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Abstract

We present a robust and efficient numerical method for solution of the nonlinear Poisson-Boltzmann

equation arising in molecular biophysics. The equation is discretized with the box method, and solution

of the discrete equations is accomplished with a global inexact-Newton method, combined with linear

multilevel techniques we have described in a previous paper. A detailed analysis of the resulting method

is presented, with comparisons to other methods that have been proposed in the literature, including the

classical nonlinear multigrid method, the nonlinear conjugate gradient method, and nonlinear relaxation

methods such as SOR. Both theoretical and numerical evidence suggests that this method will converge

in the case of molecules for which many of the existing methods will not. In addition, for problems which

the other methods are able to solve, numerical experiments show that this method is substantially more

efficient, and the superiority of this method grows with the problem size. The method is very easy to

implement once a linear multilevel solver is available, and can also easily be used in conjuction with

linear methods other than multigrid.

1 Introduction

In this paper, we consider numerical solution of the nonlinear Poisson-Boltzmann equation (PBE), the
fundamental equation arising in the Debye-Hückel theory [13] of continuum molecular eletrostatics. In the
case of a 1 : 1 electrolyte, this equation can be written as

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r)) =
4πe2

c

kBT

Nm
∑

i=1

ziδ(r − ri), u(∞) = 0, (1)

a three-dimensional second order nonlinear partial differential equation governing the dimensionless electro-
static potential u(r) = ecΦ(r)/k−1

B T−1, where Φ(r) is the electrostatic potential at a field position r. The
importance of this equation for modeling biomolecules is well-established; more detailed discussions of the
use of the Poisson-Boltzmann equation may be found in the survey articles of Briggs and McCammon [9]
and Sharp and Honig [44].

In the equation above, the coefficient ε(r) jumps by order of magnitude across the interface between
the molecule and surrounding solvent. The modified Debye-Hückel parameter κ̄, proportional to the ionic
strength of the solution, is discontinuous at the interface between the solvent region and an ion exclusion
layer surrounding the molecular surface. The molecule itself is represented by Nm point charges qi = ziec at
positions ri, yielding the delta functions in (1), and the constants ec, kB , and T represent the charge of an
electron, Boltzmann’s constant, and the absolute temperature. Equation (1) is referred to as the nonlinear
Poisson-Boltzmann equation, and it is often approximated by the linearized Poisson-Boltzmann equation,
obtained by taking sinh(u(r)) ≈ u(r) when u(r) << 1.

In the nonlinear case, equation (1) presents severe numerical difficulties due to the rapid exponential
nonlinearities, discontinuous coefficients, delta functions, and infinite domain. In this article, we present a
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survey of the numerical methods currently employed in the biophysics and biochemistry communities for the
linearized and nonlinear PBE. We then propose an alternative numerical method, which is a combination of
global inexact-Newton methods and multilevel methods. A detailed analysis of this method is presented, with
comparisons to other methods that have been proposed in the literature, including the classical nonlinear
multigrid method, the nonlinear conjugate gradient method, and nonlinear relaxation methods such as SOR.
Both theoretical and numerical evidence shows that the global inexact-Newton-multilevel method is superior
to all other methods currently in use. In particular, this method is more robust (it converges in cases where
all other methods fail) and substantially more efficient (the advantage of this method grows with the problem
size). The method is very easy to implement once a linear multilevel solver is available, and can also easily
be used in conjuction with linear methods other than multigrid (the robustness is maintained, although the
efficiency may be less).

Outline

We begin by discussing briefly the form of the algebraic equations which are produced by standard dis-
cretization methods applied to equation (1). We then briefly review the methods that have been proposed
and used for the linearized PBE, including the linear multilevel method we have presented in a previous
paper. We then discuss in a little more detail the methods recently proposed in the literature for the non-
linear PBE, and present inexact-Newton methods as alternatives. We formulate an algorithm based on the
combination of global inexact-Newton methods and our linear multilevel method, and we state and prove
two very simple conditions which guarantee that the resulting inexact-Newton-multilevel method is globally
convergent. Some test problems are then formulated, including some more difficult problems involving SOD
and tRNA. Numerical experiments are then presented, showing that in fact the Newton-multilevel approach
is both more robust and orders of magnitude more efficient than existing methods.

2 Discretizing the PBE

The infinite domain of equation (1) is often truncated to a finite domain Ω ⊂ R
3 with boundary Γ, and

boundary conditions on Γ are provided by a known analytical solution; detailed discussions appear in Tan-
ford [46] and in references [29, 28]. The equation then becomes:

−∇ · (ε∇u) + κ̄ sinh(u) = f in Ω ⊂ R
3, u = g on Γ, (2)

where the source term in equation (1) has been denoted as the generic function f . The functions ε and κ̄
may be only piecewise continuous functions on Ω, although we assume that the coefficient discontinuities are
regular, and can be identified during the discretization process. In particular, to discretize (2) accurately,
the domain Ω must be divided into discrete elements such that the discontinuities always lie along element
boundaries, and never within an element. While this is not completely possible, it is important to achieve
this as much as possible due to discrete approximation theory considerations (cf. the texts by Varga [48]
and Strang and Fix [45]).

We begin by partitioning the domain Ω into the finite elements or volumes τ j , such that:

• Ω ≡
⋃M

j=1 τ j , where τ j are hexahedra or tetrahedra.

• {ε, κ̄, f} have discontinuities along boundaries of τ j .

• Union of l (4 or 8) corners of τ j form nodes xi.

• {τ j;i} ≡ {τ j : xi ∈ τ j}.

• τ (i) ≡
⋃

j τ j;i ≡ {
⋃

j τ j : xi ∈ τ j}.

• Continuity required of u, ā∇u · n across interfaces.

The box (integral, finite volume) method has been one of the standard approaches for discretizing two- and
three-dimensional interface problems occurring in reactor physics and reservoir simulation [48, 49]; similar
methods are used in computational fluid dynamics. The motivation for these methods has been the attempt
to enforce conservation of certain physical quantities in the discretization process.
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2.1 General form of the box-method

We begin by integrating (2) over an arbitrary τ (i). The resulting equation is:

∑

j

∫

τj;i

(−∇ · (ε∇u) + κ̄ sinh(u) dx − f) dx = 0.

The divergence theorem applied to the first term yields:

−
∑

j

∫

∂τj;i

(ε∇u) · n ds +
∑

j

∫

τj;i

(κ̄ sinh(u) − f) dx = 0,

where ∂τ j;i is the boundary of τ j;i and n is the unit normal. Note that all interior surface integrals in the
first term vanish, since ε∇u · n must be continuous across the interfaces. We are left with:

−

∫

∂τ (i)

(ε∇u) · n ds +
∑

j

∫

τj;i

(κ̄ sinh(u) − f) dx = 0,

where ∂τ (i) denotes the boundary of τ (i).
Since this last relationship holds exactly in each τ (i), we can use this last equation to develop an ap-

proximation at the nodes xi = (xi, yi, zi) ∈ R
3 at the “centers” of the τ (i) by employing quadrature rules

and difference formulas. In particular, the volume integrals in the second two terms can be approximated
with quadrature rules. Similarly, the surface integrals required to evaluate the first term can be approxi-
mated with quadrature rules, where ∇u is replaced with an approximation. Error estimates can be obtained
from difference and quadrature formulas [48], or more generally by analyzing the box-method as a special
Petrov-Galerkin finite element method [6, 34].

2.2 Tensor-product meshes

We now restrict ourselves to the case that the τ j are hexahedral elements, whose six sides are parallel to
the coordinate axes. By restricting our discussion to elements which are tensor-product (or axi-parallel), the
spatial mesh may be characterized by the nodal points

x = (x, y, z) such that







x ∈ {x0, x1, . . . , xI+1}
y ∈ {y0, y1, . . . , yJ+1}
z ∈ {z0, z1, . . . , zK+1}







.

Any such mesh point we denote as xijk = (xi, yj , zk), and we define the mesh spacings as

hi = xi+1 − xi, hj = yj+1 − yj , hk = zk+1 − zk,

which are not required to be equal or uniform.
To each mesh point xijk = (xi, yj , zk), we associate the closed three-dimensional hexahedral region τ (ijk)

“centered” at xijk , defined by

x ∈

[

xi −
hi−1

2
, xi +

hi

2

]

, y ∈

[

yj −
hj−1

2
, yj +

hj

2

]

, z ∈

[

yk −
hk−1

2
, zk +

hk

2

]

.

Integrating (2) over τ (ijk) for each mesh-point xijk and employing the divergence theorem as above yields
as before:

−

∫

∂τ (ijk)

(ε∇u) · n ds +

∫

τ (ijk)

(κ̄ sinh(u) − f) dx = 0.

The volume integrals are approximated with quadrature:

∫

τ (ijk)

p dx ≈ meas(τ (ijk))pijk ,
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where pijk = p(xijk), and where the volume of τ (ijk) is

meas(τ (ijk)) =

[

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

.

Since ε is a scalar, the surface integral reduces to:

∫

∂τ (ijk)

ε(ux + uy + uz) · n ds.

This integral reduces further to six two-dimensional plane integrals on the six faces of the τ (ijk) , and are
approximated with the analogous two-dimensional rule, after approximating the partial derivatives with
centered differences. Introducing the notation pi−1/2,j,k = p(xi − hi−1/2, yj, zk), and pi+1/2,j,k = p(xi +
hi/2, yj , zk), the resulting discrete equations can be written as:

εi−1/2,j,k

(

uijk − ui−1,j,k

hi−1

)

(hj−1 + hj)(hk−1 + hk)

4
+ εi+1/2,j,k

(

uijk − ui+1,j,k

hi

)

(hj−1 + hj)(hk−1 + hk)

4

+εi,j−1/2,k

(

uijk − ui,j−1,k

hj−1

)

(hi−1 + hi)(hk−1 + hk)

4
+ εi,j+1/2,k

(

uijk − ui,j+1,k

hj

)

(hi−1 + hi)(hk−1 + hk)

4

+εi,j,k−1/2

(

uijk − ui,j,k−1

hk−1

)

(hi−1 + hi)(hj−1 + hj)

4
+ εi,j,k+1/2

(

uijk − ui,j,k+1

hk

)

(hi−1 + hi)(hj−1 + hj)

4

+meas(τ (ijk)) (κ̄ijk sinh(uijk) − fijk) = 0.

We have one such nonlinear algebraic equation for each uijk approximating u(xijk) at the nodes:

{xijk ; i = 0, . . . , I + 1; j = 0, . . . , J + 1; k = 0, . . . , K + 1}.

This set of equations represents the nonlinear algebraic system which we consider for the remainder of the
paper.

Note that in the case of a uniform tensor-product mesh, with h = hi = hj = hk, the above equations can
be written in the simpler form:

εi−1/2,j,k(uijk − ui−1,j,k) + εi+1/2,j,k(uijk − ui+1,j,k) + εi,j−1/2,k(uijk − ui,j−1,k) + εi,j+1/2,k(uijk − ui,j+1,k)

+εi,j,k−1/2(uijk − ui,j,k−1) + εi,j,k+1/2(uijk − ui,j,k+1) + h2κ̄ijk sinh(uijk) − h2fijk = 0.

