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Abstract

The Poisson-Nernst-Planck (PNP) equation provides a continuum descrip-

tion of electrostatic-driven diffusion and is used here to model the diffusion

and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes.

This study focuses on the effects of ion and substrate concentrations on the re-

action rate and rate coefficient. To this end, the PNP equations are numerically

solved with a hybrid finite element and boundary element method at a wide

range of ion and substrate concentrations, and the results are compared with

the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction

rate is found to depend strongly on the concentrations of both the substrate

and ions; this is explained by the competition between the inter-substrate repul-

sion and the ionic screening effects. The reaction rate coefficient is independent

of the substrate concentration only at very high ion concentrations, whereas at
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low ion concentrations the behavior of the rate depends strongly on the sub-

strate concentration. Moreover, at physiological ion concentrations, variations

in substrate concentration significantly affect the transient behavior of the reac-

tion. Our results offer a reliable estimate of reaction rates at various conditions

and imply that the concentrations of charged substrates must be coupled with

the electrostatic computation to provide a more realistic description of neuro-

transmission and other electro-diffusion and reaction processes.

Key words: Diffusion; electrostatics; neurotransmission; Poisson-Nernst-Planck

equation; computational simulation
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1 INTRODUCTION

As one of the most important neurotransmitters, the cation acetylcholine (ACh)

is responsible for the communication between neurons and muscle fibers. This com-

munication occurs at a synapse called the neuromuscular junction (NMJ), where

ACh is released from the presynaptic vesicles, diffuses across the synaptic cleft, and

is hydrolysed by acetylcholinesterase (AChE) clusters tethered to the postsynaptic

membranes. The timely release of ACh and its consumption by AChE are essen-

tial for the communication, and the diffusion of ACh appears to be the rate-limiting

step of this highly coordinated process. Various computational models have been

developed to simulate this diffusion process, including continuum reaction-diffusion

models [1, 2, 3] and discrete methods such as Monte Carlo [38], Langevin dynamics,

and the popular Brownian dynamics [4, 20]. Most continuum models emphasize ei-

ther the diffusion of ACh in the synaptic cleft or the diffusion and reaction of ACh

with the AChE monomer or tetramer. In the former case, a rate coefficient is needed

to provide the boundary condition for the diffusion equation at the surface of the

enzymes [2, 3], whereas in the latter case a steady state reaction rate coefficient is

derived from the solution of the diffusion equations [21, 22, 23, 24, 25, 30]. Therefore,

an accurate estimate of this rate coefficient is of great importance in the study of

neurotransmission.

Analytical results for the reaction rate coefficient are available only for very ide-

alized and limited diffusional systems. Diffusion in realistic biomolecular processes

like neurotransmission is always complicated by various interactions among the sol-

vent and the involved reactants, such as solvent-mediated hydrodynamic interactions
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among reactants and electrostatic interactions in a charged system. Given the domi-

nant effect of electrostatics in driving diffusion at a large range of distances between

the reactants, many studies have concentrated on the influence of ionic strength and

substrate concentration on the electrostatics, and thus the reaction kinetics. For ex-

ample, the Coulomb and Lennard-Jones potentials have been integrated into Brown-

ian dynamics simulations[4, 20] to study the effect of finite substrate concentrations

on the steady-state reaction rate coefficient. Nevertheless, when the reactive re-

gion is small compared to the receptor’s surface or the substrate concentration is

large, it is difficult to obtain the rate coefficient or concentration profile accurately by

Brownian dynamics simulations or other discrete methods [20]. For these problems,

the continuum description of substrate diffusion based on the Smoluchowski(SMOL)

equation[26] provides a proper alternative model, and has been attracting increasing

interest[27, 28, 29, 4, 20, 21, 22, 23, 24, 25, 30].

The SMOL equation models the diffusion mediated by electrostatic potential;

therefore, its coupling with the Poisson-Boltzmann(PB) equation, the Poisson-Nernst-

Planck (PNP) equation, should able to present a realistic and complete description

of the electric field, concentration profile, and diffusional flux. Most recent studies

[21, 22, 23, 24, 25] merely implemented a partially coupled system of SMOL and PB

equations. In these studies, an electrostatic potential precalculated from the linear

or nonlinear Poisson-Boltzmann equation is supplied to the SMOL equation to drive

the diffusion of substrates, while the concentration profile of these charged diffusing

substrates does not contribute to the electrostatic potential. It is interesting that a

considerable variation of reaction rates with ionic strength has been found in these
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studies, which suggests that a further coupling of the diffusing charged substrate with

the electrostatic potential through the PNP model might provide new insight into the

kinetics of diffusion-influenced reactions. Indeed, the consistence of decoupled and

coupled electrodiffusion models has been studied in investigating the permeation of

ion channels and enzyme kinetics [5, 6, 7, 8, 9], and the ability of PB theory to estimate

the electrostatic potential energy in ion channel has been challenged [15, 17, 18, 16],

especially when the size of ions is comparable to the dimension of ion channels [14, 19].

