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Abstract. In this set of notes we examine numerical techniques for preserva-
tion of constraints and (geometric) structures in ODE and PDE systems, with
application to the Einstein equations. The techniques are based on explicit en-
forcement of constraints using Lagrange multiplier methods, and hence involve
a type of (controlled) projection onto the constraint manifold. The resulting
numerical methods always have the following two properties: 1) they produce
solutions which are comparable in accuracy to standard methods which do not
enforce the constraints, and 2) they enforce the constraints (exactly). They
can sometimes be shown to have an additional property, namely 3) they pre-
serve geometric structure such as time-reversibility and symplecticity. The
numerical techniques for the ODE case can be found in the literature on con-
strained molecular dynamics as far back as the early 1990’s, but the PDE
case has not been completely developed. We use Lagrangian and Hamiltonian
formalism for mechanical (finite-dimensional) and field (infinite-dimensional)
systems throughout these notes, but also apply the techniques to more gen-
eral non-variational problems with constraints. In the last section we consider
application to various constrained formulations of the Einstein equations.
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1. Lagrange Functional Theory in Banach Spaces

In this section we assemble some nonlinear functional analysis material for under-
standing constraints in mechanics and field theory. We outline Lagrange functional
theory in Banach spaces, the mathematical framework which justifies the use of
Lagrange functionals in field theory (and Lagrange multipliers in mechanics). The
material in this section can be found in the combination of [11, 26, 27].
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1.1. Nonlinear Operators, Functionals, and Differentiation in Banach
Spaces. We very briefly summarize some notation and a few standard concepts
which we will need from nonlinear functional analysis. Let X and Y be real Ba-
nach spaces (abstract complete normed vector, or linear, spaces over the field R)
with norms ‖·‖X and ‖·‖Y , respectively. We will at times assume that a particular
Banach space X also has Hilbert space structure, meaning that the norm is actually
induced by an inner-product, ‖ · ‖X = (·, ·)1/2

X . We will assume all Banach spaces
we encounter are separable (have countable bases). In much of what follows, we will
be concerned with linear and nonlinear operators (functions, mappings) between
Banach spaces, F : D(F ) ⊆ X 7→ R(F ) ⊆ Y , where D(F ), R(F ), and N (F ) repre-
sent the domain, range, and null-space (or kernel) of F , respectively. In the special
case that the range space Y ≡ R, we refer to F as a (possibly nonlinear) functional
on X. The space of all bounded linear functionals on X is called the (topological)
dual space of X, and is denoted X∗. We will assume that all Banach spaces X we
encounter are reflexive, meaning that (X∗)∗ = X. The space R(F ) ⊆ Y is called
closed in Y if for any sequence vk ∈ X such that F (vk) converges in Y , there exists
v ∈ R(F ) such that limk→∞ F (vk) = F (v). If R(F ) = Y it is then trivially closed.
The vector space of linear operators A : X 7→ Y is denoted L(X,Y ). If X and Y are
Hilbert spaces, the (Hilbert) adjoint of A ∈ L(X,Y ) is the unique AT ∈ L(Y,X)
satisfying (Au, v)Y = (u,AT v)X , ∀u ∈ X, ∀v ∈ Y . The operator A ∈ L(X,X) is
self-adjoint if A = AT .

We now briefly review differentiation of nonlinear operators in Banach spaces
(cf. [25]). Let X be a Banach space with norm ‖ · ‖X , and let F (u) : D ⊆ X 7→ R
be a nonlinear functional on D, where D is a nonempty open set. The Gateaux
variation of F at u ∈ D in the direction v, if it exists, is defined as

V F (u; v) =
d

dε
F (u+ εv)

∣∣∣∣
ε=0

= lim
ε→0

F (u+ εv)− F (v)
ε

. (1)

The first variation of F at u in the direction v is defined as

δF =
δF

δu
= εV F (u; v). (2)

It is always the case that V F (u; v) is homogeneous in v, meaning that V F (u; εv) =
εV F (u; v), but V F may not be linear (homogeneous and additive) in v because it
is not always additive: V F (u; v+w) 6= V F (u; v)+V F (u;w). However, if V F (u; v)
exists for all v ∈ X, and if V F (u; v) is a bounded and linear functional on X, then
V F (u; v) is called the Gateaux (directional, functional, or variational) derivative
of F at u. Since for each argument u ∈ X, the Gateaux derivative V F (u; v) :
X 7→ L(X,R) lies in the dual space X∗ of bounded linear functionals on X, any of
the following notation (distinct from V F (u; v)) is used to denote the action of the
Gateaux derivative on v ∈ X as a bounded linear functional in X∗:

F ′(u)v = DF (u)v = F ′(u)(v) = DF (u)(v) = 〈F ′(u), v〉 = 〈DF (u), v〉, (3)

where the last four expressions make explicit that the Gateaux derivative of a
nonlinear functional at a point u is a linear functional of v. The angle brackets
〈y, x〉 in the last two expressions in (3) are standard notation for the “duality
pairing” between a function x ∈ X and a bounded linear functional in the dual
space, y ∈ X∗. (The first two expressions in (3) will be used below when F is more
general than a functional.) If X has the additional structure of a Hilbert space,
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then through the Riesz Representation Theorem there exists a unique z ∈ X such
that

〈F ′(u), v〉 = (z, v)X , ∀v ∈ X. (4)
For this reason it is common notation to write z as F ′(u), and to in turn use
the notation (F ′(u), v)X involving the inner-product on X in place of the duality
pairing notation for the action of F ′ on v ∈ X. The functional F is the potential
of F ′, and F ′ is the derivative (adjoint of the gradient) of F .

The Gateaux derivative can be (equivalently) defined directly, which allows for
application to more general nonlinear operators F (u) : X 7→ Y , where now X and
Y are both general Banach spaces. The Gateaux derivative of F at u in the direction
v is the unique linear operator F ′(u) : X 7→ L(X,Y ), satisfying:

lim
ε→0

1
ε
‖F (u+ εv)− F (u)− εF ′(u)v‖Y = 0. (5)

The Frechet derivative of F at u is the unique linear operator F ′(u) : X 7→ L(X,Y ),
satisfying:

lim
v→0

1
‖v‖X

‖F (u+ v)− F (u)− F ′(u)v‖Y = 0. (6)

Just as the Gateaux variation exists more generally than the Gateaux derivative
(but are precisely the same linear operator when they both exist), the Gateaux
derivative exists more generally than the Frechet derivative (some interesting ex-
amples appear in [20]). When both the Gateaux and Frechet derivatives exist, they
are again precisely the same linear operator, and then also the same as the Gateaux
variation. Therefore, it is often convenient to compute the Gateaux derivative (and
when it also exists, the Frechet derivative) using the expression for the Gateaux
variation:

F ′(u)v =
d

dε
F (u+ εv)

∣∣∣∣
ε=0

. (7)

We will use the following notation interchangably for ordinary and partial (Gateaux)
derivatives:

Ḟ = F ′ =
dF

dt
, F (t) : [0, T ] ⊆ R 7→ Y, (8)

Duk
G = DkG = ∂uk

G = ∂kG =
∂G

∂uk
, G(u) = G(u1, . . . , un) : X1×Xn 7→ Y, (9)

where Y,X1, . . . , Xn are Banach spaces, and where the partial (Gateaux) derivative
is defined as:

Duk
G(u)v =

d

dε
G(u+ ε[v]k)

∣∣∣∣
ε=0

, (10)

with
v = {v1, . . . , vn}, [v]k = {0, . . . , 0, vk, 0, . . . , 0}. (11)

In the case of F (u) : X 7→ Y with X = Rn and Y = Rm, the Gateaux and Frechet
derivatives (when they exist) are exactly the Jacobian matrix of partial derivatives
(the collection of Gateaux derivatives in the coordinate directions) having m rows
and n columns:

F ′(u) = ∂jFi(u) =
∂Fi(u)
∂uj

, i = 1, . . . ,m, j = 1, . . . , n. (12)

A final comment about notation for derivatives: We will refer to Gateaux (direc-
tional, functional, variational) differentiation as simply differentiation, since it is
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always clear from the context when this general notion of differentiation is required,
and since it reduces to normal ordinary and partial differentiation. We will also use
both DF and F ′ to denote the derivative in different situations when it simplifies
the presentation.