2.3 The algebraic equations

After using the Dirichlet boundary data from (2), only equations for the interior nodes remain:

{xijk ; i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K}.

We denote the total number of unknowns in the system of equations as n = I · J · K, and it is convenient
to consider a vector-oriented ordering of the unknowns. For the tensor-product mesh we have described, the
natural ordering is defined as:

xp = xijk , p = (k − 1) · I · J + (j − 1) · I + i,

where
i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K,

which defines a one-to-one mapping between xp and xijk , and defines xp for p = 1, . . . , n. Employing the
natural ordering of the meshpoints to order the unknowns ui in the vector u yields a single nonlinear algebraic
system of equations of the form:

Au + N(u) − f = 0, (3)
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Figure 1: Banded matrix produced by the box-method.

where the vector f consists of components meas(τ (i))fi for each of the mesh points xi, and the function
N(u) is a nonlinearity with “diagonal form”, in that N(u) = (N1(u), . . . , Nn(u))T , with Ni(u) = Ni(ui).
Here, Ni(ui) = meas(τ (i))κ̄(xi) sinh(ui). In the linear case, Ni(ui) = meas(τ (i))κ̄(xi)ui.

The natural ordering of the unknowns ui gives rise to a matrix A representing the linear part of (3)
which is seven-banded and block-tridiagonal. This banded structure in the case of tensor-product meshes
allows for very efficient implementations of iterative methods for numerical solution of the discrete linear
and nonlinear equations; the seven-banded form is depicted in Figure 1 for a 3×3×3 tensor-product mesh.

It is not difficult to show [29, 28] that the matrix A in (3) is symmetric positive definite (SPD). Much more
difficult questions are the well-posedness of the full nonlinear system (3), as well as the original problem (2);
however, it can be shown that both (3) and (2) have unique solutions depending continuously on the problem
data. These and other technical questions are addressed more fully in references [29, 28].

3 Linearized PBE Methods

If the nonlinear term in equation (3) is zero, Ni(ui) ≡ 0, or if it is linear, Ni(ui) = h2κ̄(xi)ui, in which
case the term can be added to the diagonal of the matrix A in (3), then we are faced with linear algebraic
equations:

Au = f, (4)

where the matrix A is SPD. The matrix A is a linear operator mapping R
n into R

n, the space R
n being a

linear space equipped with an inner-product (·, ·) inducing a norm ‖ · ‖ defined as follows:

(u, v) =

n
∑

i=1

uivi, ‖u‖ = (u, u)1/2, ∀u, v ∈ R
n.

Since the matrix A is SPD, it defines a second inner-product and norm:

(u, v)A = (Au, v), ‖u‖A = (u, u)
1/2
A , ∀u, v ∈ R

n.

While our purpose here is not to discuss the mathematical structure of R
n, the importance of either norm

which we may associate with R
n (and hence the inner-product which induces the particular norm) is that
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the norm defines a metric or distance function on the space R
n, which allows us to measure the distance

between points in R
n. Equipped with only the inner-product and norm on R

n, one can establish simple
conditions for linear and nonlinear iterative methods to guarantee certain desirable convergence properties.

3.1 Classical linear methods

Linear iteration methods for solving the equation (4) for the unknown u can be thought of as having the
form:

Algorithm 3.1 (Basic Linear Method for Au = f)

ui+1 = ui + B(f − Aui) = (I − BA)ui + Bf,

where B is an SPD matrix approximating A−1 in some sense, and where the method begins with some initial
“guess” at the true solution u, namely u0. Subtracting the above equation from the following identity for
the true solution u:

u = u − BAu + Bf,

yields an equation for the error ei = u − ui at each iteration of the method:

ei+1 = (I − BA)ei = · · · = (I − BA)i+1e0. (5)

The convergence of Algorithm 3.1, which refers to the question of whether ui → u (or equivalently ei → 0)
as i → ∞, is determined completely by the spectral radius (the eigenvalue of largest magnitude) of the error
propagation operator:

E = I − BA,

which we denote as ρ(E).

Theorem 3.1 The condition ρ(E) < 1 is necessary and sufficient for convergence of Algorithm 3.1.

Proof. See for example Theorem 7.1.1 in Ortega [40].

If λ is an eigenvalue of E, then since |λ|‖u‖ = ‖λu‖ = ‖Eu‖ ≤ ‖E‖ ‖u‖ for any norm ‖ · ‖, it follows
that ρ(E) ≤ ‖E‖ for all norms ‖ · ‖ (equality holds if and only if E is symmetric with respect the inner-
product defining ‖ · ‖). Therefore, ‖E‖ < 1 and ‖E‖A < 1 are both sufficient conditions for convergence of
Algorithm 3.1. In fact, it is the norm of the error propagation operator which will bound the reduction of
the error at each iteration, which follows from (5):

‖ei+1‖A ≤ ‖E‖A‖e
i‖A ≤ ‖E‖i+1

A ‖e0‖A. (6)

The spectral radius ρ(E) of the error propagator E is called the convergence factor for Algorithm 3.1, whereas
the norm of the error propagator ‖E‖ is referred to as the contraction number (with respect to the particular
choice of norm ‖ · ‖).

We mention now some classical linear iterations for discrete elliptic equations Au = f , where A is an
SPD matrix. Since A is SPD, we may write A = D − L − LT , and where D is a diagonal matrix and L
a strictly lower-triangular matrix. Some of the classical variations of Algorithm 3.1 take as B ≈ A−1 the
following:

(1) Richardson: B = λ−1
max(A)

(2) Jacobi: B = D−1

(3) Gauss-Seidel: B = (D − L)−1

(4) SOR: B = ω(D − ωL)−1

Consider the case of the Poisson equation with zero Dirichlet boundary conditions discretized with the
box-method on a uniform mesh with m mesh-points in each mesh direction (n = m3) and mesh spacing
h = 1/(m + 1). This is equation (2) with ε ≡ 1 and κ̄ ≡ 0. In this case, the eigenvalues of both A and the
error propagation matrix E can be determined analytically, allowing for an analysis of the convergence rates
of the Richardson, Jacobi, Gauss-Seidel, and SOR iterations:
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(1) Richardson: ρ(E) = 1 − O(h2)
(2) Jacobi: ρ(E) = 1 − O(h2)
(3) Gauss-Seidel: ρ(E) = 1 − O(h2)
(4) SOR: ρ(E) = 1 − O(h)

The same dependence on h is exhibited for one- and two-dimensional problems. Therein lies the fundamental
problem with all classical relaxation methods: as h → 0, then for the classical methods ρ(E) → 1, so that
the methods converge more and more slowly as the problem size is increased.

In the paper of Nicholls and Honig [38], an adaptive SOR procedure is developed for the linearized
Poisson-Boltzmann equation, employing a power method to estimate the largest eigenvalue of the Jacobi
iteration matrix, which enables estimation of the optimal relaxation parameter for SOR using Young’s
formula (page 110 in Varga [48]). The eigenvalue estimation technique employed is similar to the power
method approach discussed on page 284 in Varga [48]. In the implementation of the method in the computer
program DELPHI, several additional techniques are employed to increase the efficiency of the method. In
particular, a red/black ordering is employed allowing for vectorization, and array-oriented data structures
(as opposed to three-dimensional grid data structures) are employed to maximize vector lengths. The
implementation is also specialized to the linearized Poisson-Boltzmann equation, with constants hard-coded
into the loops rather than loaded as vectors to reduce vector loads.

In several recent papers [29, 28, 31], we considered an SOR method provided with the optimal relaxation
parameter, implemented with a red/black ordering and array oriented data structures, yielding maximal vec-
tor lengths and very high performance on both the Convex C240 and the Cray Y-MP. In detailed comparisons
with specially designed linear multilevel methods (which we will briefly review in a moment), experiments
indicated that the linear multilevel methods were superior to the relaxation methods such as SOR, and the
superiority grew with the problem size.

3.2 Linear conjugate gradient methods

The conjugate gradient (CG) method was developed by Hestenes and Stiefel [27] for linear systems with
symmetric positive definite operators A. It is common to precondition the linear system by the SPD precon-
ditioning operator B ≈ A−1, in which case the generalized or preconditioned conjugate gradient method [10]
results. Our purpose in this section is to briefly examine the algorithm and its contraction properties. The
Omin [3] implementation of the CG method has the form:

Algorithm 3.2 (Preconditioned CG)

Let u0 ∈ R
n be given.

r0 = f − Au0, s0 = Br0, p0 = s0.
Do i = 0, 1, . . . until convergence:

αi = (ri, si)/(Api, pi)
ui+1 = ui + αip

i

ri+1 = ri − αiApi

si+1 = Bri+1

βi+1 = (ri+1, si+1)/(ri, si)
pi+1 = si+1 + βi+1p

i

End do.

The algorithm can be shown to converge in n steps since the preconditioned operator BA is A-SPD [3]. Note
that if B = I , then this algorithm is exactly the Hestenes and Stiefel algorithm. It can be shown (see for
example references [29, 28] for a more complete discussion and additional references) that the error in the
conjugate gradient method contracts according to the following formula:

‖ei+1‖A ≤ 2

(

√

κA(BA) − 1
√

κA(BA) + 1

)i+1

‖e0‖A,

where the generalized or A-condition number of the matrix BA is defined as the quantity

κA(BA) = ‖BA‖A‖(BA)−1‖A =
λmax(BA)

λmin(BA)
.
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It is not difficult to show (cf. references [29, 28]) that the spectral radius of a linear method defined by
a SPD B, provided with an optimal relaxation parameter, is given by:

δopt = 1 −
2

1 + κA(BA)
, (7)

whereas the CG contraction is bounded by:

δcg = 1 −
2

1 +
√

κA(BA)
. (8)

Assuming B 6= A−1, we always have κA(BA) > 1, so we must have that δcg < δopt ≤ δ, where δ is the
contraction rate of the linear method defined by B. This implies that it always pays in terms of an improved
contraction number to use the conjugate gradient method to accelerate a linear method; the question remains
of course whether the additional computational labor involved will be amortized by the improvement.

Unfortunately, the convergence rates of both linear methods and conjugate gradient methods depend on
the condition number κA(BA). When B is defined by the standard linear methods or other approaches such
as incomplete factorizations, it is not difficult to show that κA(BA) grows with the problem size, sometimes
quite rapidly, which results in the contraction rates (7) and (8) worsening (approaching 1) as the problem
size is increased. Multilevel methods were created to solve exactly this problem; in many cases, it can be
shown that κA(BA) remains bounded, independent of the problem size, when the operator B is defined by
a multigrid algorithm.