We have recently developed a numerical frame for solution of the PNP equations

using a hybrid finite element/boundary element approach[30], which was designed

for study of diffusion-reaction events in biomolecular systems. In that work, some

examples were performed for reaction rate coefficient calculations in steady-state for

simple sphere models, and the results show strong dependence of the rate coefficient

on (charged) substrate concentration[30]. The aim of this paper, then, is a systematic

examination of the dependence of the rate coefficient on ionic strength and substrate

concentration in biomolecular system, specifically for ACh consumption process by

AChE. The transient behavior is also studied.

It is noted that a full coupling of the SMOL equation and the Poisson or Poisson-

Boltzmann equation has been implemented in studies of semiconductor devices [10,

11, 12], ion diffusion at charged interfaces [28] and ion transport through lipid mem-

branes [31, 32], where the models are referred to either as drift diffusion equations,

Smoluchowski-Poisson-Boltzmann(SPB) or Nernst-Planck or Poisson-Nernst-Planck

equations(PNP). While the model in this work will be referred to as PNP, the con-

stituent equations may be varied in order to achieve the best performance in terms
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of model accuracy and computational efficiency.

The paper is organized as follows. In section 2 we present our PNP models for the

steady-state problem and the time-dependent problems, respectively. The redistribu-

tion of ions due to the additional substrates is neglected in the latter to accelerate

the computational simulation while otherwise maintaining the model’s accuracy. Our

newly-developed finite element/boundary element hybrid numerical algorithm will

also be briefly introduced. In section 3 our PNP models are used to compute the

steady-state rate coefficient of ACh consumption by the AChE monomer, and also to

study the transient behavior of AChE consumption. The results are discussed and

compared with available experimental data and previous simulations to examine the

necessity for coupling the substrate concentration with the PNP model. Section 4

concludes our studies with a number of final remarks.

2 Models and Methods of Simulation

The diffusion of particles in a potential field under over-damped velocity relaxation

conditions is described by the Smoluchowski equation [26]. For steady-state problems,

the SMOL equation is coupled with the Poisson equation, which describes the electric

field induced by fixed charges in the AChE monomer, the mobile ions, and charged

diffusing substrates:

∇ · (Dj(x)e−βqjφ(x)
∇(eβqjφ(x)Cj(x))) = 0, (1)

∇ · (εφ(x)) =
∑

i

qiδ(x − xi) +
∑

j

qjCj, (2)

where Dj(x) is the diffusion coefficient for jth ion or substrate with charge qj and

concentration Cj(x), β = 1/(kBT ) is the inverse Boltzmann energy, kB is the Boltz-
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mann constant, T is the absolute temperature, φ(x) is the electrostatic potential, ε is

the dielectric constant, and qi is the fixed charge at position xi inside the molecule.

To facilitate the presentation we define the flux of diffusive particles

J = Dj(x)e−βqjφ(x)
∇(eβqjφ(x)Cj(x)). (3)

In steady-state diffusion studies, the concentration of ion or substrate on the exterior

sphere, i.e., the outer boundary of the modeled system, is set to be its bulk concen-

tration. On the molecular surface, a reflecting boundary condition is assumed for

the diffusing particles except for the reactive substrate ACh, which experiences an

absorbing boundary condition on the reactive patch, i.e., CACh = 0. This vanishing

concentration on the reactive surface is due to the fact that the chemical reaction is

much faster than the diffusion.