1.2. Differentiable Manifolds, Submanifolds, and Submersions. Let G :
X 7→ Y , whereX and Y are Banach spaces. Consider an implicitly defined manifold
M⊆ X, characterized as a the zero level-set of the mapping G:

M = { u ∈ D(G) ⊆ X | G(u) = 0 ∈ R(G) ⊆ Y } . (13)

An admissible curve or admissible path in M through u ∈ M is a differentiable
mapping γ(t) : (−t0, t0) 7→ M, for some t0 > 0, with γ(0) = u. A vector v ∈ X is
called a tangent vector to M at u if there exists an admissible path γ(t) to M at
u such that γ′(0) = v. The set of tangent vectors at a point u ∈ M form a vector
space TuM known as the tangent space of M at u:

TuM = { v ∈ X | γ̇(0) = v, with γ(t) an admissible path in M through u }. (14)

The tangent bundle TM of a manifold M is the union of the tangent spaces at all
points u ∈M:

TM =
⋃

u∈M
TuM. (15)

A particular tangent space TuM is called a fiber of the tangent bundle TM at
u ∈M. The map πM : TM 7→M which maps tangent vectors to their attachment
points on M is called the natural projection operator, and the inverse image π−1

M of
πM assigns a fiber TuM of the tangent bundle TM to each point u ∈M. A vector
field on M is a map V : M 7→ TM, so that a vector V (u) ∈ TuM is assigned to
each u ∈ M. The vector space of bounded linear functionals on the tangent space
TuM is the cotangent space T ∗uM, and the disjoint union of the cotangent spaces
is called the cotangent bundle T ∗M:

T ∗M =
⋃

u∈M
T ∗uM. (16)

Analogously, T ∗uM is called a fiber of the cotangent bundle T ∗M at u ∈M.
A property of nonlinear mappings that we will use repeatedly in these notes in the

case of implicitly defined manifolds is submersion. A mapping G : D(G) ⊆ X 7→ Y
is called a submersion at u if the following three conditions hold:

1) G(u) is C1 in a ball around u.
2) G′(u) : X 7→ L(X,Y ) is a surjective linear operator at u (i.e., R(G′) = Y ).
3) There exists a linear projection operator P which splits X into N (G′(u)) and

N⊥(G′(u)).

Note that if X = Rn and Y = Rm, then 2) is equivalent the assumption that G′(u)
has full rank, and then 3) follows from the fact that N (G′(u)) ⊥ R(G′(u)T ), so
that X = Rn ≡ N (G′(u))⊕R(G′T (u)).

If G : X 7→ Y is a submersion at u ∈ M, a classical result due to Ljusternik
(cf. Theorem 43.C in [27]) gives a useful alternative characterization of the tangent
space TuM which will make it possible to develop a very general framework for
Lagrange functionals and multipliers in the next section:

TuM≡ N (G′(u)) = { v ∈ X | G′(u)v = 0 ∈ Y }. (17)
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In other words, the tangent space is precisely the null space of the derivative of the
operator G implicitly defining the manifold M. Moreover, Ljusternik’s result is also
that there exists local structure (an atlas of charts), giving M the mathematical
structure of a C1 manifold (or differentiable manifold). The differentiable manifold
structure allows for the construction of derivatives, differentials, and directional
derivatives of various types of functions having M is their domain, providing an
intrinsic differential calculus on M that does not depend extrinsically on X through
the relationship M⊆ X. The differentiable manifold structure may be exploited by
numerical methods to construct algorithms for solving constrained problems which
never depart from M (see §2.5 and §3.5).

1.3. Lagrange Functional Theory in Banach Spaces for Constrained Sta-
tionarity. We are interested in the following abstract problem:

Find u ∈ X such that : F (u) = stationary, (18)
Subject to : G(u) = 0, (19)

where F : D(F ) ⊆ X 7→ R, G : D(G) ⊆ X 7→ Y , and where X and Y are real
Banach spaces. A point u ∈ X is said to be a critical point of F , and F is then said
to be stationary at u, if the Frechet derivative of F at u vanishes in all directions
v ∈ X:

〈F ′(u), v〉 = 0, ∀v ∈ X. (20)
(Much of what follows also makes sense in the more general case of the Gateaux
derivative.) The point u ∈ X may be a local minimizer, maximizer, or saddle point
for F .

The (equality) constraint G forces the solution u to lie on a constraint manifold
M ⊆ X as defined implicitly in (13) as the zero level-set of G. We will always
assume that G is a submersion on all of M, so that the implicitly defined M
has an explicit differentiable manifold structure. (This result is discussed in §1.2.)
For example, even in the case of the complex nonlinear constraints in the Einstein
equations considered later in these notes, G can be shown to be a C1 mapping
between suitably chosen Sobolev spaces (cf. [9]). A point u ∈ M is a called a
critical point of F with respect to M, and F is then said to be stationary with
respect to M at u, if the Frechet derivative of F at u is zero for all directions
v ∈ TuM:

〈F ′(u), v〉 = 0, ∀v ∈ TuM⊆ X. (21)
We then regard u as the solution to (18)–(19).

Note that (18)–(19) is a more general version of the following problem:

Find u ∈ X such that : F (u) = min
v∈X

F (v), (22)

Subject to : G(u) = 0. (23)

A standard result in the calculus of variations in Banach spaces is that a necessary
(but not sufficient) condition for the solution to (22) is that (18) hold. Therefore,
the solution to (18)–(19) is a necessary condition for solving (22)–(23). (A sufficient
condition would also involve a positive spectrum assumption on the second Frechet
derivative of F at u.) In either case, a more general framework would allow for
inequality constraints of the form G(u) ≥ 0, but we will restrict ourselves to the
case of equality constraints of the form (19). Due to its applicability to the Principle
of Least Action (giving rise to a saddle-point problem) in the setting of Lagrangian
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and Hamiltonian formulations of mechanics and field theory, we will focus entirely
on the more general problem (18)–(19).

The following abstract result for linear operators on Banach spaces is the foun-
dation for Lagrange functional and multiplier theory.