The application of conjugate gradient methods to the Poisson-Boltzmann equation is discussed by Davis
and McCammon [12], including comparisons with some classical iterative methods such as SOR. The con-
clusions of their study were that the conjugate gradient methods were substantially more efficient than
relaxation methods including SOR, and that incomplete factorizations were effective preconditioning tech-
niques for the linearized Poisson-Boltzmann equation. We showed in several recent papers [29, 28, 31] that
in fact for the problem sizes typically considered, the advantage of conjugate gradient methods over SOR is
not so clear if an efficient SOR procedure is implemented, and if a near optimal parameter is available. Of
course, if larger problem sizes are consider, then the superior complexity properties of the conjugate gradient
methods (cf. references [29, 28] for a detailed discussion) will eventually yield a more efficient technique than
SOR.

In recent papers [29, 28, 31], we also considered several more advanced preconditioners than considered in
by Davis and McCammon [12], including methods developed by van der Vorst and others [47], which employ
special orderings to improve vectorization during the back substitutions. We presented experiments with
a preconditioned conjugate gradient method (implemented so as to yield maximal vector lengths and high
performance), provided with four different preconditioners: (1) diagonal scaling; (2) an incomplete Cholesky
factorization (the method for which Davis and McCammon present results [12]); (3) the same factorization
but with a plane-diagonal-wise ordering [47] allowing for some vectorization of the backsolves; and (4) a
vectorized modified incomplete Cholesky factorization [47] with modification parameter α = 0.95, which has
an improved convergence rate over standard ICCG. Experiments indicated that the linear multilevel methods
were superior to all of the conjugate gradient methods, and the superiority grew with the problem size.

3.3 Linear multilevel methods

Multilevel (or multigrid) methods are highly efficient numerical techniques for solving the algebraic equations
arising from the discretization of partial differential equations. These methods were developed in direct
response to the deficiencies of the classical iterations and conjugate gradient methods discussed in the
previous sections. Some of the early fundamental papers are are due to Brandt [8] and Hackbusch [23], and a
comprehensive analysis of the many different aspects of these methods is given in the text by Hackbusch [24].

Consider the nested sequence of finite-dimensional spaces R
n1 ⊂ R

n2 ⊂ · · · ⊂ R
nJ ≡ R

n. To formulate
a multigrid method, we require prolongation operators Ik

k−1 mapping R
nk−1 into R

nk , restriction operators

Ik−1
k mapping R

nk into R
nk−1 , and coarse space problems Akuk = fk, where Ak maps R

nk into itself. We
also require smoothing operators Rk ≈ A−1

k . The prolongation typically corresponds to an interpolation, and

the restriction is taken as a multiple of the transpose, Ik−1
k = cIk

k−1. We begin with the problem Au = f
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k-2

k-1

Figure 2: Various multilevel algorithms.

in the finest space R
n, and in each space R

nk we must somehow construct the approximating coarse system
Akuk = fk of fewer dimensions, the smoothing operators Rk ≈ A−1

k , and the transfer operators Ik−1
k and

Ik
k−1 relating adjacent spaces.

If we can construct the various operators mentioned above, then the multilevel or multigrid algorithm
can be stated in a very simple recursive fashion. For the linear system Au = f in the finest space R

n,
the algorithm returns the approximate solution ui+1 after one iteration of the method applied to the initial
approximate ui.

Algorithm 3.3 (Symmetric Multilevel Method)

ui+1 = ML(J, ui, f)

where u1
k = ML(k, u0

k, fk) is defined recursively:

IF (k = 1) THEN:
(1) Direct solve: u1

1 = A−1
1 f1.

ELSE:
(1) Pre-smooth: wk = u0

k + RT
k (fk − Aku0

k).

(2) Correction: vk = wk + Ik
k−1{ML(k − 1, 0, Ik−1

k [fk − Akwk])}.
(3) Post-smooth: u1

k = vk + Rk(fk − Akvk).
END.

The transpose RT
k of the post-smoothing operator Rk is used for the pre-smoothing operator because it can

be shown that the resulting operator B defined implicitly by the multigrid algorithm is symmetric; in other
words, multigrid can be viewed as the basic linear method (3.1), where the symmetric operator B is only
defined implicitly. Therefore, the multigrid algorithm can also be used as a preconditioner for the conjugate
gradient method, even though B is not explicitly available.

The procedure just outlined involving correcting with the coarse space once each iteration is referred
to as the V-cycle [8]. Another variation is termed the W-cycle, in which two coarse space corrections are
performed per level at each iteration. More generally, the p-cycle would involve p coarse space corrections per
level at each iteration for some integer p ≥ 1. The full multigrid method [8] or nested iteration technique [24]
begins with the coarse space, prolongates the solution to a finer space, performs a p-cycle, and repeats the
process, until a p-cycle is performed on the finest level. The methods can be depicted as in Figure 2.

Various techniques have been proposed for constructing the coarse problems Akuk = fk. We mention
in particular the references [1, 17, 15, 16], in which most of the techniques currently in use, including
those discussed below, were first discovered and developed. Note that a simple discretization of the same
differential equation, but on coarser meshes, is effective only in the case of smooth coefficients. In the presence
of discontinuous coefficients, convergent multigrid methods can be constructed only if special care is taken
in the construction of the coarse space subproblems Akuk = fk, and in the construction of the transfer
operators Ik

k−1 and Ik−1
k . The effectiveness of coefficient averaging techniques, applied to the linearized

PBE, is discussed in detail in Holst and Saied [31], and also in references [29, 28]. A more robust approach
is to algebraically enforce the variational conditions

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T . (9)
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This technique is described in detail and applied to the linearized PBE and related problems in refer-
ences [29, 28]. While it is quite computationally complex to impose (9) algebraically (the expressions for
which require a symbolic manipulator such as MAPLE), the advantage of this approach can be demon-
strated both theoretically and numerically [29, 28]. Note however that for the linearized Poisson-Boltzmann
equation, the less expensive coefficient averaging approach has been shown to be sufficient to produce very
efficient multigrid methods for nearly all test problems we have encountered, and for the purposes of this
paper, we will consider mainly methods based on coefficient averaging, as presented in Holst and Saied [31].

In an earlier paper [31], we presented results for the linearized Poisson-Boltzmann equation for a single
multilevel method, which was selected from several multilevel methods as the most efficient; several different
multilevel methods for a more difficult jump discontinuity test problem are compared in references [29,
28]. The particular multilevel method chosen in Holst and Saied [31] for the linearized Poisson-Boltzmann
equation was constructed from the following components (discussed in detail in Holst and Saied [31] and in
references [29, 28]).

A harmonic coefficient averaging technique was used to create coefficients for the coarser mesh problems,
and a standard box method is used to discretize the problem on the coarse mesh using the averaged coeffi-
cients. Operator-based prolongation was also employed. The pre- and post-smoothing operators which we
employ corresponded to red/black Gauss-Seidel iterations, where each smoothing step consisted of ν sweeps,
with each sweep consisting of one sub-sweep with the red points followed by one sub-sweep with the black
points. A variable v-cycle [7] approach to accelerating multilevel convergence was employed, so that the
number of pre- and post-smoothing sweeps changes on each level; in our implementation, the number of
pre- and post-smoothing sweeps at level k was given by ν = 2J−k, so that one pre- and post-smoothing was
performed on the finest level k = J , and ν = 2J−1 sweeps on the coarsest level k = 1, with the number
increasing geometrically on coarser levels. The coarse problem was solved with the Hestenes-Stiefel conju-
gate gradient method (Algorithm 3.2 with B = I). It was demonstrated in Holst and Saied [31] that this
multilevel methods was substantially more efficient than relaxation and conjugate gradient methods for the
linearized PBE and similar problems.

4 Nonlinear PBE Methods

Studies of numerical solution of nonlinear PBE have employed nonlinear Gauss-Seidel methods [2], nonlinear
SOR methods [38], nonlinear conjugate gradient methods [36], and more recently, nonlinear multigrid meth-
ods [29, 28, 39]. Therefore, we will focus on these methods for the comparisons to inexact-Newton-multilevel
methods in following sections. We first briefly describe these methods, and then discuss what results were
obtained with these methods for the nonlinear PBE.

4.1 Nonlinear relaxation methods

The classical linear methods discussed earlier, such as Gauss-Seidel and SOR, can be extended in the obvious
way to nonlinear algebraic equations of the form (3). In each case, the method can be viewed as a fixed-point
iteration:

un+1 = G(un).

Of course, implementations of these methods, which we refer to as nonlinear Gauss-Seidel and nonlinear SOR
methods, now require the solution of a sequence of one-dimensional nonlinear problems for each unknown
in one step of the method. Since the one-dimensional nonlinear problems are often solved with Newton’s
method, these methods are also referred to as Gauss-Seidel-Newton and SOR-Newton methods, meaning that
the Gauss-Seidel or SOR iteration is the main or outer iteration, whereas the inner iteration is performed
by Newton’s method.

The convergence properties of these types of methods, as well as a myriad of variations and related
methods, are discussed in detail in Ortega and Rheinboldt [41]. Note, however, that the same difficulty
arising in the linear case also arises here: as the problem size is increased (the mesh size is reduced), these
methods converge more and more slowly. As a result, we will consider alternative methods in a moment,
such as nonlinear conjugate gradient methods, nonlinear multilevel methods, and finally inexact-Newton
methods.
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Nonlinear Gauss-Seidel is used by Allison et al. [2] for the nonlinear PBE, where a nonlinear Gauss-Seidel
procedure is developed for the full nonlinear Poisson-Boltzmann equation, employing a continuation method
to handle the numerical difficulties created by the exponential nonlinearity. Polynomial approximations
of the exponential function are employed, and the degree of the polynomial is continued from degree one
(linearized PBE) to degree nineteen. At each continuation step, the nonlinear Poisson-Boltzmann equation
employing the weaker nonlinearity is solved with nonlinear Gauss-Seidel iteration. The final degree nineteen
solution is then used as an initial approximation for the full exponential nonlinearity PBE, and nonlinear
Gauss-Seidel is used to resolve the final solution. This procedure, while perhaps one of the first numerical
solutions produced for the full nonlinear problem, is extremely time-consuming.

An improvement is, as in the linear case, to employ a nonlinear SOR iteration. The procedure works very
well for the nonlinear PBE in many situations and is extremely efficient [38]; unfortunately, there are cases
where the iteration diverges [37, 38]. In particular, it is noted on page 443 of Nicholls and Honig [38] that
if the potential in the solvent (where the exponential term is evaluated) passes a threshold value of seven
or eight, then the nonlinear SOR method they propose diverges. We will present some experiments with a
nonlinear SOR iteration, provided with an experimentally determined near optimal relaxation parameter,
and implemented with a red/black ordering and array oriented data structures for high performance.

4.2 Nonlinear conjugate gradient methods

Let A be an SPD matrix, B(·) a nonlinear mapping from R
n into R, and let (·, ·) denote an inner-product

in R
n. The following minimization problem:

Find u ∈ R
n such that J(u) = min

v∈Rn
J(v),

where

J(u) =
1

2
(Au, u) + B(u) − (f, u),

is equivalent to the associated zero-point problem:

Find u ∈ R
n such that F (u) = Au + N(u) − f = 0,

where N(u) = B′(u); this follows by simply differentiating J(u) to obtain the gradient mapping F (·) associ-
ated with J(·). We will assume here that both problems are uniquely solvable. A more detailed discussion
of convex functionals and their related gradient mappings can be found in references [29, 28].