For studies of time-dependent diffusion we assume that initially the AChE and

mobile ions are at a state of electrostatic equilibrium described by the linear Poisson-

Boltzmann equation. At t = 0, the ACh substrates of a given concentration are

released from a sphere away from the AChE monomer. These substrates then dif-

fuse in a large spherical volume surrounding the AChE, and some of them eventually

arrive at the reactive molecular surface to be consumed. We note that for this time-

dependent problem only the substrates are allowed to diffuse, while the concentrations

of mobile ions are assumed to always satisfy the Boltzmann distribution. This sim-

plifies the computation; otherwise, two or more time-dependent diffusion equations

for mobile ions would also need to be solved. Our time-dependent PNP model thus
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is given by

∂Cj

∂t
= ∇ · (Dj(x)e−βqjφ(x)

∇(eβqjφ(x)Cj(x))), (4)

∇ · (εφ(x)) + κ2φ(x) =
∑

i

qiδ(x − xi) +
∑

j

qjCj, (5)

where Cj is the concentration of jth substrate and κ is the ionic strength of mobile

ions. For both steady-state and time-dependent cases, the electrostatic potential at

the exterior sphere is provided by the Debye-Hückel approximation.

In our time-dependent simulations the diffusion starts in a spherical region, wich

models a fused vesicle ready for ACh release with radius r = 240Å centered at

(x, y, z) = (0, 480, 0). This location is above the AChE active site gorge, which is

aligned with the y-direction. The exterior boundary is modeled as reflective to simu-

late a closed box. The other boundary conditions are the same as in the steady-state

simulation.

We use our hybrid finite element/boundary element method [30] to solve the

PNP equations (1,2) or (4,5). More details on the numerical solution, the boundary

conditions, and some examples can be found in the paper [30]. With our hybrid

method the singular component of the electric field induced by the fixed charges

inside the molecule is computed with a fast multipole boundary element method [33],

while the regular component of the electric field, and the concentration, are computed

with a finite element method [39]. The application of the boundary element method

dramatically improves the accuracy of the singular electrostatic component. The

regular electrostatic component and the diffusion part of the PNP equations are

solved on the same finite element mesh defined on the volume exterior to the AChE;

thus, the difficulty of mapping the potential from the regular grids obtained from
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the APBS electrostatics solver onto the irregular finite element nodes of diffusion is

avoided [21, 22, 23].

2.1 System Preparation

We use the same molecular structure of AChE as studied in previous work [21],

which is taken from a MD simulation and has a gorge conformation with greater

width than the original x-ray structure (1MAH [34]). The wider gorge facilitates

the entrance of ACh into the active site. The molecular surface mesh and the entire

tetrahedral finite-element mesh are generated using the method described in [30]. The

partial atomic charges and van der Waals radii are taken from the AMBER force-field

[35]. It is worth noting that the mesh around the gorge is refined using MSMS [36],

and the overall surface mesh (Fig. 1) is relatively finer and smoother than the one

used in previous studies. The dielectric constant ε is set to 2 inside AChE molecule

and 78 in the solvent. The diffusion coefficient D is chosen to be 78000 Å2/µs,

consistent with the previous studies using the SPB model[21, 22, 23, 30].

(Insert Figure 1 here)

The computational domain is described as follows. A large sphere is chosen to

model the far-field boundary of the system. The radius of this exterior sphere is

400Å for steady-state diffusion and 3000Å for the time-dependent problem, respec-

tively. The center of this sphere coincides with the geometric center of the AChE

monomer, which is taken as the origin of the coordinate system.
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3 Results and Discussion

3.1 Steady State Simulations

The steady state simulations are conducted at ionic strengths ranging from 0mM

to 700mM and the substrate concentration ranging from 1mM to 500mM, with both

the PNP model and the SPB model. The reaction rate v is defined as the total

consumption of substrates on the active molecular surface Γa(highlighted in red in

Fig.(1)), while the rate coefficient k is the reaction rate divided by the bulk concen-

tration C0 of the substrate:

v =

∫
Γa

J · n ds, k =
v

C0
. (6)

This work will show that k depends strongly on the substrate concentration, rather

than being a constant as assumed in previous studies.

(Insert Figure 2 here)

The steady-state SPB model is first solved to check the mesh quality and to

generate data for comparison with later PNP simulations. As shown in Fig. (2), the

rate coefficients agree very well with the Debye-Hückel law, and also show considerable

improvement over former results [21, 22, 30]. This stems from the consistency of the

Debye-Hückel law with the SPB model because of the assumption of no coupling,

and also from our finer and smoother mesh and the new algorithm for computing the

electrostatic potential.

The strong dependence of the rate coefficient on the ionic strength and substrate

concentrations in the PNP calculations is illustrated by the steady state simulations.

In particular, at the low substrate concentration 1mM, the reaction rate reaches a
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value of about 1.3×1012/min, near its maximum, at an ionic strength around 80mM,

and grows at very small rate with a further increase in ionic strength (Fig.(3)-A).