Theorem 1.1. Let X and Y be real Banach spaces, and let A ∈ L(X,Y ) and
B ∈ L(X,R) be bounded linear operators with R(A) closed. If the following hold:

Bv = 0 ∀v ∈ X such that Av = 0, (24)

then there exists a bounded linear functional on Y , denoted λ ∈ Y ∗, such that

λ0Bv + 〈λ,Av〉 = 0, ∀v ∈ X, (25)

where λ0 = 1. If R(A) = Y , then λ is unique. If R(A) 6= Y , then there exists
0 6= λ ∈ Y ∗ such that (25) holds with λ0 = 0. Moreover, λ0 and λ are never
simultaneously zero.

Proof. The closed range assumption on A implies N (A) ⊥ R(AT ); the proof is then
quite similar to the finite-dimensional case (cf. Proposition 43.1 in [27]). �

We noted in §1.2 that if the constraint operator G is a submersion at u ∈ M,
the tangent space and the null space of the constraint derivative are precisely the
same space: TuM ≡ N (G′(u)). Together with Theorem 1.1, this result can be
exploited to develop an abstract theory of Lagrange functionals and multipliers,
and justifies their use in mechanics and field theory. The following is one version of
a Lagrange functional result which follows from Theorem 1.1, where F is thought
of as an abstract Lagrangian.

Theorem 1.2. Let X and Y be real Banach spaces, let F : D(F ) ⊆ X 7→ R be
F -differentiable at u ∈ D(F ), and let G : D(G) ⊆ X 7→ Y be a submersion at u
such that G(u) = 0. Then F is stationary at u ∈M ⊆ X with respect to M if and
only if the Euler-Lagrange equations hold

〈F ′(u), v〉 − 〈λ,G′(u)v〉 = 0, ∀v ∈ X, (26)

for a fixed (Lagrange) bounded linear functional λ ∈ Y ∗.

Proof. Application of Theorem 1.1 (cf. Proposition 43.21 in [27].) The assumption
that G be a submersion provides the closed range assumption for use of Theo-
rem 1.1, and allows the use of the alternative characterization of the tangent space
as the nullspace of the constraint derivative. In the finite-dimensional case, the sub-
mersion assumption reduces to the standard constraint qualification assumption,
where G′(u) becomes the Jacobian matrix at u, and the assumption R(G′) = Y is
equivalent to the assumption that the Jacobian matrix has full rank. �

Theorem 1.2 tells us that the solution u ∈ M ⊆ X to (18)–(19) is precisely the
point of stationarity of the augmented functional (or augmented Lagrangian):

F̄ (u, λ) = F (u)− 〈λ,G(u)〉 : X × Y ∗ 7→ R. (27)

Therefore, finding the solution to (18)–(19) is mathematically equivalent to finding
the pair {u, λ} ∈ X × Y ∗ that satisfies the constraint G(u) = 0 and solves the
Euler-Lagrange equations (26), making the augmented Lagrangian functional (27)
stationary. Since differentiation of the augmented Lagrangian functional (27) with
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respect to λ yields back the constraint G(u) = 0, the Euler-Lagrange equations and
constraints can be considered together as the following problem:

Find {u, λ} ∈ X × Y ∗ such that 〈DF̄ (u, λ), (v, γ)〉 = 0, ∀{v, γ} ∈ X × Y ∗. (28)

Since the chain rule gives

〈DF̄ (u, λ), (v, γ)〉 = 〈DuF̄ (u, λ), v〉+ 〈DλF̄ (u, λ), γ〉 (29)
= [〈DF (u), v〉 − 〈λ,DG(u)v〉]− 〈γ,G(u)〉, (30)

we can also write this as: Find {u, λ} ∈ X × Y ∗ such that ∀{v, γ} ∈ X × Y ∗:

〈DF (u), v〉 − 〈λ,DG(u)v〉 = 0,
−〈γ,G(u)〉 = 0. (31)

1.3.1. Example: An Abstract Quadratic Functional with Linear Constraints. Con-
sider now problem (18)–(19) in the case of a quadratic energy F : X 7→ R and a
linear constraint G : X 7→ Y of the form:

F (u) = (Au, u)X − (f, u)X , 0 = G(u) = g −Bu, (32)

where X and Y are real Hilbert spaces with inner-products (·, ·)X and (·, ·)Y , and
with f ∈ X, g ∈ Y , A ∈ L(X,X), B ∈ L(X,Y ). Assume A is self-adjoint on X:
(Au, v) = (u,Av),∀u, v ∈ X. By Theorem 1.2, we know the solution u ∈ X to
problem (18)–(19) is a stationary point of the augmented Lagrangian:

F̄ (u, λ) = F (u)− 〈λ,G(u)〉 = (Au, u)X − (f, u)X − (λ, g −Bu)Y , (33)

where we have used the Riesz representation theorem to identify a (unique) λ ∈ Y
such that

〈λ, y〉 = (λ, y)Y , ∀y ∈ Y. (34)
The Euler-Lagrange equations are then: Find {u, λ} ∈ X × Y ∗ such that ∀{v, γ} ∈
X × Y ∗:

〈DF (u), v〉 − 〈λ,DG(u)v〉 = 0,
−〈γ,G(u)〉 = 0, (35)

where

〈DF (u), v〉 =
d

dε
F (u+ εv)

∣∣∣∣
ε=0

= (Au, v)X − (f, v)X , (36)

〈λ,DG(u)v〉 = 〈λ, d
dε
G(u+ εv)

∣∣∣∣
ε=0

〉 = (λ,Bv)Y =
(
BTλ, v

)
X
, (37)

〈γ,G(u)〉 = 〈γ, g −Bu〉 = (g −Bu, γ)Y = (g, γ)Y − (Bu, γ)Y , (38)

where BT ∈ L(Y,X) is the adjoint of B. This yields the following abstract linear
system for the stationary point {u, λ} ∈ X × Y ∗:

Au + BTλ = f,
Bu = g.

(39)

As an application, incompressible steady Stokes flow (steady laminar incompress-
ible Navier-Stokes flow) fits precisely into this framework, and numerical schemes
focus on the efficient numerical solution of the symmetric indefinite linear sys-
tem in (39) after discretization by the finite element method or other techniques.
Moreover, the most effective numerical techniques for steady incompressible Navier-
Stokes flow involve repeated solution of (39) as part of Newton-type iterative meth-
ods.
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1.3.2. Example: A Nonlinear Energy on H1(Ω) with Nonlinear PDE Constraints.
Consider now problem (18)–(19) in the case of a nonlinear energy functional and
nonlinear PDE constraints of the form:

F (u) =
∫

Ω

L(x, u,∇u) dx, 0 = G(u) =

 G1(x, u,∇u,∇2u)
...

GK(x, u,∇u,∇2u)

 , (40)

where G(u) : X 7→ Y = Y1 × Y2 × · · · × YK , u = (u1, . . . , uJ) ∈ X = X1 × X2 ×
· · · ×XJ , where each Xk and Yk are suitable Sobolev spaces. Here, each constraint
of the form Gk = 0 represents a general nonlinear second order boundary value
problem:

−∇ · ak(x, u,∇u) + bk(x, u,∇u) = 0 in Ω, (41)
n · ak(x, u,∇u) + ck(x, u,∇u) = 0 on ∂1Ω, (42)

u = 0 on ∂0Ω, (43)

where Ω ⊂ Rd is a bounded open subset of Rd, and where ∂Ω = ∂0Ω ∪ ∂1Ω,
∅ = ∂0Ω ∩ ∂1Ω. The Lagrangian density L is a nonlinear function representing
an energy principle, such as the elastic energy of a structure modeled with solid
mechanics. In this case, the constraints Gk could represent some physical barrier
to deformation of the structure.

