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We present a robust and efficient numerical method for solution of the nonlinear Poisson-Boltzmann equation arising
in molecular biophysics. The equation is discretized with the box method, and solution of the discrete equations is
accomplished with a global inexact-Newton method, combined with linear multilevel techniques we have described in a
paper appearing previously in this journal. A detailed analysis of the resulting method is presented, with comparisons
to other methods that have been proposed in the literature, including the classical nonlinear multigrid method, the
nonlinear conjugate gradient method, and nonlinear relaxation methods such as successive over-relaxation. Both
theoretical and numerical evidence suggests that this method will converge in the case of molecules for which many
of the existing methods will not. In addition, for problems which the other methods are able to solve, numerical
experiments show that the new method is substantially more efficient, and the superiority of this method grows with
the problem size. The method is easy to implement once a linear multilevel solver is available, and can also easily be
used in conjunction with linear methods other than multigrid.

INTRODUCTION

In this paper, we consider numerical solution of the non-
linear Poisson-Boltzmann equation (PBE), the funda-
mental equation arising in the Debye-Hückel theory [1]
of continuum molecular eletrostatics. In the case of a
1 : 1 electrolyte, this equation can be written as

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r))

=
4πe2

c

kBT

Nm
∑

i=1

ziδ(r − ri), u(∞) = 0, (1)

a three-dimensional second order nonlinear partial dif-
ferential equation governing the dimensionless electro-
static potential u(r) = ecΦ(r)/k−1

B T−1, where Φ(r) is
the electrostatic potential at a field position r. The im-
portance of this equation for modeling biomolecules is
well-established; more detailed discussions of the use of
the Poisson-Boltzmann equation may be found in the
survey articles of Briggs and McCammon [2] and Sharp
and Honig [3].

In the equation above, the coefficient ε(r) jumps by
more than an order of magnitude across the interface be-
tween the molecule and surrounding solvent. The modi-
fied Debye-Hückel parameter κ̄, proportional to the ionic
strength of the solution, is discontinuous at the interface
between the solvent region and an ion exclusion layer
surrounding the molecular surface. The molecule itself
is represented by Nm point charges qi = ziec at posi-
tions ri, yielding the delta functions in (1), and the con-
stants ec, kB , and T represent the charge of an electron,
Boltzmann’s constant, and the absolute temperature.
Equation (1) is referred to as the nonlinear Poisson-
Boltzmann equation, and it is often approximated by the
linearized Poisson-Boltzmann equation, obtained by tak-
ing sinh(u(r)) ≈ u(r) when u(r) << 1.

In the nonlinear case, equation (1) presents severe nu-
merical difficulties due to the rapid exponential nonlin-

earities, discontinuous coefficients, delta functions, and
infinite domain. In this article, we present a survey of
the numerical methods currently employed in the bio-
physics and biochemistry communities for the linearized
and nonlinear Poisson-Boltzmann equations. We then
propose an alternative numerical method, which is a
combination of global inexact-Newton methods and mul-
tilevel methods. A detailed analysis of this method
is presented, with comparisons to other methods that
have been proposed in the literature, including the clas-
sical nonlinear multigrid method, the nonlinear conju-
gate gradient method, and nonlinear relaxation meth-
ods such as successive over-relaxation. Both theoretical
and numerical evidence shows that the global inexact-
Newton-multilevel method is superior to all other meth-
ods currently in use. In particular, this method is more
robust (it converges in cases where the other methods
fail) and substantially more efficient (the advantage of
this method grows with the problem size). The method
is easy to implement once a linear multilevel solver is
available, and can also easily be used in conjunction with
linear methods other than multigrid (the robustness is
maintained, although the efficiency may be less).

Outline

We begin by discussing the form of the algebraic equa-
tions which are produced by standard discretization
methods applied to equation (1). We then briefly re-
view the methods that have been proposed and used
for the linearized Poisson-Boltzmann equation, includ-
ing the linear multilevel method we have presented in
a previous paper. We then discuss in a little more de-
tail the methods recently proposed in the literature for
the nonlinear Poisson-Boltzmann equation, and present
inexact-Newton methods as alternatives. We formulate
an algorithm based on the combination of global inexact-
Newton methods and our linear multilevel method, and
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we state and prove two simple conditions which guaran-
tee that the resulting inexact-Newton-multilevel method
is globally convergent. Some test problems are then for-
mulated, including some more difficult problems involv-
ing superoxide dismutase (SOD) and tRNA. Numerical
experiments are then presented, showing that in fact the
Newton-multilevel approach is both more robust and or-
ders of magnitude more efficient than existing methods.