At higher substrate concentrations (500mM, for example), the reaction rate initially

increases quickly with the ionic strength. Completely different behaviors of reaction

rate are found at different substrate concentrations. When substrate concentration is

lower than 200mM, the initial increase of the rate with the ionic strength is followed

by a decrease. This transition is particularly apparent for substrate concentration of

10mM, and has also been observed in the unit sphere model in our previous work

[30].

(Insert Figure 3 here)

When the substrate concentration is small, the self-repulsion of the substrates is

very weak, and thus the dynamics of the diffusion is close to that of uncoupled mod-

els. For this reason, at low substrate concentration, a slight increase of ionic strength

is sufficient to screen the substrate interaction and facilitate the aggregation of these

substrates near the reactive site. Larger ionic strength will result in stronger screen-

ing of the attraction of substrates to the reactive site, which leads to the decrease

of reaction rate. On the other hand, high ionic strengths are necessary to screen

the stronger self-repulsion of highly concentrated substrates, which suggests that the

increase of ionic strength tends to result in an increase of reaction rate, although the

increase in rate becomes less as the ionic strength becomes large. These relations can

also be seen from chart B of Fig.(3) where the reaction rates are plotted against the

substrate concentrations at different ionic strengths. Low ionic strengths are suffi-

cient to screen the self-interaction of substrates only at low substrate concentrations,

11



whereas high ionic strengths are able to facilitate the aggregation and reaction of

highly concentrated substrates.

The charts C and D of Fig.(3) show the rate coefficients as functions of ionic

strength and substrate concentrations, respectively. At the low substrate concentra-

tion of 1mM, the rate coefficient decreases with an increase of ionic strength, while at

sufficiently high substrate concentrations the rate coefficient appears to be increas-

ing. Nevertheless, for substrate concentrations between 10mM and 100mM, the rate

coefficient initially increases with ionic strength, and then gradually decreases to a

constant. On the other hand, as mentioned above, for all ionic strengths it is clear

from chart C and chart D that the rate coefficient decreases with substrate concen-

tration. The rate coefficient decreases faster at low ionic strengths than at high ionic

strength. In particular, both chart C and chart D show that a rate coefficient inde-

pendent of the substrate concentration can only be found at ionic strengths larger

than 500mM, which is much larger than physiological ion concentrations.

In general, the flux of substrate on the reactive boundary is affected by the bal-

ance between the ionic screening effect and inter-substrate repulsion. Our previous

numerical results on the charged sphere [30] and the present AChE simulations show

that the pure electrostatic repulsion between substrates tends to lower the reaction

rate. This observation is different from the conclusion made in a former Brownian

dynamics simulation work [4], where only two substrate concentrations were tested,

which may be not completely sufficient to fully explore the influence of substrate con-

centration on the reaction rate. However, these Brownian dynamics simulations did

consider the van der Waals interactions among the substrates; the inclusion of these
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short-range interactions into the PNP model remains an open problem.

The information contained in Fig.(3) and the above analysis imply that the rate

coefficient in Eq.(6) varies considerably with substrate concentration at physiological

ion concentrations, approaching a constant value only at very high ionic strengths.

The chart C in Fig.(3) shows that the rate coefficient decreases from 2×1011/(M·min)

to 8×1010/(M·min) when the substrate concentration increases from 1mM to 500mM

at an ionic strength of 134mM. This suggests that in computational simulations of

neurotransmission, a reaction rate coefficient depending on the local ACh concentra-

tion, instead of a given constant, could be supplied to models of the postsynaptic

membrane in order to give a more realistic description of the local consumption of

the substrate ACh.

3.2 Time-dependent Simulations

The diffusion and reactions in vivo are always time dependent; hence, simulations

with time-dependent PNP equations are expected to provide more kinetic informa-

tion than steady state simulations. Here the reaction rates and rate coefficients are

calculated from a series of simulations with different initial substrate concentrations

and ionic strength, in order to investigate the dependence of the transient reaction

rate on ionic strengths and substrate concentrations. There is also a background sub-

strate concentration in the solvent region, CACh=1mM, which models the extracel-

lular ACh concentration. Fig.(4) illustrates the normalized reaction rate coefficients

at different ligand concentrations, i.e., the rate coefficients k divided by the initial

ligand concentration at the release site. For example, it is apparent that an increase

of ionic strength results in a decrease of the (normalized) reaction rate coefficient,
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which peaks at around 12× 109/(M·min) at an ionic strength of 134mM and reduces

to about 8 × 109/(M·min) at an ionic strength of 500mM. Additional support for

the decrease of the rate coefficient with the increase of ionic strength is provided by

Fig.(5). This trend can also be found at all other substrate concentrations considered

in the time-dependent simulations, and is consistent with results from the steady-state

simulations.