The problem (18)–(19) with F and G defined as in (40) is general enough to
include most time-independent constrained minimization problems arising in math-
ematical physics, where the objective functional and constraints are second order
and arbitrarily nonlinear, with the constraints appearing in divergence form. In the
most natural cases, Xj = H1

0,D(Ω), j = 1, . . . J , and Yk = H−1(Ω), k = 1, . . . ,K.
Since Y is a product space, the Riesz Representation theorem gives the (unique)
form of the linear functional as:

〈λ,G(u)〉 = (λ,G(u))L2(Ω) (44)

=
K∑

k=1

(λk, Gk)L2(Ω) (45)

=
K∑

k=1

∫
Ω

λk (bk(x, u,∇u)−∇ · ak(x, u,∇u)) dx (46)

=
K∑

k=1

∫
Ω

ak(x, u,∇u) · ∇λk + bk(x, u,∇u)λk dx (47)

+
K∑

k=1

∫
∂1Ω

ck(x, u,∇u)λk ds, (48)

where we have employed the divergence theorem with the natural boundary con-
dition (42), and where λ = (λ1, . . . , λK) ∈ Z = Z1 × · · · × ZK , with Zj = H1(Ω).
The essential boundary condition (43) is built into the solution space:

H1
0,D(Ω) =

{
u ∈ H1(Ω) | trace u = 0 on ∂0Ω

}
. (49)



CONSTRAINT AND STRUCTURE PRESERVATION IN PDE 9

By Theorem 1.2, we know that the solution u ∈ X to problem (18)–(19) is a
stationary point of the augmented Lagrangian:

F̄ (u, λ) = F (u)− 〈λ,G(u)〉 =
∫

Ω

L(x, u,∇u) dx− 〈λ,G(u)〉. (50)

The Euler-Lagrange equations are then: Find {u, λ} ∈ X × Y ∗ such that ∀{v, γ} ∈
X × Y ∗:

〈DF (u), v〉 − 〈λ,DG(u)v〉 = 0,
−〈γ,G(u)〉 = 0, (51)

where

〈DF (u), v〉 =
d

dε
F (u+ εv)

∣∣∣∣
ε=0

=
∫

Ω

(
∂L
∂u

v +
∂L
∂[∇u]

∇v
)
dx, (52)

〈λ,DG(u)v〉 = 〈λ, d
dε
G(u+ εv)

∣∣∣∣
ε=0

〉 = (λ,
∂G

∂u
v)L2(Ω) =

∫
Ω

λT ∂G

∂u
v dx,(53)

〈γ,G(u)〉 = (γ,G(u))L2(Ω) =
∫

Ω

γTG dx. (54)

The final form of the Euler-Lagrange equations now depends on the particular form
of the Lagrange density L in (40), and on the details on the nonlinear functions ak,
bk, and ck appearing in (41)–(43) defining G.

2. Constraint and Structure Preservation in ODE

We briefly review Lagrangian and Hamiltonian formalism for finite-dimensional
mechanical systems modeled by ordinary differential equations (ODE). This ma-
terial can be found in e.g. [1, 7]. We then consider the inclusion of constraints
into the formalism using Lagrange multipliers, following e.g. [12]. The use of
Lagrange multipliers is then considered for the more general case of constrained
non-variational equations which do not arise as conditions for stationarity of ac-
tion integrals. We then examine structure-preserving numerical integrators for un-
constrained and constrained Lagrangian and Hamiltonian ODE, as well as uncon-
strained and constrained non-variational ODE which do not arise from an action
principle.

2.1. Lagrangian and Hamiltonian ODE formalism. Consider now a finite-
dimensional mechanical system with configuration space Q and coordinates (or
positions) {qi(t)}n

i=1 describing the configuration of the system at any time t. We
will often refer to the entire set of positions {qi(t)}n

i=1 simply as qi(t), where the
index is assumed to range from 1 to n, or simply as q(t). In other words, qi(t) :
[0, T ] 7→ R (or Rn), q(t) : [0, T ] 7→ Rn, and for fixed t0 ∈ [0, T ], the set of coordinates
qi(t0) represents a particular configuration (or point) in Q. A remarkable fact is
that the equations of motion for a finite-dimensional mechanical system can be
derived variationally from a Lagrangian of the form:

L(qi, q̇i) : Q×Q 7→ R, (55)

where q̇i = dqi/dt are referred to as velocities. (The dependence of L on t is often
only implicitly through qi.) The equations of motion arise as the stationary point
of an action integral S(qi) built from the Lagrangian, expressing the Principle of
Least Action (or Hamilton’s Principle). Let qi(0) and qi(T ) be arbitrary fixed
points in Q. The set of permissible variations from qi(t) are those which satisfy
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vi(0) = vi(T ) = 0, so that q(0)+v(0) = q(0) and q(T )+v(T ) = q(T ). The Principle
of Least Action can then be written as

〈DS(qi), vi〉 =
d

dε
S(qi + εvi)

∣∣∣∣
ε=0

= 0 ∀vi, S(qi) =
∫ T

0

L(qi, q̇i) dt. (56)

In other words, we obtain the equations of motion by setting to zero the derivative
of S, computed as:

〈DS(qi), vi〉 =
d

dε
S(qi + εvi)

∣∣∣∣
ε=0

(57)

=
∫ T

0

d

dε
L(qi + εvi, q̇i + εv̇i)

∣∣∣∣
ε=0

dt (58)

=
∫ T

0

(
n∑

i=1

∂L

∂qi
vi +

n∑
i=1

∂L

∂q̇i
v̇i

)
dt (59)

=
n∑

i=1

∫ T

0

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
vi dt, (60)

where we have employed the chain rule and integration by parts. The boundary
terms have been dropped due to vi being permissible. Since this holds for arbitrary
permissible vi, we are left with the Euler-Lagrange equations of motion for the n
positions qi(t):

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, . . . , n. (61)

The appropriate side conditions which would allow for (61) to be well-posed are
values for qi(0) and q̇i(0).

A Hamiltonian formulation can be obtained from a Lagrangian formulation by
introducing conjugate momenta through the Legendre transformation:

pi =
∂L

∂q̇i
, i = 1, . . . , n, (62)

and then by changing variables from (qi, q̇i) to (qi, pi). The equations of motion in
the new variables can be obtained by defining a Hamiltonian of the form

H(qi, pi) =
n∑

j=1

pj q̇j − L(qi, q̇i), (63)

and then by differentiation of the Hamiltonian with respect to the new position and
momenta variables:

∂H

∂pi
= q̇i +

n∑
j=1

(
pj
∂q̇j
∂pi

− ∂L

∂qj

∂qj
∂pi

− ∂L

∂q̇j

∂q̇j
∂pi

)
(64)

= q̇i +
n∑

j=1

(
pj
∂q̇j
∂pi

− pj
∂q̇j
∂pi

)
= q̇i, (65)

∂H

∂qi
=

n∑
j=1

∂pi

∂qj
q̇j +

n∑
j=1

pj
∂q̇j
∂qi

− ∂L

∂qi
−

n∑
j=1

∂L

∂q̇j

∂q̇j
∂qi

(66)

= − ∂L
∂qi

= − d

dt

∂L

∂q̇i
= −ṗi, (67)
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where we have used (62) and (61), and the fact that pi and qi are independent.
This then gives Hamilton’s equations of motion for the 2n positions and momenta
{qi(t), pi(t)}:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n. (68)

The appropriate side conditions which would allow for (68) to be well-posed are
values for qi(0) and pi(0).