An effective approach for solving the zero-point problem, by exploiting the connection with the minimiza-
tion problem, is the Fletcher-Reeves version [21] of the nonlinear conjugate gradient method, which takes
the form:

Algorithm 4.1 (Fletcher-Reeves Nonlinear CG)

Let u0 ∈ R
n be given.

r0 = f − N(u0) − Au0, p0 = r0.
Do i = 0, 1, . . . until convergence:

αi = (see below)
ui+1 = ui + αip

i

ri+1 = ri + N(ui) − N(ui+1) − αiApi

βi+1 = (ri+1, ri+1)/(ri, ri)
pi+1 = ri+1 + βi+1p

i

End do.

The directions pi are computed from the previous direction and the new residual, and the steplength
αi is chosen to minimize the associated functional J(·) in the direction pi. In other words, αi is chosen to
minimize J(ui + αip

i), which is equivalent to solving the one-dimensional zero-point problem:

dJ(ui + αip
i)

dαi
= 0.
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Given the form of J(·) above, we have that

J(ui + αip
i) =

1

2
(A(ui + αip

i), ui + αip
i) + B(ui + αip

i) − (f, ui + αip
i). (10)

A simple differentiation with respect to αi (and some simplification) gives:

dJ(ui + αip
i)

dαi
= αi(Api, pi) − (ri, pi) + (N(ui + αip

i) − N(ui), pi), (11)

where ri = f −N(ui)−Aui is the nonlinear residual. The second derivative with respect to αi will be useful
also, which is easily seen to be:

d2J(ui + αip
i)

dα2
i

= (Api, pi) + (N ′(ui + αip
i)pi, pi).

Now, Newton’s method for solving the zero-point problem for αi takes the form:

αm+1
i = αm

i − δm

where

δm =
dJ(ui + αm

i pi)/dαi

d2J(ui + αm
i pi)/dα2

i

=
αm

i (Api, pi) − (ri, pi) + (N(ui + αm
i pi) − N(ui), pi)

(Api, pi) + (N ′(ui + αm
i pi)pi, pi)

.

The quantities (Api, pi) and (ri, pi) can be computed once at the start of each line search for αi, each
requiring an inner-product (Api is available from the CG iteration). Each Newton iteration for the new
αm+1

i then requires evaluation of the nonlinear term N(ui + αm
i pi) and inner-product with pi, as well as

evaluation of the derivative mapping N ′(ui + αip
i), application to pi, followed by inner-product with pi.

In the case that N(·) arises from the discretization of a nonlinear partial differential equation and is
of diagonal form, meaning that the j-th component function of the vector N(·) is a function of only the
j-th component of the vector of nodal values u, or Nj(u) = Nj(uj), then the resulting Jacobian matrix
N ′(·) of N(·) is a diagonal matrix. This situation occurs with box-method discretizations of the nonlinear
Poisson-Boltzmann equation and similar equations. As a result, computing the term (N ′(ui + αip

i)pi, pi)
can be performed with fewer operations than two inner-products.

The total cost for each Newton iteration (beyond the first) is then evaluation of N(·) and N ′(·), and
something less than three inner-products. Therefore, the line search can be performed fairly inexpensively
in certain situations. If alternative methods are used to solve the one-dimensional problem defining αi, then
evaluation of the Jacobian matrix can be avoided altogether, although as we remarked earlier, the Jacobian
matrix is cheaply computable in the particular applications we are interested in here.

Note that if the nonlinear term N(·) is absent, then the zero-point problem is linear and the associated
energy functional is quadratic:

F (u) = Au − f = 0, J(u) =
1

2
(Au, u) − (f, u).

In this case, the Fletcher-Reeves CG algorithm reduces to exactly the Hestenes-Stiefel [27] linear conjugate
gradient algorithm (Algorithm 3.2 discussed earlier, with the preconditioner B = I). The exact solution to
the linear problem Au = f , as well as to the associated minimization problem, can be reached in no more than
n steps, where n is the dimension of the space R

n (see Theorem 8.6.1 in Ortega and Rheinboldt [41]). The
calculation of the steplength αi no longer requires the iterative solution of a one-dimensional minimization
problem with Newton’s method, since:

dJ(ui + αip
i)

dαi
= αi(Api, pi) − (ri, pi) = 0

yields an explicit expression for the αi which minimizes the functional J in the direction pi:

αi =
(ri, pi)

(Api, pi)
.
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In the recent paper of Luty et. al [36], a nonlinear conjugate gradient method is applied to the nonlinear
Poisson-Boltzmann equation. The conclusions of their study were that the Fletcher-Reeves variant of the
nonlinear conjugate gradient method, which is the natural extension of the Hestenes-Stiefel algorithm they
had employed for the linearized PBE in an earlier study [12], was an effective technique for the nonlinear
PBE. We note that it is remarked on page 1117 of the paper by Luty et al. [36] that solution time for
the nonlinear conjugate gradient method on the full nonlinear problem is five times greater than for the
linear method applied to the linearized problem. We will present experiments with the standard Fletcher-
Reeves nonlinear conjugate gradient method, Algorithm 4.1, which they employed. Our implementation is
aggressively optimized for high performance.

4.3 Nonlinear multilevel methods

Fully nonlinear multilevel methods were developed originally by Brandt [8] and Hackbusch [22]. These
methods attempt to avoid Newton-linearization by accelerating nonlinear relaxation methods with multiple
coarse problems. We are again concerned with the problem:

F (u) = Au + N(u) − f = 0.

Let us introduce the notation M(·) = A + N(·), which yields the equivalent problem:

M(u) = f.

Consider a nested sequence of finite-dimensional spaces R
n1 ⊂ R

n2 ⊂ · · · ⊂ R
nJ ≡ R

n, where R
nJ is the finest

space and R
n1 the coarsest space, each space being connected to the others via prolongation and restriction

operators, exactly as in the linear case described earlier. The full approximation scheme [8] or the nonlinear
multigrid method [24] has the following form:

Algorithm 4.2 (Nonlinear Multilevel Method)

ui+1 = NML(J, ui, f)

where u1
k = NML(k, u0

k, fk) is defined recursively:

IF (k = 1) THEN:
(1) Solve directly: u1

1 = M−1
1 (f1).

ELSE:

(1) Restriction: uk−1 = Ik−1
k u0

k, rk−1 = Ik−1
k (fk − Mk(u0

k)).
(2) Coarse source term: fk−1 = Mk−1(uk−1) − rk−1.
(3) Coarse problem: wk−1 = uk−1 − NML(k − 1, uk−1, fk−1).
(4) Prolongation: wk = Ik

k−1wk−1.
(5) Damping parameter: λ = (see below).
(6) Correction: vk = u0

k + λwk.
(7) Post-smoothing: u1

k = Sk(vk , fk).
END.

The practical aspects of this algorithm and variations are discussed by Brandt [8], and a convergence
theory has been developed by Hackbusch [24], and more recently by Hackbusch and Reusken [25, 26, 42, 43].

Note that we have introduced a damping parameter λ in the coarse space correction step of Algorithm 4.2.
In fact, without this damping parameter, the algorithm fails for difficult problems such as those with ex-
ponential or rapid nonlinearities. To explain how the damping parameter is chosen, we refer back to our
discussion of nonlinear conjugate gradient methods. We begin with the following energy functional:

Jk(uk) =
1

2
(Akuk, uk)k + Bk(uk) − (fk, uk)k.

As we have seen, the resulting minimization problem:

Find uk ∈ R
nk such that Jk(uk) = min

vk∈R
nk

Jk(vk)
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is equivalent to the associated zero-point problem:

Find uk ∈ R
nk such that Fk(uk) = 0,

where Fk(uk) = Akuk + Nk(uk) − fk = 0, and where Nk(uk) = B′
k(uk). In other words, Fk(·) is a gradient

mapping of the associated energy functional Jk(·), where we assume that both problems above are uniquely
solvable.

In Hackbusch and Reusken [26], it is shown under certain conditions that the prolongated coarse space
correction wk = Ik

k−1wk−1 is a descent direction for the functional Jk(·), meaning that there exists some
λ > 0 such that

Jk(uk + λwk) < Jk(uk).

In other words, the nonlinear multigrid method can be made globally convergent if a damping parameter λ
is found for each coarse grid correction. We can find such a λ by minimizing Jk(·) along the descent direction
wk, which is equivalent to solving the following one-dimensional problem:

dJ(uk + λwk)

dλ
= 0.

As in the discussion of the nonlinear conjugate gradient method, the one-dimensional problem can be solved
with Newton’s method:

λm+1 = λm −
X

Y
,

where (exactly as for the nonlinear CG method)

X = λm(Akwk, wk)k − (rk , wk)k + (Nk(uk + λmwk) − Nk(uk), wk)k,

Y = (Akwk, wk)k + (N ′
k(uk + λmwk)wk, wk)k.

Now, recall that the “direction” from the coarse space correction has the form: wk = Ik
k−1wk−1. The

expressions for X and Y then take the form:

X = λm(AkIk
k−1wk−1, I

k
k−1wk−1)k − (rk, Ik

k−1wk−1)k + (Nk(uk + λmIk
k−1wk−1) − Nk(uk), Ik

k−1wk−1)k,

Y = (AkIk
k−1wk−1, I

k
k−1wk−1)k + (N ′

k(uk + λmIk
k−1wk−1)I

k
k−1wk−1, I

k
k−1wk−1)k.

It has been shown by Hackbusch and Reusken [26] that certain finite element discretizations of the
nonlinear elliptic problem we are considering, on two successively refined meshes, satisfy the following so-
called nonlinear variational conditions:

Ak−1 + Nk−1(·) = Ik−1
k AkIk

k−1 + Ik−1
k Nk(Ik

k−1·), Ik−1
k = (Ik

k−1)
T . (12)

As in the linear case, these conditions are usually required [25, 26] to show theoretical convergence results
about nonlinear multilevel methods. Unfortunately, unlike the linear case, there does not appear to be a way
to enforce these conditions algebraically (at least for the strictly nonlinear term Nk(·)) in an efficient way.
Therefore, if we employ discretization methods other than finite element methods, or cannot approximate
the integrals accurately (such as if discontinuities occur within elements on coarser levels) for assembling the
discrete nonlinear system, then the variational conditions will be violated. There is then no guarantee that
the coarse grid correction is a descent direction. In other words, in the presence of coefficient discontinuities
and/or non-finite element discretizations, the nonlinear multigrid method may not converge, and may not
be a fully reliable, robust method.

Nonlinear multigrid methods have been considered by Oberoi and Allewell [39] and in references [29, 28]
for the nonlinear PBE. For simple PBE problems, it has been shown to be an efficient method, and appears
to demonstrate O(n) complexity as does linear multigrid [29, 28, 39]. However, experiments performed
elsewhere (see references [29, 28]) and below indicate that even a quite sophisticated implementation of
nonlinear multigrid may diverge for difficult problems such as the nonlinear PBE with complex, large, or
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highly charged molecules. The inexact-Newton-multilevel methods we propose in the next section overcome
these difficulties, and converge even for the most difficult problems.

