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Multi-Scale Modeling of Calcium Dynamics in
Ventricular Myocytes with Realistic Transverse

Tubules
Zeyun Yu*, Guangming Yao, Masahiko Hoshijima, Anushka Michailova, and Michael Holst

Abstract—Spatial-temporal Ca2+ dynamics due to Ca2+ re-
lease, buffering and re-uptaking plays a central role in studying
excitation-contraction (E-C) coupling in both normal and dis-
eased cardiac myocytes. In this paper, we employ two numerical
methods, namely, the meshless method and the finite element
method, to model such Ca2+ behaviors by solving a nonlinear
system of reaction-diffusion partial differential equations at two
scales. In particular, a sub-cellular model containing several
realistic transverse tubules (or t-tubules) is investigated and
assumed to reside at different locations relative to the cell
membrane. To this end, the Ca2+ concentration calculated from
the whole-cell modeling is adopted as part of the boundary
constraint in the sub-cellular model. The preliminary simulations
show that Ca2+ concentration changes in ventricular myocytes
are mainly influenced by calcium release from t-tubules.

Index Terms—Numerical simulation; finite element methods,
meshless methods, calcium dynamics; ventricular myocytes.

I. INTRODUCTION

The high prevalence of heart failure is largely due to
our lack of accurate understanding of the complex pathol-
ogy including abnormal excitation-contraction (E-C) coupling
in cardiomyocytes. The architecture of uniquely developed
membrane organelles in ventricular myocytes, including trans-
verse tubules (t-tubules) and junctional sarcoplasmic reticulum
(jSR), and the arrangement of associated proteins are known
to play a major role in dynamically controlling intracellular
Ca2+ levels, which in turn regulate cardiac contraction and
other cellular functions [1]. For its central role in E-C cou-
pling, modeling Ca2+ release and concentration change has
been an active research area and is typically studied in two
ways: stochastic approaches that employ Monte Carlo simu-
lation [2] and deterministic approaches based on partial dif-
ferential equations (PDEs) [3]. While stochastic simulation at
the nanometer scale provides elementary information on Ca2+

dynamics, cardiac cell contraction is most closely related to
the intracellular Ca2+ concentration level [Ca2+]i [4]. For
this reason, our interest in the present paper is to investigate
spatial-temporal variations of intracellular Ca2+ concentration
at cellular and subcellular levels, where the stochastic behav-
ior of Ca2+ dynamics is so insignificant that deterministic
methods utilizing PDEs are more appropriate.
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Most of the previous work using PDEs to study Ca2+

dynamics was conducted based on idealized geometries such
as cylindrical shapes [3], [5]. As pointed out in [2], [3],
geometric changes may significantly influence the behaviors
of Ca2+ dynamics both locally and globally. For example,
the heart failure is closely related to rearrangement or lack
of t-tubules in cardiac cells [6], [7]. In fact, a recent study
by Cheng et al. [8], which utilizes a single t-tubular branch
generated from light microscopic images, suggests that the
quantitative understanding of Ca2+ signaling requires more
accurate knowledge of t-tubular ultra-structures. Thus, one
of the focuses in the present paper is to include nanometer-
scale, realistic surface geometries of multiple t-tubules that are
constructed from three-dimensional (3D) electron microscopic
(EM) images of the ventricular myocytes of an adult mouse
[9]. It is worth noting that in mice both transverse tubules
and axial tubules are found and often known as transverse-
axial tubules (or TATs) [10]. However, t-tubular branches
are naturally more frequently observed than axial tubules. In
addition, the 3D EM tomographic data we have used for the
current study is so thin that there is no obvious axial tubule in
the image. Therefore, we shall still adopt the name “t-tubule”
instead of “TAT” throughout the present paper.

The underlying PDEs describing Ca2+ dynamics in ven-
tricular myocytes may be numerically solved by such tech-
niques as the finite difference method (FDM) [11], the finite
element method (FEM) [12], [13], the finite volume method
(FVM) [14], and the boundary element method (BEM) [15].
All these methods are mesh-based, meaning that meshes or
grids must be constructed on the problem domain. Another
numerical approach known as meshless method [16] does not
require explicit meshes and thus has gradually become popular
in the past two decades. Our recent work (unpublished) has
shown that this method can be easily adapted to handle very
large systems. However, numerically it is not as stable as the
finite element method. For these reasons, in the current study
we employ both meshless and finite element methods to study
Ca2+ dynamics at different scales.