It is interesting to note (cf. [17]) that the equations of motion (68) also arise
directly as a stationary point of an action integral built from the Hamiltonian
rather than the Lagrangian:

DS(qi, pi) = 0, where S(qi, pi) =
∫ T

0

n∑
j=1

pj q̇j −H(qi, pi) dt, (69)

where the derivative is computed in the natural way:〈
DS(qi, pi), (vi, wi)

〉
=

〈
DqiS(qi, pi), vi

〉
+
〈
DpiS(qi, pi), wi

〉
(70)

=
d

dε
S(qi + εvi, pi)

∣∣∣∣
ε=0

+
d

dε
S(qi, pi + εwi)

∣∣∣∣
ε=0

, (71)

and where the appropriate conditions on vi are now pi(0)vi(0) = pi(T )vi(T ) = 0.
This fact will be useful for constrained Hamiltonian formulations in §2.2, allowing
for the introduction of Lagrange multipliers directly into the action integral (69)
rather than first going through (56).

2.1.1. Example: A system of particles. Consider a system of N particles in Rd

with positions {xi
1(t), . . . , x

i
d(t)}, i = 1, . . . , N , with corresonding masses m̄i in a

potential field V (xi
j) : RdN 7→ R. Defining the n = dN generalized coordinates

and corresponding masses as: qd(i−1)+j(t) = xi
j(t), md(i−1)+j = m̄i, i = 1, . . . , N ,

j = 1, . . . , d, gives rise to the Lagrangian

L(qi, q̇i) =
1
2

n∑
j=1

mj(q̇j)2 − V (qi) = T (q̇i)− V (qi), (72)

where T and V represent kinetic and potential energy of the mechanical system.
The Euler-Lagrange equations produce Newton’s equations of motion:

miq̈i = −∂V
∂qi

, i = 1, . . . n. (73)

The Hamiltonian formulation of the system arises from the Legendre transforma-
tion: pi = ∂L/∂q̇i = miq̇i, i = 1, . . . , n, giving a Hamiltonian of the form:

H(qi, pi) =
n∑

j=1

pj q̇j − L(qi, q̇i) =
1
2

n∑
j=1

mj(q̇j)2 + V (qi) (74)

=
1
2

n∑
j=1

m−1
j p2

j + V (qi) = T (pi) + V (qi). (75)

The equations of motion are then:

q̇i =
∂H

∂pi
= m−1

i pi, ṗi = −∂H
∂qi

= −∂V
∂qi

, i = 1, . . . , n. (76)
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2.2. Constrained Lagrangian and Hamiltonian ODE formalism. Consider
now an n-dimensional mechanical system with Lagrangian L(qi, q̇i), subject to a
set of m < n constraints:

Gj(qi, q̇i) = 0, j = 1, . . . ,m. (77)

One can view the constraints as defining a manifold M in configuration space:

M = { q | Gj(qi, q̇i) = 0, j = 1, . . . ,m }. (78)

By Theorem 1.2 in §1, we know that making the Lagrangian L stationary with
respect to the constraint manifold M is mathematically equivalent to making a
new action integral S̄ stationary, where S̄ is built from an augmented Lagrangian
L̄ of the form:

L̄(qi, q̇i, λi) = L(qi, q̇i)−
m∑

j=1

λjGj(qi, q̇i). (79)

The additional degrees of freedom λi ∈ R are referred to as Lagrange multipliers.
The equations of motion for the constrained mechanical system are then produced
by making the corresponding augmented action integral S̄ stationary with respect
to both the configuration variables and the Lagrange multipliers, producing the
Euler-Lagrange equations for the augmented Lagrangian:

〈DS̄(qi, λi), (vi, νi)〉 = 0, (80)

where

S̄(qi, λi) =
∫ T

0

L̄(qi, q̇i, λi) dt =
∫ T

0

L(qi, q̇i)−
m∑

j=1

λjGj(qi, q̇i) dt. (81)

The derivative is computed as〈
DS̄(qi, λi), (vi, νi)

〉
=

〈
Dqi S̄(qi, λi), vi)

〉
+
〈
Dλi S̄(qi, λi), νi)

〉
(82)

=
d

dε
S̄(qi + εvi, λi)

∣∣∣∣
ε=0

+
d

dε
S̄(qi, λi + ενi)

∣∣∣∣
ε=0

, (83)

where

d

dε
S̄(qi + εvi, λi)

∣∣∣∣
ε=0

=
∫ T

0

d

dε
(L(qi + εvi, q̇i + εv̇i) (84)

−
m∑

j=1

λjGj(qi + εvi, q̇i + εv̇i)

∣∣∣∣∣∣
ε=0

dt (85)

=
∫ T

0

(
n∑

i=1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
vi (86)

−
m∑

j=1

λj

n∑
i=1

(
∂Gj

∂qi
− d

dt

∂Gj

∂q̇i

)
vi

 dt, (87)
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and

d

dε
S̄(qi, λi + ενi)

∣∣∣∣
ε=0

= −
∫ T

0

d

dε
(L(qi, q̇i) (88)

−
m∑

j=1

(λ+ εν)jGj(qi, q̇i)

∣∣∣∣∣∣
ε=0

dt (89)

= −
∫ T

0

 m∑
j=1

Gj(qi, q̇i)νj

 dt, (90)

and where we have recalled (57). We now identify the derivative of S̄ and force
it to vanish, giving the n + m Euler-Lagrange equations for the n + m degrees of
freedom {qi, λi}:

d

dt

 ∂L

∂q̇i
−

m∑
j=1

∂Gj

∂q̇i
λj

 =
∂L

∂qi
−

m∑
j=1

∂Gj

∂qi
λj , i = 1, . . . , n, (91)

Gj(qi, q̇i) = 0, j = 1, . . . ,m. (92)

The appropriate side conditions which would allow for (91)–(92) to be well-posed
are values for qi(0) and q̇i(0) such that Gj(qi(0), q̇i(0)) = 0. In the case that the
constraints are holonomic with Gj(qi, q̇i) = Gj(qi), the Euler-Lagrange equations
reduce to

d

dt

∂L

∂q̇i
=

∂L

∂qi
−

m∑
j=1

∂Gj

∂qi
λj , i = 1, . . . , n, (93)

Gj(qi) = 0, j = 1, . . . ,m. (94)

A constrained Hamiltonian formulation can be derived in a similar way, by in-
troducing an augmented Hamiltonian:

H̄(qi, pi, λi, π) = H(qi, pi) +
m∑

j=1

λjGj(qi, pi), (95)

where the constraints are now Gj(qi, pi) = 0. Hamilton’s equations of motion for
the 2n+m degrees of freedom {qi, pi, λi} are then produced using the augmented
Hamiltonian:

q̇i =
∂H̄

∂pi
=
∂H

∂pi
+

m∑
j=1

∂Gj

∂pi
λj , ṗi = −∂H̄

∂qi
= −

∂H
∂qi

+
m∑

j=1

∂Gj

∂qi
λj

 , (96)

i = 1, . . . , n, 0 =
∂H̄

∂λj
= Gj(qi, pi), j = 1, . . . ,m. (97)

The appropriate side conditions which would allow for (96)–(97) to be well-posed
are values for qi(0) and pi(0) such that Gj(qi(0), pi(0)) = 0. Again, in the case
that the constraints are holonomic with Gj(qi, pi) = Gj(qi), Hamilton’s equations
reduce to

q̇i =
∂H

∂pi
, ṗi = −

∂H
∂qi

+
m∑

j=1

∂Gj

∂qi
λj

 , i = 1, . . . , n, (98)
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Gj(qi) = 0, j = 1, . . . ,m. (99)

2.2.1. Example: The pendulum problem. A pendulum in the plane is a classi-
cal example of a mechanical system with a (holonomic) constraint. The pla-
nar pendulum is characterized by the position qi(t) = (q1(t), q2(t)) and velocity
q̇i(t) = (q̇1(t), q̇2(t)) of the pendulum “bob”, modeled as a point with mass m, and
the fixed length l of the pendulum rod. The kinetic energy, potential energy, and
constraint of the mechanical system are respectively

T (q̇i) =
m

2
(q̇21 + q̇22), V (qi) = mgq2, G(qi) = (q21 + q22)− l2 = 0, (100)

where g is the acceleration due to gravity. The constraint is simply that the pendu-
lum bob must always be a distance l from the center of the pendulum (taken to be
at the origin for simplicity). The Lagrangian and Hamiltonian then have the form

L(qi, q̇i) = T (q̇i)− V (qi) =
m

2
(q̇21 + q̇22)−mgq2, (101)

H(qi, pi) = T (pi) + V (qi) =
1

2m
(p2

1 + p2
2) +mgq2, (102)

where we have employed the Legendre transformation pi = ∂L/∂q̇i = mq̇i. To in-
corporate the single constraint, we follow §2.2 and form the augmented Lagrangian
and Hamiltonian:

L̄(qi, q̇i) = L(qi, q̇i)− λG(qi) =
m

2
(q̇21 + q̇22)−mgq2 − λG(qi), (103)

H̄(qi, pi) = H(qi, pi) + λG(qi) =
1

2m
(p2

1 + p2
2) +mgq2 + λG(qi). (104)

The Euler-Lagrange equations and Hamilton’s equations are then respectively

 mq̈1
mq̈2
0

 =

 −2q1λ
−mg − 2q2λ
q21 + q22 − l2

 ,

q̇1
q̇2
ṗ1

ṗ2

0

 =


m−1p1

m−1p2

−2q1λ
−mg − 2q2λ
q21 + q22 − l2

 , (105)

which are second- and first-order (ordinary) differential algebraic equations (DAE)
for the pendulum configuration over time.

2.3. Constrained non-variational ODE systems. Consider now a general con-
strained dynamical ODE system of the form:

ẏ = F (y), (106)
0 = G(y). (107)

where y(t) = {yi(t)} : R 7→ Rn, F (y) = {Fi(y)} : Rn 7→ Rn, G(y) = {Gj(y)} :
Rn 7→ Rm, and where y(0) is given with G(y(0)) = 0 ∈ Rm. We will assume that
this system does not arise as the Euler-Lagrange equations or as Hamilton’s equa-
tions from a known Lagrangian or Hamiltonian, and such ODE systems are referred
to as non-variational or non-cannonical. A method-of-lines discretization (a spatial
semi-discretization) of an arbitrary hyperbolic or parabolic PDE system which is
first-order in time, and which has time-independent (e.g., elliptic or algebraic) con-
straints, will produce a constrained ODE system having the form (106)–(107). Even
if the original PDE system had Lagrangian or Hamiltonian structure, the resulting
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ODE system will generally not have any structure unless special spatial discretiza-
tions are used (see §3.4). In any event, one can still apply Lagrange multiplier
techniques to (106)–(107) to explicitly enforce the constraints during evolution,
as we will now explain. The following discussion also applies to variational (La-
grangian and Hamiltonian) formulations, where this additional structure is simply
ignored.

A non-constant functional I(y) : Rn 7→ R is called a first integral (invariant,
constant of motion, conserved quantity) of (106) if (cf. [8])

I ′(y)F (y) =
n∑

i=1

∂I(y)
∂yi

Fi(y) = 0 ∈ R, ∀y(t) ∈ Rn. (108)

In this case, every solution y(t) of (106) has the property that I(y(t)) = I(y(0)) =
constant, since

d

dt
I(y(t)) =

n∑
i=1

∂I(y)
∂yi

ẏi = I ′(y)F (y) = 0 ∈ R, ∀y(t) ∈ Rn. (109)

Note that while the constraint function G defines an obvious constraint manifold

M = { y ∈ Rn | G(y) = 0 ∈ Rm } , (110)

the connection to the ODE gives a second, hidden constraint, that can be revealed
by differentiation:

0 =
d

dt
G(y(t)) =

n∑
i=1

∂Gj

∂yi
ẏi = G′(y)F (y) ∈ Rm, ∀y(t) ∈M, s.t. ẏ = F (y). (111)

Since this holds only for y(t) ∈ M such that ẏ = F (y), each scalar constraint
Gj : Rn 7→ R is referred to as a weak invariant of (106). Thus, if y(t) satisfies the
ODE (106) as well as the constraint (107), then F (y) must lie in the null space of
G′(y). Recall now the Ljusternik result from §1.3 that if G is a submersion on M,
then (17) holds. Therefore, the constraint (sub)manifold MF ⊆M for the solution
to (106)–(107) can be then characterized equivalently as any of:

MF = { y ∈M | G′(y)F (y) = 0 } (112)
= { y ∈M | F (y) ∈ TyM } (113)
= { y ∈ Rn | G(y) = 0, F (y) ∈ TyM } (114)
= { y ∈ Rn | G(y) = 0, G′(y)F (y) = 0 } . (115)

This characterization motivates the use of Lagrange multipliers even in the absense
of an action integral whose stationarity generates (106). This is due to the fact that
one can show quite easily (cf. [8]) that the solution to (106) satisfies y(t) ∈M ∀t > 0
whenever y(0) ∈M if and only if F (y) ∈ TyM, ∀y ∈M. In this case, one can view
ẏ = F (y) as a differential equation on the manifold M (or rather, on MF ⊆M).