The method we employ for our numerical experiments below is the nonlinear multilevel method presented
earlier as Algorithm 4.2. All components required for this nonlinear method are as in the linear harmonically
averaged multilevel method described in Holst and Saied [31] and in Holst [29, 28], except for the following
required modifications. The pre- and post-smoothing iterations correspond to nonlinear Gauss-Seidel, where
each smoothing step consisting of ν sweeps; as in the linear case, we employ a variable v-cycle so that ν
increases as coarser levels are reached. Nonlinear operator-based prolongation [29, 28] is also employed for
nested iteration; otherwise, linear operator-based prolongation is used. The coarse problem is solved with the
nonlinear conjugate gradient method, and a damping parameter, as described earlier is required; otherwise,
the method does not converge for rapid nonlinearities such as those present in the nonlinear PBE.

5 Inexact-Newton Methods

Given the nonlinear operator F : D ⊂ R
n 7→ R

n, a generalization of the classical one-dimensional Newton’s
method for solving the problem F (u) = 0 is as follows:

F ′(un)vn = −F (un) (13)

un+1 = un + vn, (14)

where F ′(un) is the Jacobian matrix of partial derivatives:

F ′(u) = ∇F (u)T =

[

∂Fi(u)

∂uj

]

,

where F (u) = (F1(u), . . . , Fm(u))T , and where the function u = (u1, . . . , un)T . In other words, the Newton
iteration is simply a special fixed-point iteration:

un+1 = G(un) = un − F ′(un)−1F (un). (15)

There are several variations of the standard (or full) Newton iteration (13)–(14) commonly used for nonlinear
algebraic equations which we mention briefly. A quasi-Newton method refers to a method which uses an
approximation to the true Jacobian matrix for solving the Newton equations. A truncated-Newton method
uses the true Jacobian matrix in the Newton iteration, but solves the Jacobian system only approximately,
using an iterative linear solver in which the iteration is stopped early or truncated. Inexact- or approximate-
Newton methods refers to all of these types of methods collectively, where in the most general case an
approximate Newton direction is produced in some unspecified fashion.

The inexact-Newton approach is of interest for the nonlinear PBE for the following reasons. First, in
the case of problems such as the nonlinear PBE, which consist of a leading linear term plus a nonlinear
term which does not depend on derivatives of the solution, the nonlinear algebraic equations generated by
discretization have the form:

F (u) = Au + N(u) − f = 0.

The matrix A is SPD, and the nonlinear term N(·) is often simple, and in fact is often diagonal, meaning
that the j-th component of the vector function N(u) is a function of only the j-th entry of the vector u, or
Nj(u) = Nj(uj); this occurs for example in the case of a box-method discretization of the Poisson-Boltzmann
equation and similar equations. Further, it is often the case that the derivative N ′(·) of the nonlinear term
N(·), which will be a diagonal matrix due to the fact that N(·) is of diagonal form, can be computed (often
analytically) at low expense. If this is the case, then the entire true Jacobian matrix is available at low cost,
since :

F ′(u) = A + N ′(u).

In the case of the nonlinear PBE, we have that Ni(u) = Ni(ui) = meas(τ (i))κ̄(xi) sinh(ui), so that the
contribution to the Jacobian can be computed analytically:

N ′
i(u) = N ′

i(ui) = meas(τ (i))κ̄(xi) cosh(ui).

15



A second reason for our interest in the inexact-Newton approach is that the efficient multilevel methods
for the linearized Poisson-Boltzmann equation [29, 28, 31] can be used effectively for the Jacobian systems;
this is because the Jacobian F ′(u) is essentially the linearized Poisson-Boltzmann operator, where only the
diagonal Helmholtz-like term N ′(·) changes from one Newton iteration to the next. Our fast linear multilevel
methods should be effective as inexact Jacobian system solvers, and this has been demonstrated numerically
in earlier papers [29, 28, 31] and will be again later in this paper.

The hope is that solving the Jacobian systems only approximately (requiring perhaps a few more Newton
iterations due to the inexactness of the Newton direction), using a fast linear multilevel method, will be less
costly in terms of execution time than employing a full Newton method (requiring fewer Newton iterations
since the direction is exact), and solving the Jacobian systems exactly at each iteration. We will see that
this is the case later in the paper, and in fact the inexact approach may be substantially more efficient than
the full Newton approach.

However, there are two important considerations when using an inexact Newton method. First, how
“inexactly” can one solve the Jacobian system and still converge at a desirably fast rate, and how can one
enforce global convergence properties for the overall Newton iteration, so that the method will be robust.
We state more precisely, and then answer, both of these questions in the next two sections, and then present
the resulting global inexact-Newton-multilevel method in the third section.

5.1 Inexactness and superlinear convergence

Let u ∈ R
n. A sequence {un} is said to converge strongly to u if limn→∞ ‖u−un‖ = 0. There are three basic

important notions regarding the rate of convergence of a sequence of iterates produce by Newton’s method,
and we state them below as definitions.

Definition 5.1 The sequence {un} converges Q-linearly to u if there exists c ∈ [0, 1) and n̄ ≥ 0 such that
for n ≥ n̄,

‖u − un+1‖ ≤ c‖u− un‖.

Definition 5.2 The sequence {un} converges Q-super- linearly to u if there exists {cn} such that cn → 0
and:

‖u− un+1‖ ≤ cn‖u − un‖.

Definition 5.3 The sequence {un} converges at rate Q-order(p) to u if there exists p > 1, c ≥ 0, n̄ ≥ 0
such that for n ≥ n̄,

‖u − un+1‖ ≤ c‖u− un‖p.

The following notion of continuity is also necessary.

Definition 5.4 The mapping F : D ⊂ R
n 7→ R

n is called Hölder-continuous on D with constant γ and
exponent p if there exists γ ≥ 0 and p ∈ (0, 1] such that

‖F (u) − F (v)‖ ≤ γ‖u− v‖p ∀u, v ∈ D ⊂ H.

If p = 1, then F is called uniformly Lipschitz-continuous on D, with Lipschitz constant γ. If in addition
γ < 1, then F is called a contraction mapping with contraction constant γ.

If an initial approximation is close enough to the true solution u, then under certain conditions it can
be shown that [33] that a full Newton’s method will converge, and do so Q-superlinearly. The convergence
rate will not be so advantageous if an inexact Newton method is employed. However, it can be shown that
the convergence behavior of these inexact-Newton methods is similar to the standard Newton’s method, and
Newton-Kantorovich-like theorems can be established (see Chapter 18 of Kantorovich and Akilov [33] and
below).

In particular, Quasi-Newton methods are studied in Dennis and Moré [18], and a “characterization”
theorem is established for the sequence of approximate Jacobian systems. This theorem establishes sufficient
conditions on the sequence {Bi}, where Bi ≈ F ′, to ensure superlinear convergence of a quasi-Newton
method. An interesting result which they obtained is that the “consistency” condition is not required,

16



meaning that the sequence {Bi} need not converge to the true Jacobian F ′(·) at the root of the equation
F (u) = 0, and superlinear convergence can still be obtained. In a later paper [19], this characterization
theorem is rephrased in a geometric form, showing essentially that the full or true Newton step must be
approached, asymptotically, in both length and direction, to attain superlinear convergence in a quasi-Newton
iteration.

Inexact-Newton methods are studied directly by Dembo et al. [14]. Their motivation is the use of iterative
solution methods for approximate solution of the true Jacobian systems. They establish conditions on the
accuracy of the inexact Jacobian solves at each Newton iteration which will ensure superlinear convergence.
The inexact-Newton method is analyzed in the form:

F ′(un)vn = −F (un) + rn,
‖rn‖

‖F (un)‖
≤ ηn,

un+1 = un + vn.

In other words, the quantity rn, which is simply the residual of the Jacobian linear system, indicates the
inexactness allowed in the approximate linear solve, and is exactly what one would monitor in a linear
iterative solver. It is established that if the forcing sequence ηn < 1 for all n, then the above method is
locally convergent. Their main result is the following theorem.

Theorem 5.1 Assume there exists a unique u such that F (u) = 0, that the inexact-Newton iterates {un}
converge to u, and that both F (·) and F ′(·) are sufficiently smooth. Then:

1. The convergence is superlinear if: limn→∞ ηn = 0.

2. The convergence is at least Q-order(1+p) if F ′(u) is Hölder continuous with exponent p, and

ηn = O(‖F (un)‖p), as n → ∞.

Proof. See Dembo et al. [14].

As a result of this theorem, they suggest the tolerance rule:

ηn = min

{

1

2
, C‖F (un)‖p

}

, 0 < p ≤ 1, (16)

which guarantees Q-order convergence of at least 1 + p.

5.2 Inexactness and global convergence

As noted in the previous section, Newton-like methods converge if the initial approximation is “close” to the
solution; different convergence theorems require different notions of closeness. If the initial approximation is
close enough to the solution, then superlinear or Q-order(p) convergence occurs. However, the fact that these
theorems require a good initial approximation is also indicated in practice: it is well known that Newton’s
method will converge slowly or fail to converge at all if the initial approximation is not good enough.

On the other hand, methods such as those used for unconstrained minimization can be considered to be
“globally” convergent methods, although their convergence rates are often extremely poor. One approach to
improving the robustness of a Newton iteration without loosing the favorable convergence properties close to
the solution is to combine the iteration with a global minimization method. In other words, we can attempt
to force global convergence of Newton’s method by requiring that:

‖F (un+1)‖ < ‖F (un)‖,

meaning that we require a decrease in the value of the function at each iteration. But this is exactly what
global minimization methods, such as the nonlinear conjugate gradient method, attempt to achieve: progress
toward the solution at each step.

More formally, we wish to define a minimization problem, such that the solution of the zero-point problem
we are interested in also solves the associated minimization problem. Let us define the following two problems:
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P1: Find u ∈ R
n such that F (u) = 0.

P2: Find u ∈ R
n such that J(u) = minv∈Rn J(v),

where J(·) is a functional, mapping R
n into R. We assume that Problem 2 has been defined so that the

unique solution to Problem 1 is also the unique solution to Problem 2; note that in general, there may not
exist a natural functional J(·) for a given F (·), although we will see in a moment that it is always possible
to construct an appropriate functional J(·).

A descent direction for the functional J(·) at the point u is any direction v such that the directional
derivative of J(·) at u in the direction v is negative, or (J ′(u), v) < 0, where (·, ·) is an inner-product in R

n,
and J ′(·) is the derivative of the functional J(·):

J ′(u) = ∇J(u)T =

(

J(u)

∂u1
, . . . ,

J(u)

∂un

)T

.

If v is a descent direction, then it is not difficult to show (Theorem 8.2.1 in Ortega and Rheinboldt [41])
there exists λ > 0 such that:

J(u + λv) < J(u). (17)

This follows from a generalized Taylor expansion (cf. page 255 in Kesavan [35]), since

J(u + λv) = J(u) + λ(J ′(u), v) + O(λ2).