Due to the length of the paper, we also give a more
detailed outline of the material below.
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DISCRETIZING THE PBE

The infinite domain of equation (1) is often truncated to
a finite domain Ω ⊂ R

3 with boundary Γ, and boundary

conditions on Γ are provided by a known analytical so-
lution; detailed discussions appear in Tanford [4] and in
references [5, 6]. The equation then becomes:

−∇ · (ε∇u) + κ̄ sinh(u) = f in Ω ⊂ R
3, (2)

u = g on Γ,

where the source term in equation (1) has been denoted
as the generic function f . The functions ε and κ̄ may be
only piecewise continuous functions on Ω, although we
assume that the coefficient discontinuities are regular,
and can be identified during the discretization process.
In particular, to discretize (2) accurately, the domain
Ω must be divided into discrete elements such that the
discontinuities always lie along element boundaries, and
never within an element. While this is not completely
possible, it is important to achieve this as much as possi-
ble due to discrete approximation theory considerations
(cf. the texts by Varga [7] and Strang and Fix [8]).

We begin by partitioning the domain Ω into the finite
elements or volumes τ j , such that:

• Ω ≡
⋃M

j=1 τ j , where the elements τ j are for exam-
ple hexahedra or tetrahedra.

• The discontinuities in the coefficients {ε, κ̄, f} are
taken to lie along the boundaries of τ j .

• The union of the (4 or 8) corners of the τ j form
the nodes xi in the resulting mesh of nodes.

• The set {τ j;i} ≡ {τ j : xi ∈ τ j} consists of all
elements τ j;i having xi as a corner.

• Define τ (i) ≡
⋃

j τ j;i ≡ {
⋃

j τ j : xi ∈ τ j} to be the

“box” around xi formed by union of the τ j;i.

• We require continuity of u and ā∇u · n across the
regions having different values of ā.

The box (integral, finite volume) method has been
one of the standard approaches for discretizing two- and
three-dimensional interface problems occurring in reac-
tor physics and reservoir simulation [7, 9]; similar meth-
ods are used in computational fluid dynamics. The mo-
tivation for these methods has been the attempt to en-
force conservation of certain physical quantities in the
discretization process.

The box-method approach

We begin by integrating (2) over an arbitrary τ (i). The
resulting equation is:

∫

τ (i)

(−∇ · (ε∇u) + κ̄ sinh(u) dx − f) dx = 0.
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Recalling the definition of τ (i) as the union over j of the
τ j;i, and employing the divergence theorem for the first
term in the equation above, yields:

−
∑

j

∫

∂τj;i

(ε∇u)·n ds+
∑

j

∫

τj;i

(κ̄ sinh(u) − f) dx = 0,

where ∂τ j;i is the boundary of τ j;i and n is the unit
normal. Note that all interior surface integrals in the
first term vanish, since ε∇u·n must be continuous across
the interfaces. We are left with:

−

∫

∂τ (i)

(ε∇u) · n ds +
∑

j

∫

τj;i

(κ̄ sinh(u) − f) dx = 0,

where ∂τ (i) denotes the boundary of τ (i).
Since this last relationship holds exactly in each τ (i),

we can use this last equation to develop an approxima-
tion at the nodes xi = (xi, yi, zi) ∈ R

3 at the “centers” of
the τ (i) by employing quadrature rules and difference for-
mulas. In particular, the volume integrals in the second
two terms can be approximated with quadrature rules.
Similarly, the surface integrals required to evaluate the
first term can be approximated with quadrature rules,
where ∇u is replaced with an approximation. Error
estimates can be obtained from difference and quadra-
ture formulas [7], or more generally by analyzing the
box-method as a special Petrov-Galerkin finite element
method [10, 11].