To understand why this is the case, let y ∈M be arbitrary but fixed, and assume
that G(y) is a submersion at y. Since G : Rn 7→ Rm, we can guarantee that G is
a submersion at y simply by assuming that G is C1 in a ball around y in Rn, and
that the m × n Jacobian matrix G′ = ∂Gj/∂yi ∈ L(Rn,Rm) has full rank at y.
Consider now (106)–(107), where in general F (y) /∈ TyM ≡ N (G′(y)). We denote
the n×m transpose matrix of G′ as G′T = L(Rm,Rn). Since Rn may be equipped
with an inner-product, and since it is complete in the corresponding induced norm
(it has finite dimension), so-equipped it is a Hilbert space. Therefore, the Hilbert
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space Projection Theorem ensures that Rn may be orthogonally decomposed into
the direct sum

Rn ≡ N (G′)⊕R(G′T ). (116)

In fact, this can be accomplished using orthogonal projectors Q : Rn 7→ R(G′T )
and P : Rn 7→ N (G′) defined explicitly as

Q = G′T
(
G′G′T

)−1
G′, P = I −Q, so that P +Q = I. (117)

The projectors Q and P are well-defined, since the full-rank assumption guarantees
that G′G′T is nonsingular. It is easy to verify that if u ∈ R(G′T ), then Qu = u,
and Pu = 0. Consider now

F = (P +Q)F = PF +QF = PF +G′Tλ, (118)

where PF ∈ N (G′) and QF = G′Tλ ∈ R(G′T ) for some λ ∈ Rm. Therefore, if we
form

G′Tλ = Qf = G′T
(
G′G′T

)−1
G′F, or simply λ =

(
G′G′T

)−1
G′F, (119)

then we can formally project F (y) onto TyM as follows:

F −G′Tλ = (P +Q)F −G′Tλ = PF ∈ N (G′(y)) = TyM. (120)

Therefore, the following augmented problem:

ẏ = F (y)−G′Tλ, (121)
0 = G(y), (122)

is now a differential equation on the manifoldM. Since the expression for λ in (119)
depends on y(t), the equations (121)–(122) must be solved simultaneously for {y, λ}.
The Lagrange multipliers λ are viewed as adjusting in response to y(t) so that
F − G′Tλ ∈ TyM continues to hold, allowing the trajectory of y(t) to remain on
M, thereby allowing for the simultaneous solution of (121)–(122).

We will give an alternative derivation of (121)–(122) below in the discretized
setting, where the augmented problem arises naturally as the Euler-Lagrange equa-
tions for the solution to a constrained minimization problem, characterizing the
projection of a constraint-violating approximate solution back onto the constraint
manifold.

2.4. Structure-preserving time discretizations. There has been much work in
this area at least as far back as 1983, and even as early as the 1950’s; cf. [23, 5,
3, 13, 24, 8]. One can look up both explicit and implicit numerical integrators in
the literature which preserve various geometric properties from the original ODE
system.

2.5. ODE integrators with exact constraint preservation. Numerical inte-
grators for (ordinary) differential algebraic equations (DAE) which exactly enforce
algebraic constraints are typically based on Lagrange multipliers. This leads to
numerical methods which 1) are comparable in accuracy to standard methods, and
2) enforce the constraints exactly. There has been much activity on numerical inte-
grators that also 3) preserve geometric structure (time-reversibility, symplectivity,
etc) as far back as the early 1990’s [2, 14, 15, 6]. One can look up both explicit
and implicit numerical integrators in the literature which preserve both the con-
straints and various geometric properties from the original ODE system, although
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constraint preservation always requires the solution of some (generally nonlinear)
algebraic system at each time step.

3. Constraint and Structure Preservation in PDE

We first briefly review Lagrangian and Hamiltonian formalism for fields modeled
by partial differential equations (PDE), following e.g. [16, 28]. To establish the
notation for relativistic formulations, in this section we assume that spacetime has
the topology Ω × R, where Ω is a fixed Riemannian d-manifold. We then develop
Lagrangian and Hamiltonian mechanics for time-dependent tensor fields living on
this fixed d-manifold. Constraints are then incorporated into the formalism using
the Lagrange functional theory from §1. Following this we consider constrained
non-variational PDE which do not arise from a Least Action Principle. We then
consider structure preserving space and time discretizations for PDE, and outline
some techniques for constraint preservation based on Lagrange functional formula-
tions. The PDE case requires much closer attention be paid to the function spaces
in which the fields live than the ODE case requires; we will punt on this for the
moment and refer to e.g. [16, 28] for the details for the particular examples we
consider.

3.1. Lagrangian and Hamiltonian PDE formalism. Consider a field system
with configuration space Q and (scalar or tensor) field(s) φ(xk, t) describing the
configuration of the system at any time t ∈ [0, T ]. For fixed t0 ∈ [0, T ], the “field”
φ(xk, t0) is a configuration (or point) in Q, and will represent one or more scalar or
tensors fields over a Riemannian d-manifold Ω, with xk = (x1, . . . , xd) ∈ Ω. (Ω may
simply be a single open set Ω ⊆ Rd.) In other words, at any fixed time t0 ∈ [0, T ],
φ(xk, t0) ∈ Q, and φ(xk, t) : Ω × [0, T ] 7→ V , where V is the corresponding space
of point tensors at xk. We supress all indices on the tensor field(s) represented by
φ. Here, φ̇ = ∂φ/∂t, and ∂kφ will represent covariant partial differentiaion of (each
tensor field in) φ with respect to xk (or the entire set of derivatives over all indices),
defined using the connection provided by the Riemannian metric on Ω. We will use
Einstein summation convention for repeated up and down indices in products.

The field equations for many infinite-dimensional (or field) systems in physics
can be derived variationally from a Lagrangian functional L of the form:

L(φ, φ̇) : Q×Q 7→ R, L(φ, φ̇) =
∫

Ω

L(xk, φ, φ̇, ∂jφ) dx, (123)

where L is a Lagrangian density of the fields φ, φ̇, and ∂jφ over Ω. The field
equations arise as the stationary point of an action integral S(φ) built from the
Lagrangian, expressing the Principle of Least Action. Let φ(xk, 0) and φ(xk, T ) be
arbitrary fixed points in Q; directions (variations) ψ will be referred to as “per-
missible” if ψ(xk, 0) = ψ(xk, T ) = 0, so that φ(xk, 0) + ψ(xk, 0) = φ(xk, 0) and
φ(xk, T ) + ψ(xk, T ) = φ(xk, T ). We also assume that permissible directions satisfy
ψ(xk, t) = 0 on the spatial boundary ∂Ω×[0, T ], so that φ(xk, t)+ψ(xk, t) = φ(xk, t)
on ∂Ω× [0, T ]. The Principle of Least Action then takes the form

〈DS(φ), ψ〉 = 0, ∀ permissible ψ, where S(φ) =
∫ T

0

L(φ, φ̇) dt. (124)



18 M. HOLST

Thus, we set to zero the derivative of S, computed as the following linear functional
of ψ:

〈DS(φ), ψ〉 =
d

dε
S(φ+ εψ)

∣∣∣∣
ε=0

(125)

=
∫ T

0

d

dε
L(φ+ εψ, φ̇+ εψ̇)

∣∣∣∣
ε=0

dt (126)

=
∫ T

0

〈DφL,ψ〉+ 〈Dφ̇L, ψ̇〉 dt (127)

=
∫ T

0

〈DφL,ψ〉 −
d

dt
〈Dφ̇L,ψ〉 dt, (128)

where we have employed the chain rule and integration by parts in time. The
boundary terms have been dropped due to ψ being permissible. The equations for
the field(s) φ are then obtained by forcing the quantity (126)–(128) to vanish for
all permissible directions ψ, which will hold if and only if φ solves the following
problem involving the Euler-Lagrange equations:

Find φ such that :
d

dt
〈Dφ̇L,ψ〉 = 〈DφL,ψ〉, ∀ permissible ψ. (129)

The appropriate side conditions which would allow for (129) to be well-posed are
values for φ(xk, 0) and φ̇(xk, 0).