If λ is sufficiently small and (J ′(u), v) < 0 holds (v is a descent direction), then clearly J(u + λv) < J(u).
In other words, if a descent direction can be found at the current solution un, then an improved solution
un+1 can be found for some steplength in the descent direction v; i.e., by performing a one-dimensional line
search for λ until (17) is satisfied.

Therefore, if we can show that the Newton direction is a descent direction, then performing a one-
dimensional line search in the Newton direction will always guarantee progress toward the solution. In the
case that we define the functional as:

J(u) =
1

2
‖F (u)‖2 =

1

2
(F (u), F (u)),

we can show that the Newton direction is a descent direction. While the following result is easy to show for
R

n, it is also true in the general case of a Hilbert space [29, 28] when ‖ · ‖ = (·, ·)1/2:

J ′(u) = F ′(u)T F (u).

The Newton direction at u is simply v = −F ′(u)−1F (u), so if F (u) 6= 0, then:

(J ′(u), v) = −(F ′(u)T F (u), F ′(u)−1F (u)) = −(F (u), F (u)) < 0.

Therefore, the Newton direction is always a descent direction for this particular choice of J(·), and by the
introduction of the damping parameter λ, the Newton iteration can be made globally convergent in the
above sense.

Consider now the inexact Newton method; since only the exact Newton direction is known to be a descent
direction, we have no assurance that the inexact direction will give descent, so the global properties gained
by a damping parameter are lost. We can still attempt to introduce the damping parameter λ as before, so
that the resulting algorithm for solving F (u) = 0 is:

Algorithm 5.1 (Damped-Inexact-Newton Method)

F ′(un)vn = −F (un) + rn,
‖rn‖

‖F (un)‖
≤ ηn,

un+1 = un + λnvn,

where we have left as unspecified how “large” the residual rn is allowed to be, and how the damping
parameters λn are chosen.

The following simple theorem from references [29, 28] gives a necessary and sufficient condition on the
residual rn of the Jacobian system system for the resulting inexact Newton direction to be a descent direction.
This will allow us to use the damping parameter to achieve global convergence properties in the inexact-
Newton algorithm.
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Theorem 5.2 Inexact-Newton (Algorithm 5.1) yields a descent direction v at u if and only if the residual
of the Jacobian system, r = F ′(u)v + F (u), satisfies:

(F (u), r) < (F (u), F (u)).

Proof. We remarked earlier that an equivalent minimization problem (appropriate for Newton’s method) to
associate with the zero point problem F (u) = 0 is given by minu∈Rn J(u), where J(u) = (F (u), F (u))/2.
We also noted that the derivative of J(u) can be written as J ′(u) = F ′(u)T F (u). Now, the direction v is a
descent direction for J(u) if and only if (J ′(u), v) < 0. The exact Newton direction is v = −F ′(u)−1F (u),
and as shown earlier is always a descent direction. Consider now the inexact direction satisfying:

F ′(u)v = −F (u) + r, or v = F ′(u)−1[r − F (u)].

This inexact direction is a descent direction if and only if:

(J ′(u), v) = (F ′(u)T F (u), F ′(u)−1[r − F (u)])

= (F (u), r − F (u))

= (F (u), r) − (F (u), F (u))

< 0,

which is true if and only if the residual of the Jacobian system r satisfies:

(F (u), r) < (F (u), F (u)).

This leads to the following very simple sufficient condition for descent.

Corollary 5.1 Inexact Newton (Algorithm 5.1) yields a descent direction v at the point u if the residual of
the Jacobian system, r = F ′(u)v + F (u), satisfies:

‖r‖ < ‖F (u)‖.

Proof. From the proof of Theorem 5.2 we have:

(J ′(u), v) = (F (u), r) − (F (u), F (u)) ≤ ‖F (u)‖‖r‖ − ‖F (u)‖2,

where we have employed the Cauchy-Schwarz inequality. Therefore, if ‖r‖ < ‖F (u)‖, then the rightmost
term is clearly negative (unless F (u) = 0), so that v is a descent direction.

The sufficient condition presented as Corollary 5.1 appears in references [29, 28], and also as a lemma
in [20]. Note that most stopping criteria for the Newton iteration involve evaluating F (·) at the previous
Newton iterate un. The quantity F (un) will have been computed during the computation of the previous
Newton iterate un, and the tolerance for un+1 which guarantees descent requires (F (un), r) < (F (un), F (un))
by Theorem 5.2. This involves only the inner-product of r and F (un), so that enforcing this tolerance requires
only an additional inner-product during the Jacobian linear system solve, which for n unknowns introduces an
additional n multiplies and n additions. In fact, a scheme may be employed in which only a residual tolerance
requirement for superlinear convergence is checked until an iteration is reached in which it is satisfied. At
this point, the descent direction tolerance requirement can be checked, and additional iterations will proceed
with this descent stopping criterion until it too is satisfied. If the linear solver reduces the norm of the
residual monotonically (such as any of the linear methods discussed earlier), then the first stopping criterion
need not be checked again.

In other words, this adaptive Jacobian system stopping criterion, enforcing a tolerance on the residual for
local superlinear convergence and ensuring a descent direction at each Newton iteration, can be implemented
at the same computational cost as a simple check on the norm of the residual of the Jacobian system.

Alternatively, the sufficient condition given in Corollary 5.1 may be employed at no additional cost, since
only the residual norm need be computed, which is also required to insure superlinear convergence using
Theorem 5.1.
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5.3 Inexact-Newton-MG for the PBE

The discretization of the nonlinear Poisson-Boltzmann equation (1) with the box-method discussed earlier
produces a set of n nonlinear algebraic equations in n unknowns of the form (3), which we repeat here:

F (u) = Au + N(u) − f = 0.

The “holy grail” for this problem is an algorithm which (1) always converges, and (2) has optimal complexity,
which in this case means O(n).

As we have just seen, the inexact-Newton method can be made essentially globally convergent with the
introduction of a damping parameter. In addition, close to the root, inexact-Newton has at least superlinear
convergence properties thanks to Theorem 5.1. If a method with linear convergence properties is used to solve
the Jacobian systems at each Newton iteration, and the complexity of the linear solver is the dominant cost
of each Newton iteration, then the complexity properties of the linear method will determine the complexity
of the resulting Newton iteration asymptotically. With an efficient inexact solver such as a multilevel method
for the early damped iterations, employing a more stringent tolerance for the later iterations as the root is
approached, a very efficient yet robust nonlinear iteration should result; in fact, if the linear method behaves
as O(n), then a superlinearly-convergent nonlinear iteration should as well.

The idea here, motivated by the work of Bank and Rose [4, 5], is to combine the robust damped inexact-
Newton methods with the fast linear multilevel solvers developed by Holst and Saied [31] and Holst [29,
28] for the inexact Jacobian system solves. Combination with linear multilevel iterative methods for the
semiconductor problem has been considered by Bank and Rose [5], along with questions of complexity. In a
paper of Bank and Rose [4], an analysis of inexact-Newton methods is performed, where a damping parameter
has been introduced. A quite sophisticated algorithm GLOBAL is constructed, enforcing both global and
superlinear convergence properties; the sufficient descent condition established above is implicitly imbedded
in their algorithm GLOBAL.

We propose the following alternative globally convergent inexact-Newton algorithm which is easy to
understand and implement, based on the simple necessary and sufficient descent conditions established in
the previous section.

Algorithm 5.2 (Damped-Inexact-Newton method)

(1) Inexact solve: F ′(un)vn = −F (un) + rn, TST (rn) = TRUE,
(2) Correction: un+1 = un + λnvn,

where λn and TST (rn) are defined as:

TST (rn) : IF: ‖rn‖ ≤ C‖F (un)‖p+1, C, p > 0, (local Q-order(1+p) convergence)
AND: (F (un), rn) < (F (un), F (un)) (guaranteed descent)
THEN: TST ≡ TRUE; ELSE: TST ≡ FALSE.

λn: ‖F (un + λnvn)‖ ≤ ‖F (un)‖ by line search;
Always possible if TST (rn) = TRUE.
Full inexact-Newton step (λn = 1) always tried first.

An alternative less expensive TST (rn) is as follows:

TST (rn) : IF: ‖rn‖ ≤ C‖F (un)‖p+1, C, p > 0, (local Q-order(1+p) convergence)
AND: ‖rn‖ < ‖F (un)‖ (guaranteed descent)
THEN: TST ≡ TRUE; ELSE: TST ≡ FALSE.

In Algorithm 5.2, the second condition in the first TST (·) procedure is the necessary and sufficient
condition for the inexact-Newton direction to be a descent direction, established in Theorem 5.2. The second
condition in the alternate TST (·) procedure is the weaker sufficient condition established in Corollary 5.1.
Note that, in early iterations when Q-order(1+p) for p > 0 is not to be expected, just satisfying one of the
descent conditions is (necessary and) sufficient for progress toward the solution. Algorithm 5.2 decouples
the descent and superlinear convergence conditions, and would allow for the use of only the weakest possible
test of (F (un), rn) < (F (un), F (un)) far from the solution, ensuring progress toward the solution with the
least amount of work per Newton step.
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Note also that the Q-order(1+p) condition

‖rn‖ ≤ C‖F (un)‖p+1

does not guarantee a descent direction, so that it is indeed important to satisfy the descent condition
separately. The Q-order(1+p) condition will impose descent if

C‖F (un)‖p+1 < ‖F (un)‖,

which does not always hold. If one is close to the solution, so that ‖F (un)‖ < 1, and if C ≤ 1, then the
Q-order(1+p) condition will imply descent. By this last comment, we see that if ‖F (un)‖ < 1 and C ≤ 1,
then the full inexact-Newton step is a descent direction, and since we attempt this step first, we see that our
algorithm reduces to the algorithm studied by Dembo et al. [14] near the solution; therefore, Theorem 5.1
above applies to Algorithm 5.2 near the solution without modification.

Note that due to the special form of the nonlinear operator arising in the discrete nonlinear PBE, the
damping step can be implemented in a surprisingly efficient manner. During the one-dimensional line search
for the parameter λn, we continually check for satisfaction of the inequality:

‖F (un + λnvn)‖ < ‖F (un)‖.

The term on the right is available from the previous Newton iteration. The term on the left, although it
might appear to involve computing the full nonlinear residual, in fact can avoid the operator-vector product
contributed by the linear term. Simply note that

F (un + λnvn) = A[un + λnvn] + N(un + λnvn) − f = [Aun − f ] + λn[Avn] + N(un + λnvn).

The term [Aun − f ] is available from the previous Newton iteration, and [Avn] need be computed only once
at each Newton step. Computing F (un + λnvn) for each damping step beyond the first requires only the
“saxpy” operation [Aun − f ] + λn[Avn] for the new damping parameter λn, and evaluation of the nonlinear
term at the new damped solution, N(un + λnvn).