Non-uniform Cartesian meshes

The methods we develop in this paper for solving non-
linear algebraic equations can be applied quite gener-
ally to the equations arising from box or finite element
method discretizations of nonlinear elliptic equations on
very general non-Cartesian meshes. However, a few of
the algebraic multilevel techniques we employ (discussed
in more detail later in the paper and in [5, 6]) require
logically Cartesian meshes. Note that logically Cartesian
requires only that each mesh point have a nearest neigh-
bor structure as for uniform Cartesian meshes, although
the mesh lines need not be uniformly spaced, and the
mesh axes need not be orthogonal, or even consist of
straight lines at all. A logically Cartesian mesh is then
clearly much more general than a non-uniform Carte-
sian mesh, which imposes the additional restriction that
the axes consist of orthogonal straight lines. An example
of a three-dimensional non-uniform Cartesian mesh, em-
ploying Chebyshev spacings around a centrally refined
region, is shown in Figure 1.

Our implementations of the methods described in
this paper, with which we will present numerical ex-
periments in the sections to follow, are designed to al-
low a non-uniform Cartesian mesh to be employed, such
as the mesh in Figure 1. The implementations treat

Figure 1: A 3D non-uniform Cartesian mesh.

all meshes as general non-uniform Cartesian meshes; no
uniform mesh simplifications are employed. When pos-
sible, we will employ an adapted non-uniform Cartesian
mesh, in order to discretize the given elliptic equation
as accurately as possible near coefficient interfaces (for
example, the nonlinear jump discontinuity test problem
appearing later in the paper). Some of the numerical
examples we consider, employing actual molecular data,
require discretization on a uniform Cartesian mesh, since
the sources of data currently available to us produce in-
formation only on uniform meshes (this is discussed in
more detail later in the paper).

In this section we will therefore describe the box
method in the case of a non-uniform Cartesian mesh,
so that the τ j appearing above are hexahedral elements,
whose six sides are parallel to the coordinate axes. By
restricting our discussion to elements which are non-
uniform Cartesian, the spatial mesh may be character-
ized by the nodal points

x = (x, y, z) such that







x ∈ {x0, x1, . . . , xI+1}
y ∈ {y0, y1, . . . , yJ+1}
z ∈ {z0, z1, . . . , zK+1}







.

Any such mesh point we denote as xijk = (xi, yj , zk),
and we define the mesh spacings as

hi = xi+1 − xi, hj = yj+1 − yj , hk = zk+1 − zk,

which are not required to be equal or uniform.
To each mesh point xijk = (xi, yj , zk), we associate

the closed three-dimensional hexahedral region τ (ijk)

“centered” at xijk , defined by

x ∈

[

xi −
hi−1

2
, xi +

hi

2

]

, y ∈

[

yj −
hj−1

2
, yj +

hj

2

]

,
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z ∈

[

yk −
hk−1

2
, zk +

hk

2

]

.

Integrating (2) over τ (ijk) for each mesh-point xijk and
employing the divergence theorem as above yields as be-
fore:

−

∫

∂τ (ijk)

(ε∇u) · n ds +

∫

τ (ijk)

(κ̄ sinh(u) − f) dx = 0.

The volume integrals are approximated with quadrature:

∫

τ (ijk)

p dx ≈ meas(τ (ijk))pijk ,

where pijk = p(xijk), and where the volume of τ (ijk) is

meas(τ (ijk)) =

[

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

.

Since ε is a scalar, the surface integral reduces to:

∫

∂τ (ijk)

ε(ux + uy + uz) · n ds.

This integral reduces further to six two-dimensional
plane integrals on the six faces of the τ (ijk), and are
approximated with the analogous two-dimensional rule,
after approximating the partial derivatives with cen-
tered differences. Introducing the notation pi−1/2,j,k =
p(xi−hi−1/2, yj , zk), and pi+1/2,j,k = p(xi+hi/2, yj , zk),
the resulting discrete equations can be written as:

εi−1/2,j,k

(

uijk − ui−1,j,k

hi−1

)

(hj−1 + hj)(hk−1 + hk)

4

+εi+1/2,j,k

(

uijk − ui+1,j,k

hi

)

(hj−1 + hj)(hk−1 + hk)

4

+εi,j−1/2,k

(

uijk − ui,j−1,k

hj−1

)

(hi−1 + hi)(hk−1 + hk)

4

+εi,j+1/2,k

(

uijk − ui,j+1,k

hj

)

(hi−1 + hi)(hk−1 + hk)

4

+εi,j,k−1/2

(

uijk − ui,j,k−1

hk−1

)

(hi−1 + hi)(hj−1 + hj)

4

+εi,j,k+1/2

(

uijk − ui,j,k+1

hk

)

(hi−1 + hi)(hj−1 + hj)

4

+meas(τ (ijk)) (κ̄ijk sinh(uijk) − fijk) = 0.

