \mathbb{R}^4 .

$$v^1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad v^2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad v^3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \qquad v^4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

• **Problem 3.** (Strang 2.4.3) Find the dimension and a basis of the four fundamental subspaces for both

$$A = \left(egin{array}{cccc} 1 & 2 & 0 & 1 \ 0 & 1 & 1 & 0 \ 1 & 2 & 0 & 1 \end{array}
ight), \qquad U = \left(egin{array}{cccc} 1 & 2 & 0 & 1 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight).$$

• **Problem 4.** Let $V = \operatorname{span}\{v^1, v^2\} \subseteq \mathbb{R}^2$, and let $W = \operatorname{span}\{w^1, w^2\} \subseteq \mathbb{R}^3$, where

$$v^1=\left(\begin{array}{c}1\\0\end{array}
ight), \qquad v^2=\left(\begin{array}{c}1\\1\end{array}
ight), \qquad w^1=\left(\begin{array}{c}1\\0\\1\end{array}
ight), \qquad w^2=\left(\begin{array}{c}1\\2\\0\end{array}
ight).$$

Construct the matrix representation A of the linear transformation which maps v^1 to w^1 , and maps v^2 to w^2 . If we change the basis for V to

$$v^1 = \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \qquad v^2 = \left(\begin{array}{c} 3 \\ -1 \end{array}\right),$$

1

how does the matrix A change?

- **Problem 5.** (Strang 2.6.8) The space \mathcal{P}_3 of cubic polynomials is a vector space, and a standard basis is $\{1, t, t^2, t^3\}$. We know that differentiation and integration are "linear" transformations to functions, so we should be able to construct the matrix representation of these operations on \mathcal{P}_3 in this standard basis.
 - 1. Construct the matrix A representing d^2/dt^2 .
 - 2. What are the null and range spaces of A?
 - 3. What is the interpretation of these spaces in terms of polynomials?
- Problem 6. Is the following system uniquely solvable? (If so, determine the solution)?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}.$$

What if the right-hand side is changed to $(1,4,3)^T$? If it is solvable now, determine a solution. If the solution is not unique, determine a second solution. If you didn't approach this problem using the Fredholm alternative presented in class, then re-work the problem using the Fredholm alternative argument.

• **Problem 7.** Show that the function $d(u,v): \mathbb{R}^n \to \mathbb{R}$, defined by

$$d(u,v) = \|u-v\|_{l^2} = \left(\sum_{i=1}^n |u_i-v_i|^2\right)^{1/2}$$

(where $\|\cdot\|_{l^2}$ is the usual Euclidean 2-norm) satisfies the three properties of a metric, and therefore gives \mathbb{R}^n the topological structure of a metric space.

• **Problem 8.** In class, we connected vectors and linear operators on vector spaces with linear functionals and bilinear forms (respectively) through the Riesz representation theorem and the bounded operator theorem. Using these ideas, give a completely rigorous argument to conclude that if $A \in L(H, H)$ (i.e., A is a bounded linear operator on a finite-dimensional Hilbert space H), then the problem:

Find
$$u \in H$$
 such that $Au = F \in H$

is equivalent to the problem

Find
$$u \in H$$
 such that $a(u, v) = f(v)$, $\forall v \in H$,

where A is related to the bilinear form $a(\cdot, \cdot)$ through the bounded operator theorem, and F is related to the linear form $f(\cdot)$ through the Riesz theorem. (For example, this allows us to replace a matrix equation with an equivalent equation involving linear and bilinear functionals when convenient.)

• **Problem 9.** In class a projection operator P was defined in terms of a direct sum, and as a consequence we saw that a linear operator P was a projection iff it was idempotent, i.e., $P^2 = P$. Prove that a linear operator P is a projection iff the operator I - P is a projection, where I is the identity operator.