For the numerical comparisons with other methods, we employ Algorithm 5.2, taking p = 1 and C =
1.0×10−2 in the procedure TST (·), using the less expensive, sufficient descent condition form of the TST (·)
procedure. The Jacobian system is solved inexactly at each step to the residual tolerance specified by TST (·)
by employing the linear multilevel we designed for the linearized Poisson-Boltzmann equation [29, 28, 31].
The damping parameters λn are selected by a standard line search technique. The result is an extremely
robust and efficient numerical method for the nonlinear PBE, as we will see shortly.

6 Some Test Problems

We describe briefly the nonlinear PBE test problems which we use to numerically evaluate and compare
the methods which have been proposed for the nonlinear PBE. We also describe a test problem which has
a rapid nonlinearity and very large jump discontinuities in the coefficients, which will be used to evaluate
some of the multilevel techniques.

6.1 The nonlinear PBE

Consider a very broad range of possible temperatures T ∈ [200K, 400K], a broad range of possible ionic
strengths Is ∈ [0, 10], and the following representative polygonal domain:

Ω = [xmin, xmax] × [ymin, ymax] × [zmin, zmax],

where the diameter of Ω is on the order of 10
o

A to 500
o

A. We assume that the set of discrete charges
{x1, . . . ,xNm

} representing the molecule lie well within the domain, and hence far from the boundary Γ of
Ω. The nonlinear Poisson-Boltzmann equation for the dimensionless potential u(x) then has the form:

−∇ · (ε(x)∇u(x)) + κ̄(x) sinh(u(x)) = C

Nm
∑

i=1

ziδ(x − xi), in Ω ⊂ R
3,
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u(x) =
C

4πεw

Nm
∑

i=1

[zie
−κ̄(x)|x−xi|/

√
εw ]/|x − xi|, on Γ,

where C = 4πe2
c/k−1

B T−1, and εw = 80. We have employed one of the known analytical solutions for
the linearized problem to obtain the boundary condition on Γ appearing above. As remarked earlier, this
is commonly done; see for example Tanford [46] or in references [29, 28] for more detailed discussions of
analytical solutions.

The problem coefficients are of the following forms, and it is easy to show [29, 28] that the coefficients
satisfy the following bounds for the given temperature and ionic strength ranges:

1. 2 ≤ ε(x) ≤ 80.

2. 0 ≤ κ̄2(x) ≤ 127.0.

3. 5249.0 ≤ C ≤ 10500.0.

4. −1 ≤ zi ≤ 1.

The nonlinear Poisson-Boltzmann problem will then be completely defined by specifying the following quan-
tities:

• xmin, xmax, ymin, ymax, zmin, zmax; the domain.

• ε(x); the electrostatic molecular surface.

• κ̄(x); defined by ionic strength and exclusion layer.

• C; constant depending only on the temperature T .

• {x1, . . . ,xNm
}; the charge locations.

• {z1, . . . , zNm
}; the associated fractional charges.

For all of our molecule test problems, we use T = 298 which determines the constant C; this is a common
parameter setting for these types of problems. The domain geometry will be defined by the particular
molecule, as well as the parameters ε(x) and κ̄(x), although we must specify also the ionic strength Is to
completely determine κ̄(x). The charge locations and corresponding fractional charges will also be determined
by the particular molecule.

The test data is taken from the Brookhaven protein databank, with the help of the DELPHI and UHBD
software packages (described below). The test molecules chosen for our study of the nonlinear PBE are the
following:

• Acetamide (CH3CONH2) at 1.0 molar, a small molecule (few angstroms in diameter).

• Crambin at 0.001 molar, a medium size molecule.

• tRNA at 0.2 molar, a large highly charged molecule creating numerical difficulties.

• SOD at 0.1 molar, a large enzyme currently undergoing intensive study in the biophysics community.

6.2 Brookhaven data and existing software

We have connected the software implementations of our methods to both the DELPHI and UHBD electro-
statics programs, and we will use data provided by these packages. The DELPHI package was developed
in the laboratory of Dr. B. Honig at Columbia University, and the UHBD package was developed in the
laboratory of Dr. J. A. McCammon at the University of Houston. These codes are designed to begin with
a protein data bank (pdb) file description of the protein or enzyme in question, obtained from the protein
data bank at Brookhaven National Laboratory. The pdb files contain the coordinates of all of the atoms
in a particular structure, obtained from X-ray crystallography pictures of the structure. The UHBD and
DELPHI programs begin with the atom coordinates, and then construct both the electrostatic surface and
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the exclusion layer by moving a probe around the molecule which has the radius of a representative ion. We
remark that quite sophisticated algorithms are now being employed for surfacing [37].

Both UHBD and DELPHI are designed around tensor-product meshes (both implementations are actually
restricted to uniform meshes), and the electrostatic surface and exclusion layer information are represented
as three-dimensional discrete grid functions εh(x) and κ̄h(x). The mesh function κ̄h(x) is produced at the
same mesh-points where the unknowns uh(x) are located, whereas the mesh function εh(x) is produced at
half-mesh-points in each coordinate direction as needed for the box-method discretization we described earlier
in the paper (also employed in both UHBD and DELPHI). The atoms themselves, which will most likely not
lie on a tensor-product mesh, must be mapped to the tensor-product coordinates, and their corresponding
charges distributed to the neighboring mesh points. Several approaches are possible; a trilinear interpolation
approach is taken in both packages.

Note that the selection of the domain completely determines the boundary conditions for a given problem,
as we have specified the boundary function g(x) above. Several different approaches have been proposed to
approximate g(x), since it is clear that to evaluate g(x) at each boundary point of the three-dimensional
domain will require all pair-wise interactions of the charges and the boundary points; efficient versions are
offered as options for example in UHBD, all of which appear to give similarly good approximations of the true
boundary condition u(∞) = 0 (when the molecule is taken to lie well within the domain Ω). In both UHBD
and DELPHI, the problem domain Ω is constructed around the selected molecule so that no more than thirty
percent of Ω in each coordinate direction is taken up by the molecule, which is centered in the domain. The
linearized analytical solution used for the boundary condition function g(x) above, and employed in both
DELPHI and UHBD, appears to give very good approximation of the true boundary conditions in most
situations.

6.3 Polynomial nonlinear forms of the PBE

It has been common in the literature to use low-degree polynomial approximations to the hyperbolic sine
function, avoiding the difficulties which occur with the exponential terms in the true sinh function. For
example, in the paper of Jayaram et al. [32], three term polynomials are used. However, Figure 3 illustrates
how poor such approximations are in situations (which frequently occur) when the argument becomes on the
order of 10 or more. Note that the units on the vertical axis are 1× 1012. In the figure, the true hyperbolic
function is plotted with the dotted line; polynomial approximations of degree five and twenty-five are plotted
with the solid lines. It seems clear that the full exponential terms must be included in the nonlinear equation
in these situations, which occur even in the case of lysozyme [37]. In some sense it is a mute point, since our
global inexact-Newton-multilevel methods control the numerical problems of the exponential nonlinearity
well, and for implementation reasons (the intrinsic exponential functions are much faster than a loop which
evaluates a polynomial) the polynomial nonlinearity solution actually takes longer to compute numerically
with our methods (and other methods, when they converge for the exponential case) than the full exponential
case. Therefore, we will consider only the more correct exponential model.

6.4 A nonlinear jump discontinuity problem

The following test problem will be used to explore the convergence behavior of the multilevel methods. The
domain is the unit cube:

Ω = [0, 1] × [0, 1]× [0, 1].

The nonlinear equation has the form:

−∇ · (ā(x)∇u(x)) + b(x, u(x)) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ. (18)

where the coefficients in equation (18) are taken to be:

1. ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), ε(x) ∈ [1, 103].

2. b : Ω × R 7→ R, b(x, u(x)) = λeu(x), λ ≥ 0.

3. f : Ω 7→ R, − 1 ≤ f(x) ≤ 1.
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Figure 3: Accuracy of polynomial approx. to sinh.

4. g : Γ 7→ R, g(x) = 0.

We will construct ε(x) to be piecewise constant, taking one value in a subdomain Ω1 ⊂ Ω, and a second
value in the region Ω\Ω1, so that ε(x) is defined as follows:

ε(x) =

{

1 ≤ ε1 ≤ 1.0× 103 if x ∈ Ω1,
1 ≤ ε2 ≤ 1.0× 103 if x ∈ Ω\Ω1.

}

We will take ε1 and ε2 to be quite different in magnitude, so that their ratio:

D =
ε1
ε2

will be 103 or 10−3, similar to the nonlinear PBE. (Additional experiments were performed by Holst [29, 28],
taking D to be be as large as 108 or as small as 10−8, and the resulting convergence behavior of the various
methods was analyzed in detail.) We define the subdomain Ω1 ⊂ Ω to consist of the following two smaller
cubes:

Ω1 = [0.25, 0.50]× [0.25, 0.50]× [0.25, 0.50] ∪ [0.50, 0.75]× [0.50, 0.50]× [0.50, 0.75].

For this simple problem, it would of course be possible to construct all coarse meshes as needed for
the multilevel methods to align with Ω1; this would not possible with problems such as the nonlinear
Poisson-Boltzmann equation and a complex molecule. Therefore, since we wish to simulate the case that
the discontinuities in ε(x) cannot be resolved on coarser meshes, the multiple levels of tessellations of Ω into
discrete meshes Ωk are constructed so that the discontinuities in ε(x) lie along mesh lines only on the finest
mesh.

Note that if ε1 = ε2 ≡ 1, then problem (18) with the above coefficients is the Bratu problem (see page
432 in Davis [11] for information about this interesting problem) on the unit cube.

7 Numerical Comparisons

The global inexact-Newton-multilevel method presented earlier is investigated numerically when applied to
the nonlinear Poisson-Boltzmann equation and to a nonlinear test problem with large jump discontinuities
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Table 1: Nonlinear PBE methods.

Method Description

DINMH damped-inexact-Newton-MH
DFNMH damped-full-Newton-MH
NMH nonlinear MH
NCG nonlinear CG (Fletcher-Reeves)
NSOR nonlinear SOR (1-D Newton)
NGS nonlinear Gauss-Seidel (1-D Newton)

Table 2: Some linearized PBE methods.

Method Description

MH harmonically averaged MG [31]
MICCG modified incomplete Cholesky CG [31]
DSCG diagonally preconditioned CG [31]

in the coefficients and exponential nonlinearity. A detailed comparison to other methods is presented,
including comparisons to the classical nonlinear multigrid method, the nonlinear conjugate gradient method,
and nonlinear relaxation methods such as SOR. Our results indicate that the two multilevel-based methods
are superior to the relaxation and conjugate gradient methods, and that the advantage of the multilevel-based
methods grows with the problem size. In addition, experiments indicate that the inexact Newton-multilevel
approach is the most efficient and robust method for the test problems, and in particular is both more
efficient and more robust than the nonlinear multigrid method.

Table 1 provides a key to the plots and tables to follow. For reference, at times we also will refer to the
linear methods in Table 2. Unless otherwise indicated, all data in the plots and tables to follow include the
pre-processing costs incurred by the various methods. In other words, the multilevel methods times include
the additional time required to set up the problem on coarse grids. This gives a complete and fair assessment
of the total time required to reach the solution.