II. GEOMETRIC AND MATHEMATICAL MODELING

A. The Geometric Model

Fig. 1(a) shows the geometric model containing several t-
tubules extracted from the ventricular myocytes of an adult
mouse. The details of electron microscopic imaging and 3D to-
mographic reconstruction can be found in [9]. The algorithmic
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(a)

(b) (c)
Fig. 1. (a) Multiple t-tubule geometry and its surrounding box domain,
denoted by Ω. The red color in Ω represents t-tubules (denoted by Γ1), the
top blue face of the box (denoted by Γ2) satisfies the Dirichlet boundary
condition, and a reflective boundary condition is assumed on the remaining
boundary faces (in green). (b) One slice of the 3D electron tomographic map,
showing t-tubules in dark regions surrounded by jSR. (c) The model in (a) is
placed at various locations in a simplified whole-cell model at a distance d
(d = 8µm, 2µm, or 0µm) from the cell membrane.

details of image processing and boundary segmentation are de-
scribed in [17]. Fig. 1(b) shows one slice of the reconstructed
tomographic map, where dark regions are t-tubules surrounded
by jSR (not considered in this study). The rectangle-shaped
model in Fig. 1(a), denoted by Ω ⊂ R3, is the problem domain
in our simulations and the dimension of the box is measured
as 2.81µm × 2.79µm × 0.24µm. The boundary Γ1 (in red)
represents realistic t-tubules and Γ2 (in blue) is the top face
of Ω. Because the location of the constructed t-tubules in the
ventricular myocyte is unknown and we are also interested in
the roles of t-tubules and cell membrane in calcium dynamics,
we shall consider three cases in our simulations by placing the
model in Fig. 1(a) in a simplified whole-cell model such that
the top face Γ2 is at a distance d (d = 8µm, 2µm, or 0µm)
away from the cell membrane (see Fig. 1(c)).

B. Governing Equations

The following nonlinear reaction-diffusion equations, de-
fined on the model described above, are modified from [18]:

∂[Ca2+]i
∂t

= DCa∇2[Ca2+]i−
3∑

m=1
RBm−RBs, Ω,

∂[CaBm]
∂t

= DCaBm∇2[CaBm] + RBm,

m = 1, 2, 3, Ω,
∂[CaBs]

∂t
= RBs , Ω,

∂[Ca2+]i
∂t

= DCa∇2[Ca2+]i + JCaflux, Γ1,

[Ca2+]i = [Ca2+]i0, Γ2,

(1)

with the following initial conditions:

[Ca2+]i = 0.10µM, [CaB1] = 11.92µM,

[CaB2] = 0.97µM, [CaB3] = 0.13µM,

[CaBs] = 6.36µM.

The boundary Γ2 (the top face in Fig. 1(a)) satisfies the Dirich-
let boundary condition, and a reflective boundary condition
is assumed on the remaining faces of the box. The Ca2+

concentration, [Ca2+]i0, on Γ2 is obtained from the whole-
cell modeling using the messless method (see below).

In our model, three types of mobile Ca2+ buffers (Fluo-3,
ATP, and calmodulin, denoted by Bm, m = 1, 2, 3, respec-
tively), and one type of stationary Ca2+ buffers (troponin,
denoted by Bs) are considered. Their concentrations are de-
noted by [Ca2+]i, [CaBm],m = 1, 2, 3, [CaBs], respectively.
The reactions between Ca2+ ions and buffers are defined as:

RBm = km
+ ([Bm]− [CaBm]) [Ca2+]i − km

− [CaBm], (2)
RBs = km

+ ([Bs]− [CaBs]) [Ca2+]i − km
− [CaBs], (3)

where m = 1, 2, 3.
At the resting (initial) state, we assume uniform distributions

of all the buffers throughout the cytosol. The resting concen-
trations of mobile and stationary buffers satisfy equilibrium
conditions (i.e., RBm = RBs = 0) [19] with the resting Ca2+

concentration at 0.1µM . The total Ca2+ flux, JCaflux, on the
t-tubule surface is defined as in [18]:

JCaflux = JCa + JNCX − JpCa + JCab, (4)

where calcium influx/efflux through L-type calcium channels
(LCCs, JCa), sodium-calcium exchangers (NCXs, JNCX ),
calcium pump efflux (JpCa), and calcium background leak
influx (JCab) are included. The current densities, ICa, INCX ,
IpCa, and ICab, are calculated the same as in [18]. The
physical constants and parameters are taken from [18], [20].
To calculate the total Ca2+ flux, JCaflux, each of the current
densities is converted into Ca2+ flux by using:

Ji = βi
Vmc

Smc

(
1

2F

Cm

Vcell

)
Ii, (5)

with i = Ca,NCX, pCa, or Cab. The capacitance to ren-
dered volume ratio (Cm/Vcell) is assumed to be 8.8pF/pL
[21]. Note that Smc is the total area of t-tubule membrane
where Ca2+-related channels reside and Vmc is the vol-
ume of the model. In Fig. 1(a), Vmc = 1.782µm3, and
Smc = 0.919µm2. The model-dependent scaling parameter,
βCa = 4.0, and βNCX = βpCa = βCab = 1.0. The voltage
clamp protocol is assumed to hold the potential −50mV with
an electric pulse of 10mV for 70ms [18].

III. METHODOLOGY

To solve the system of equations in (1), we use an explicit
time-stepping method in time and the finite element method
in space. Since we consider Γ2 at different locations in a
simplified ventricular myocyte, predicting the initial Ca2+

concentration, [Ca2+]i0, on Γ2 is necessary and is performed
by using the meshless method.
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Fig. 2. (a) the whole-cell model of approximately 120µm×20µm×20µm,
with t-tubules and all intra-cellular structures excluded. Indicated in green is
a scanning line going through the center of the cell, with five feature spots
that are 2µm, 4µm, 6µm, 8µm, and 10µm away from the cell membrane.
(b) local Ca2+ transients taken at the five feature spots shown in (a).

A. The Meshless Method

A simplified whole-cell model, as shown in Fig. 2(a), is
considered. To predict spatial-temporal Ca2+ concentrations
in a large domain, the meshless method is a good choice com-
pared with other numerical methods, for its implementation
simplicity, time efficiency, and effectiveness in dealing with
complicated geometries [22]. In particular, the finite difference
method has been utilized in [5] for whole-cell calcium model-
ing, but the meshless method can handle smooth yet complex
domain boundaries more effectively. In our meshless method,
the operator-splitting method is used to decouple the PDEs and
to separate nonlinear sources and the Laplacian operators. The
local radial basis function collocation method (LRBFCM) [16]
is employed to approximate Laplacian terms at every time-
step. With the predicted spatial-temporal Ca2+ concentrations,
Fig. 2(b) shows local Ca2+ transients at five representative
spots that are 2µm, 4µm, 6µm, 8µm, and 10µm away from
the cell membrane. For the sub-cellular modeling problem
(Fig. 1(a)), we consider three locations (Fig. 1(c)), where
d = 0µm, 2µm, 8µm. The concentrations at these locations in
the whole-cell modeling shall be used below as the boundary
condition for Γ2 in the system (1).

B. The Finite Element Method

With the initial concentration [Ca2+]i0 predicted on Γ2,
we employ the finite element toolkit FETK (http://FETK.org)
and the CSMOL software (http://mccammon.ucsd.edu/smol/)
[23] to solve the system (1) on the geometric model shown
in Fig. 1(a). The software toolkit called GAMer [24] is used
to discretize the complex domain into a tetrahedral mesh. In
the present simulation, we have 83, 614 nodes (vertices) and
350, 249 tetrahedra. The time-step size is chosen as 4ms.
It takes about 55 minutes to compute the concentrations
for a time period of [0, 400ms] on a single Intel Xeon-
based processor (3.00GHz). The numerical results below are
visualized by Meshlab and MATLAB 2.7.7.