(Insert Figure 4 here)

Fig.(4) also shows the dependence of the peak of the rate coefficient on the sub-

strate concentration and ionic strength. At high ionic strength such as 200mM or

500mM, the maximum rate coefficient with PNP simulation is found to be very close

to that calculated from SPB simulations, except at high substrate concentrations such

as 300mM. However a noticeable shift of the peak was found at the physiological ionic

strength of 134mM. In this case the maximum rate coefficient is obtained at 0.31µs

from the SPB simulation, whereas in the PNP simulations the maximum value was

located at 0.15µs. This forward shift of the peak reaction rate is due to the stronger

electric field induced by charged substrates, which in turn speeds the diffusion of

the substrates away from their initial location. The increase of ionic strength again

results in stronger screening of the electrostatic field, which is seen as the smaller

forward shift of peak normalized reaction rate coefficient at high ion concentrations.

Such shifts might be relevant in interpreting the discrepancy between the simulated

slow discharge of neurotransmitter and the optimal duration [1], and also suggests

that the electrostatics should ideally be included in neurotransmission models via

fully coupled PNP equations.
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(Insert Figure 5 here)

4 Conclusion

The Poisson-Nernst-Planck(PNP) equations have been utilized to simulate the

steady-state and transient diffusion and reaction of ACh substrates with the AChE

monomer. The numerical solution of the PNP equations was conducted with a re-

cently developed hybrid finite element/boundary element method [30]. The results of

the PNP models were compared with those of the SPB model, with emphasis placed

on the effects of ionic strength and substrate concentration on the reaction rate, and

rate coefficient for steady-state and transient cases. Strong dependence of the reaction

rate on the ionic strength and substrate concentration was found. At high substrate

concentrations the steady-state reaction rate coefficient increases with ionic strength.

As ionic strength increases, the rate coefficient decreases at low substrate concentra-

tions but increases for high substrate concentrations, and approaches a constant value

at a sufficiently large ionic strengths. At physiological ionic strength, the peak of the

reaction rate coefficient advances in time as the substrate concentration increases.

These considerable variations of rate coefficients at a wide range of ionic strengths

suggest that a fully coupled PNP model is desirable to model the electrostatic-driven

diffusion and substrate consumption of this system. Therefore, a rate coefficient which

depends on both the ionic strength and substrate concentrations should ideally be

computed from a PNP model and used as an input to larger-scale neurotransmission
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simulations.
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5 FIGURE CAPTIONS

FIGURE 1 Triangulated molecular surface with reactive site highlighted in red.

FIGURE 2 Comparison of reaction rate coefficients(M−1min−1) computed with

SPE and fit to the Debye-Hückel law[37].

FIGURE 3 Steady state reaction rate(min−1) and rate coefficients(M−1min−1)

computed with the PNP model. Substrate concentration is not included in calculat-

ing the ionic strength.

FIGURE 4 Time dependent reaction rate coefficients(M−1min−1) normalized by

the initial substrate concentration(mM). The ionic strength precedes the underscore

and the initial substrate concentration follows the underscore; c represents the PNP

model(coupled) while u denotes the SPB model(uncoupled).

FIGURE 5 Time dependent reaction rate coefficients(M−1min−1) computed with

PNP model at various ionic strengths. The ionic strength precedes the underscore

and the initial substrate concentration follows the underscore.
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Figure 1. Triangulated molecular surface with reative site highlighted in red.

Figure 1. Y. C. Zhou, et al.
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and fit to the Debye-Hückel law[37].

Figure 2. Y. C. Zhou, et al.
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Figure 3. Steady state reaction rate(min−1) and rate coefficients(M−1min−1) com-

puted with the PNP model. Substrate concentration is not included in calculating

the ionic strength.
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Figure 4. Time dependent reaction rate coefficients(M−1min−1) normalized by

the initial substrate concentration(mM). The ionic strength precedes the underscore

and the initial substrate concentration follows the underscore; c represents the PNP

model(coupled) while u denotes the SPB model(uncoupled).
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Figure 5. Time dependent reaction rate coefficients(M−1min−1) computed with

PNP model at various ionic strengths. The ionic strength precedes the underscore

and the initial substrate concentration follows the underscore.
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