It remains now to compute the derivatives of L appearing in (129). These are
just

〈DφL,ψ〉 =
d

dε
L(φ+ εψ, φ̇)

∣∣∣∣
ε=0

(130)

=
d

dε

∫
Ω

L(xk, [φ+ εψ], φ̇, ∂j [φ+ εψ])
∣∣∣∣
ε=0

dx (131)

=
∫

Ω

(
∂L
∂φ

ψ +
∂L

∂[∂jφ]
∂jψ

)
dx, (132)

and
d

dt
〈Dφ̇L,ψ〉 = 〈Dφ̇L, ψ̇〉 =

d

dε
L(φ, φ̇+ εψ̇)

∣∣∣∣
ε=0

(133)

=
d

dε

∫
Ω

L(xk, φ, [φ̇+ εψ̇], ∂jφ)
∣∣∣∣
ε=0

dx (134)

=
∫

Ω

∂L
∂φ̇

ψ̇ dx =
d

dt

∫
Ω

∂L
∂φ̇

ψ dx, (135)

where the boundary terms have been dropped due to ψ being permissible. Since
these expressions hold for an arbitrary permissible direction ψ, we view the follow-
ing as expressing the weak form of the Euler-Lagrange equations in terms of the
Lagrangian density L: Find φ such that ∀ permissible ψ,

d

dt

∫
Ω

∂L
∂φ̇

ψ dx =
∫

Ω

∂L
∂φ

ψ dx+
∫

Ω

∂L
∂[∂jφ]

∂jψ dx. (136)

With enough differentiability, we may use the divergence theorem on the third
integral in (136) together with the arbitrariness of ψ to obtain the strong form of
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the Euler-Lagrange equations in terms of the Lagrangian density L:

∂t

(
∂L
∂φ̇

)
=
∂L
∂φ

− ∂j

(
∂L

∂[∂jφ]

)
. (137)

A Hamiltonian formulation can be obtained from a Lagrangian formulation by
introducing conjugate momenta through the Legendre transformation (also called
the fiber derivative): π = Lφ̇, and then by changing variables from (φ, φ̇) to (φ, π).
Note that

〈π, ψ̇〉 = 〈Dφ̇L, ψ̇〉 =
d

dε
L(φ, φ̇+ εψ̇)

∣∣∣∣
ε=0

(138)

=
∫

Ω

d

dε
L(xk, φ, [φ̇+ εψ̇], ∂jφ)

∣∣∣∣
ε=0

dx (139)

=
∫

Ω

∂L
∂φ̇

ψ̇ dx = 〈∂L
∂φ̇

, ψ̇〉, (140)

so that in the case of the particular form of the Lagrangian we are considering here,
we have simply

π =
∂L
∂φ̇

. (141)

The field equations in the new variables can be obtained by defining a Hamiltonian
of the form

H(φ, π) =
∫

Ω

πφ̇ dx− L(φ, φ̇) (142)

=
∫

Ω

(
∂L
∂φ̇

φ̇− L(xk, φ, φ̇, ∂jφ)
)
dx (143)

=
∫

Ω

H(φ, π) dx, (144)

where H(φ, π) = πφ̇ − L(xk, φ, φ̇, ∂jφ) is the Hamiltonian density, and then by
differentiating the Hamiltonian with respect to the new position and momenta
variables:

〈DπH,κ〉 =
d

dε
H(φ, π + εκ)

∣∣∣∣
ε=0

(145)

=
∫

Ω

(
φ̇κ+ π

∂φ̇

∂π
κ− ∂L

∂φ

∂φ

∂π
κ− ∂L

∂φ̇

∂φ̇

∂π
κ

)
dx (146)

=
∫

Ω

φ̇κ dx = 〈φ̇, κ〉, (147)

〈DφH,ψ〉 =
d

dε
H(φ+ εψ, π)

∣∣∣∣
ε=0

(148)

=
∫

Ω

(
∂π

∂φ
φ̇ψ + π

∂φ̇

∂φ
ψ − ∂L

∂φ
ψ − ∂L

∂[∂jφ]
∂jψ −

∂L
∂φ̇

∂φ̇

∂φ
ψ

)
dx(149)

= −
∫

Ω

(
∂L
∂φ

ψ +
∂L

∂[∂jφ]
∂jψ

)
dx (150)

= − d

dt

∫
Ω

∂L
∂φ̇

ψ dx = −
∫

Ω

π̇ψ dx = −〈π̇, ψ〉, (151)
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where we have used (141) and (136), and the fact that π and φ are independent.
This is then simply

φ̇ = DπH, π̇ = −DφH. (152)
As in the ODE case (cf. [17]), the field equations (152) also arise as a stationary
point of an action integral built from the Hamiltonian rather than the Lagrangian:

〈DS(φ, π), (ψ, κ)〉 =
d

dε
S(φ+ εψ, π + εκ)

∣∣∣∣
ε=0

= 0, (153)

where

S(φ, π) =
∫ T

0

∫
Ω

πφ̇ dx−H(φ, π) dt, (154)

where now π(xk, 0)ψi(xk, 0) = π(xk, T )ψi(xk, T ) = 0 are the appropriate boundary
conditions. This fact will be useful for constrained Hamiltonian formulations in
§3.2, allowing for the introduction of Lagrange functionals directly into the action
integral (153) rather than first going through (124).

3.1.1. Example: Linear elastodynamics.

3.2. Constrained Lagrangian and Hamiltonian PDE formalism.

3.2.1. Example: Maxwell’s equations.

3.3. Constrained non-variational PDE systems.

3.3.1. Example: Incompressible Navier-Stokes.

3.4. Structure-preserving space and time discretizations. If space is semi-
discretized to reduce a PDE system to an ODE system, and if the resulting ODE
system retains Lagrangian or Hamiltonian structure, then the geometric (structure-
preserving) time discretizations for Lagrangian and Hamiltonian ODE systems de-
scribed in §2.4 immediately apply. Semi-discretizations of space for various PDE
systems which preserve Lagrangian or Hamiltonian structure in the original PDE
have been examined e.g. in [10]. Alternatively, one can consider spacetime dis-
cretizations of the PDE system which directly produce structure-preserving discrete
dynamical systems; cf. [4, 22, 21, 18, 19].

3.4.1. Spatial finite element discretizations.

3.4.2. Spacetime finite element discretizations.

3.5. PDE integrators with exact constraint preservation. If space is semi-
discretized to reduce a constrained PDE system to a constrained ODE system, and
if the resulting ODE system retains constrained Lagrangian or Hamiltonian struc-
ture, then the geometric (structure-preserving) time discretizations for constrained
Lagrangian and Hamiltonian ODE systems described in §2.5 immediately apply.
Alternatively, one can attempt to construct spacetime discretizations of the PDE
system which directly produce structure-preserving discrete constrained dynamical
systems.
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4. Constraint & Structure Preservation in the Einstein Equations

4.1. Constrained Lagrangian and Hamiltonian formulations.

4.2. Constrained non-variational formulations.

4.3. Integrators with exact constraint preservation.

4.4. Implementation based on finite element methods and FEtk.
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