IV. RESULTS

In our current study, the SR has been excluded from
the finite element simulations shown below. Fig. 3 shows

the results with the presence of 100µM Fluo-3, where the
geometric model used is given in Fig. 1(a). The global and
local Ca2+ transients reach the peaks at about 72ms when
the LCC current is completely blocked. Fig. 3 (a)–(b) show
the voltage-clamp protocol and the whole-cell L-type Ca2+

current as used in [18].
In Fig. 3 (c)–(l), we show three boundary conditions on

Γ2, where Γ2 is assumed to be 8µm (blue lines), 2µm (green
lines), and 0µm (red lines) away from the cell membrane (see
Fig. 1(c)). Fig. 3 (c)–(e) show the averaged current densi-
ties of Na+/Ca2+exchangers, Ca2+ pumps and Ca2+ leaks,
assuming a uniform distribution of Ca2+ inside the model.
Fig. 3(f) shows the averaged Ca2+ concentration over time.
The time-varying concentrations of the calcium-bound mobile
and stationary buffers are shown in (g)–(j) in Fig. 3. In the
presence of LCC current densities, these concentrations rapidly
increase. After the LCC current is blocked, the concentrations
of the calcium-bound buffers gradually decrease and become
stable when the free Ca2+ concentration is stable. In all these
results, the curves are almost identical in the two conditions
where Γ2 is 8µm and 2µm away from the cell membrane,
suggesting that the main contribution to calcium concentration
changes in ventricular myocytes comes from t-tubules except
in the regions near the cell membrane.

While the averaged Ca2+ concentration within the cytosol
of the model is shown in Fig. 3(f), we also consider two feature
spots along a scanning line going vertically through the center
of the box in Fig. 1(a). These two spots are 0.235µm and
0.0038µm away from the top surface Γ2 of the box, and the
calcium concentration changes over time are given in Fig. 3
(k)&(l), respectively. Again, when the model is placed near
the cell membrane, we observe significantly higher Ca2+

concentration than the other two cases. When the feature spot
is chosen near the top surface Γ2, the other two cases (green
and blue lines in Fig. 3(l)) are also distinguishable.

The model is able to predicate local Ca2+ transient peaks
at approximately 72ms. Fig. 4 and Fig. 5 show the 3D
local Ca2+ transients when t = 72ms. The local Ca2+

transients near the t-tubular surface are about 10 ∼ 20% higher
than elsewhere. When the distance from the cell membrane
to Γ2 increases (i.e., going from 0µm, 2µm to 8µm), the
Ca2+ concentration undergoes a quick (∼ 15%) decrease and
then becomes stable, as also seen in [8], suggesting that the
influence from the surface membrane rapidly diminishes. The
difference between the bulk and subsarcolemmal Ca2+ con-
centrations had been discussed in previous studies (i.e., [25]).
Another factor of the Ca2+ concentration changes observed in
Fig. 4 and Fig. 5 might be due to the lack of calcium release
from SR in our current study.

V. CONCLUSION

In this paper we employed the finite element method and
realistic EM structures of t-tubules to investigate calcium dy-
namics involving calcium releasing, buffering, and re-uptaking
at the sub-cellular scale. Different boundary conditions are
imposed on the sub-cellular model by placing the model
at three different locations relative to the cell membrane of
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Fig. 3. Calcium signaling simulations with realistic t-tubule membrane. The upper boundary Γ2 of the sub-cellular model (Fig. 1(a)) is assumed to be 8µm
(blue lines), 2µm (green lines), and 0µm (red lines) away from the cell membrane (also see Fig. 1). Note that in most of the simulations plotted here, the
blue lines are almost identical to the green lines. (a)-(b) The voltage-clamp protocol and the whole-cell LCC current used in the simulation. (c)-(f) Predicted
global Na+/Ca2+, Ca2+ pump and leak currents and global average Ca2+ transient when Ca2+ is uniformly distributed inside the cell. (g)-(j) Predicted
average concentrations of calcium-bound mobile and stationary buffers. (k)-(l) Local Ca2+ transients taken at two feature spots that are 0.235µm (k) and
0.0038µm (l) away from Γ2.

Fig. 4. 3D views of the Ca2+ concentrations at the [Ca2+]i peak of 72ms
when the sub-cellular model in Fig. 1(a) is placed 8µm (left), 2µm (middle),
and 0µm (right) away from the cell membrane. Note that the left portion
(about one half) of the domain has been cut out.

a simplified ventricular myocyte. The boundary values are
borrowed from the whole-cell simulations pre-computed by
using the meshless method. The preliminary results show that
t-tubules, as compared to the cell surface membrane, play
a major role in regulating Ca2+ concentration changes in
ventricular myocytes.
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