An initial approximation of zero was taken to start each method, and each method used a stopping
criteria based on the norm of the nonlinear function:

‖F (ui)‖ < TOL = 1.0e− 9,

where ui represents the ith iterate, and F (·) is the discrete nonlinear algebraic operator for the equation
F (u) = 0 which we are trying to solve. Of course, this is not the most appropriate stopping criteria for
nonlinear iterations (more appropriate stopping tests are discussed in detail in references [29, 28]), but for
our test problems this test does indicate well when the solution is approached, and it is the best approach
for comparing different methods since it guarantees that each method is producing a solution of the same
quality.

We remark that it was required to perform all computations in double precision; this is necessitated
by the rapid nonlinearities present in the equations, which result an extreme loss in precision. Note that
calculations in double precision are more costly than single precision calculations, and so the execution times
reported here for some of the methods will be somewhat longer than some of the single precision times
reported in earlier papers [29, 28, 31]

Timing figures on the Convex C240 and the Convex C3 were obtained from the system timing routine
getrusage. A more detailed performance analysis on several more sequential as well as some parallel
machines can be found in references [29, 28].
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7.1 Results for acetamide

Figure 5 compares the methods in Table 1 for the acetamide problem. For this problem, all of the methods
converge, and the two multilevel-based algorithms are superior. The nonlinear conjugate gradient and non-
linear SOR methods have comparable performance. The method DINMH is extremely efficient, representing
an improvement of more than a factor of fifty over the nonlinear SOR and nonlinear conjugate gradient
methods, and a factor of ten over the nonlinear multigrid method NMH.

7.2 Results for crambin

Figure 4 compares the methods in Table 1 for the crambin problem. Again, all of the methods converge,
and the two multilevel-based algorithms are superior. The nonlinear conjugate gradient shows superiority
to the nonlinear relaxation methods. The method DINMH is again extremely efficient, representing an
improvement of more than a factor of fifty over the nonlinear conjugate gradient method, and a factor of
ten over the nonlinear multigrid method NMH.

7.3 Results for tRNA

We included this test problem because it appears to cause severe difficulties for other methods which have
been tried; in fact, the nonlinear SOR procedure proposed by Nicholls and Honig [38] was known to diverge
for this problem [37]. However, we note that their method was not a true SOR-Newton iteration, and
was instead a fixed-point iteration based on a certain splitting of the operator (see page 443 in Nicholls
and Honig [38]). When a true SOR-Newton iteration is employed, the method converges for this problem.
Figure 6 shows the relative performance of the various methods. Again, the method DINMH is the most
efficient by far of the methods presented, representing a factor of fifty improvement over the next best
method.

Note that for this problem, the nonlinear multilevel method diverges, even with linesearch for a damping
parameter. Since we do not enforce the nonlinear variational conditions exactly, as outlined earlier and in
more detail in references [29, 28], we have no guarantee that the coarse level correction is a descent direction,
and so this method is not a global method; this particular test problem illustrates this fact. It also shows
that nonlinear multigrid method NMH is not only less robust than DINMH, but also less reliable than NSOR
and NCG.

7.4 Results for SOD

Figure 7 shows only two methods applied to the SOD test problem: the method DINMH applied to the full
nonlinear PBE; and the linear DSCG method applied to the linearized PBE. All other nonlinear methods
studied here diverged for this test problem. Again, the method DINMH converges very rapidly, and the
superlinear convergence is clearly visible.

We have included the plot of the linear method DSCG to show clearly that the DINMH method, solving
the full nonlinear problem, is more than a factor of two times more efficient than one of the best available
methods in the literature for only the linearized problem.

7.5 Jump discontinuity problem results

Figure 8 shows the behavior of the five methods in Table 1 when applied to the jump discontinuity dest
problem, with D = ε1/ε2 = 10−3. The three multilevel-based methods are substantially superior to the
nonlinear relaxation and conjugate gradient methods. More interestingly, the comparison between the full
Newton method (DFNMH) and the inexact Newton method (DINMH) shows at least a factor of four im-
provement gained by employing the inexactness strategy outlined earlier (and can be found in more detail
in references [29, 28]).

Figure 9 shows the first 200 CPU seconds of Figure 8 expanded to the whole axis. We have included the
linear methods MH, MICCG, and DSCG on the plot to illustrate more graphically how efficient the method
DINMH is; it requires less than a factor of two times more CPU seconds than the linear method MH for the
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Figure 4: Comparison of various methods for the nonlinear crambin problem.
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Figure 5: Comparison of various methods for the nonlinear acetamide problem.
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Figure 6: Comparison of various methods for the nonlinear tRNA problem.
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linearized problem, and is a factor of two times more efficient than the next best linear method, MICCG with
vectorizable orderings (operating at near peak efficiency on the Convex C3, which is a vector processor).

7.6 Storage requirements

We make a few remarks about the storage required for the multilevel methods as well as some of the other
methods appearing in this paper. We are faced with the discrete problem of the form:

Au + N(u) = f,

where A is an n × n SPD matrix, N(·) is a nonlinear function mapping R
n into R

n, u is the n × 1 vector
of unknowns, and f is the n × 1 vector of source function values. The number of unknowns n is related
to the original discrete mesh as n = I · J · K, where I , J , and K are the number of mesh-points in each
direction of the tensor-product mesh. Employing the box-method on the tensor-product mesh, the matrix
A can be represented by seven diagonals, only four of which need be stored in arrays of length n, due to the
symmetry of A. The box-method produces “diagonal” nonlinear functions N(·) from the types of nonlinear
partial differential equations we consider in this paper, and N(·) can be represented by a single real nonlinear
function and a coefficient array of length n. Therefore, simply to store the nonlinear algebraic problem on the
finest desired tensor-product mesh requires approximately 4n + 1n + 1n + 1n = 7n. The nonlinear iterative
algorithms we have considered here require various amounts of additional storage for implementation.

With regard to multilevel methods, since the number of unknowns drops by a factor of eight as one moves
to a coarser mesh in three dimensions if standard successively refined tensor-product meshes are used, we
see that the storage required to represent on all meshes a vector having length n on the finest mesh is:

n +
n

8
+

n

64
+ · · · = n ·

(

1

8
+

1

64
+ · · ·

)

≤
8

7
· n = n +

n

7
.

We will assume that enough levels are always used so that not only is the coarse problem computational
cost negligible, but also the storage requirement (including possibly direct factorization of the matrix) is
negligible due to the size of the coarse problem.

Table 3: Storage required by various nonlinear (and some linear) elliptic solvers.

Method Storage Requirements
Name A N(·) u f Ik

k−1 WORK TOTAL

NGS 4n 1n 1n 1n 0n 1n 8n
NSOR 4n 1n 1n 1n 0n 1n 8n
NCG 4n 1n 1n 1n 0n 6n 13n
NMH 4n + 4

7n 1n + 1
7n 1n + 1

7n 1n + 1
7n 27

7 n 5n + 5
7n ≈ 17.6n

DINMH 4n + 4
7n 1n + 1

7n 1n + 1
7n 1n + 1

7n 27
7 n 7n + 7

7n ≈ 19.9n

Table 3 gives the required storage for a selection of methods. These figures reflect the storage requirements
in our implementations; in particular, while the NGS, NSOR, and NCG storage requirements are minimal
or close to minimal, the storage requirements for our multilevel methods could be reduced somewhat. To
maintain a logically modular structure in our implementations, we have allowed some redundant storage in
the implementations. In the methods NMH and DINMH, it is possible to implement the (linear or nonlinear)
operator-based prolongation Ik

k−1 completely in terms of the matrix A (and the nonlinearity N(·)), without

requiring explicit storage of Ik
k−1. This can save 27n/7 ≈ 4n, which makes these methods almost equivalent

to NCG in terms of storage requirements, with NMH and DINMH requiring approximately 13.7n and 16n,
respectively.

Therefore, as in the case of the linear multilevel methods presented in Holst and Saied [31] and in
references [29, 28], not only do the multilevel methods discussed here demonstrate superior complexity
properties, we see that they can be implemented with very efficient memory use, requiring the same or
only slightly more storage than that required for competing methods such as nonlinear conjugate gradient
methods.

29



0 100 200 300 400 500 600 700
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Nonlinear jump discontinuity test problem.
Discontinuity ratio (e1/e2) = 1.0e-03

CPU Seconds

No
nl

in
ea

r R
el

at
ive

 R
es

id
ua

l
Convex C3 (1 Processor) with 65x65x65 Grid

DINMH
DFNMH

NMH

NSOR

NCG (> 2550)

Figure 8: Comparison of methods for the nonlinear discontinuity problem.
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8 Conclusions

We have shown numerically that the multilevel-based methods discussed in this paper are generally more
efficient than existing methods for the nonlinear PBE for a range of test molecules, and for a difficult test
problem with large coefficient discontinuities and rapid nonlinearity. In addition, our results indicate that
the damped-inexact-Newton-multilevel approach is not only the most efficient approach for these problems,
but is also the most robust of all the methods considered. It converged in all situations, and for the SOD
test problem was the only nonlinear method to converge.

Regarding the nonlinear multigrid method, both theoretical and numerical evidence here and else-
where [29, 28] suggests that without careful use of special techniques for constructing the coarse problems
(discussed in Holst and Saied [31] and Holst [29, 28]), and without the use of a damping parameter, nonlinear
multigrid methods are inherently non-reliable (may not converge) for problems with exponential nonlineari-
ties and large coefficient discontinuities, such as the nonlinear PBE and equations occurring in semiconductor
modeling.

We believe that this was not observed in the study of Oberoi and Allewell [39] due to the small number
of examples considered. In fact, they did not seem to require either the damping parameter or the coefficient
averaging techniques built into the method NMH employed here. Our experiments with such a “vanilla”
nonlinear multigrid method showed divergence except for the simplest possible molecules (acetemide) at very
low ionic strengths (Is < 0.0001) and small mesh sizes (31 × 31 × 31). To obtain convergence even for the
crambin case (Figure 4) required both the harmonic coefficient averaging approach developed in Holst and
Saied [31] and the damping parameter discussed earlier in this paper. We are not aware of other techniques
for increasing the robustness of nonlinear multigrid, without sacrificing most of the efficiency of the multilevel
approach.

The damped inexact-Newton-multilevel method appears to be the most robust of all methods that have
been proposed; it converges for all cases we have encountered (this behavior is supported by the theory
presented in this paper, which was used to construct the method), and in particular it converges for cases
which cause all other proposed methods to fail. In addition, it appears to be substantially more efficient
than all other methods that have been proposed (by orders of magnitude for some test problems), and is
even more efficient than some of the best existing linear methods producing only a linearized solution.

These considerations demonstrate that the damped inexact-Newton-multilevel method presented in this
paper not only makes the nonlinear model completely feasible for the first time by providing a very reliable
solution technique, but it actually improves on the efficiency of available linear algorithms which are currently
used for the less accurate linear model. We remark that initial numerical experiments with larger mesh sizes
show that the improvement of the damped-inexact-Newton-multilevel approach over methods grows with
the problem size [30].
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