We have one such nonlinear algebraic equation for each
uijk approximating u(xijk) at the nodes:

{xijk ; i = 0, . . . , I+1; j = 0, . . . , J+1; k = 0, . . . , K+1}.

This set of equations represents the nonlinear algebraic
system which we consider for the remainder of the paper.

The algebraic equations

After using the Dirichlet boundary data from (2), only
equations for the interior nodes remain:

{xijk ; i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K}.

We denote the total number of unknowns in the system
of equations as n = I · J · K, and it is convenient to
consider a vector-oriented ordering of the unknowns. For
the non-uniform Cartesian mesh we have described, the
natural ordering is defined as:

xp = xijk , p = (k − 1) · I · J + (j − 1) · I + i,

where

i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K,

which defines a one-to-one mapping between xp and xijk ,
and defines xp for p = 1, . . . , n. Employing the natural
ordering of the meshpoints to order the unknowns ui in
the vector u yields a single nonlinear algebraic system of
equations of the form:

Au + N(u) − f = 0, (3)

where the vector f consists of components meas(τ (i))fi

for each of the mesh points xi, and the function N(u) is
a nonlinearity with “diagonal form”, in that N(u) =
(N1(u), . . . , Nn(u))T , with Ni(u) = Ni(ui). Here,
Ni(ui) = meas(τ (i))κ̄(xi) sinh(ui). In the linear case,
Ni(ui) = meas(τ (i))κ̄(xi)ui.

The natural ordering of the unknowns ui gives rise
to a matrix A representing the linear part of (3) which is
seven-banded and block-tridiagonal. This banded struc-
ture in the case of non-uniform Cartesian meshes allows
for very efficient implementations of iterative methods
for numerical solution of the discrete linear and non-
linear equations; the seven-banded form is depicted in
Figure 2 for a 3 × 3 × 3 non-uniform Cartesian mesh.

It is not difficult to show [5, 6] that the matrix A
in (3) arising from box method discretization on a non-
uniform Cartesian mesh is symmetric positive definite
(SPD). This symmetry property holds for both box and
finite element method discretizations on very general
meshes, and is a consequence of the fact that the original
differential operator is formally self-adjoint. Note that
simple finite differences do not naturally produce sym-
metric matrices from self-adjoint differential operators
except for fully uniform Cartesian meshes, unless very
special care is taken.

Much more difficult questions, which we will not con-
sider further here, are the well-posedness of the full non-
linear system (3), as well as the original continuous prob-
lem (2). It can be shown that both (3) and (2) have
unique solutions depending continuously on the problem
data. These and other technical questions are addressed
quite fully in references [5, 6].
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Figure 2: Banded matrix produced by the box-method.

LINEARIZED PBE METHODS

If the nonlinear term in equation (3) is zero, Ni(ui) ≡ 0,
or if it is linear, Ni(ui) = h2κ̄(xi)ui, in which case the
term can be added to the diagonal of the matrix A in (3),
then we are faced with linear algebraic equations:

Au = f, (4)

where the matrix A is symmetric positive definite (SPD).
The matrix A is a linear operator mapping R

n into R
n,

the space R
n being a linear space equipped with an inner-

product (·, ·) inducing a norm ‖ · ‖ defined as follows:

(u, v) =

n
∑

i=1

uivi, ‖u‖ = (u, u)1/2, ∀u, v ∈ R
n.

Since the matrix A is SPD, it defines a second inner-
product and norm:

(u, v)A = (Au, v), ‖u‖A = (u, u)
1/2
A , ∀u, v ∈ R

n.

While our purpose here is not to discuss the mathemati-
cal structure of R

n, the importance of either norm which
we may associate with R

n (and hence the inner-product
which induces the particular norm) is that the norm de-
fines a metric or distance function on the space R

n, which
allows us to measure the distance between points in R

n.
Equipped with only the inner-product and norm on R

n,
one can establish simple conditions for linear and non-
linear iterative methods to guarantee certain desirable
convergence properties.

Classical linear methods

Linear iteration methods for solving the equation (4) for
the unknown u can be thought of as having the form:

Algorithm 1 (Basic Linear Method for Au = f)

ui+1 = ui + B(f − Aui) = (I − BA)ui + Bf,

where B is an SPD matrix approximating A−1 in some
sense, and where the method begins with some initial
“guess” at the true solution u, namely u0. Subtracting
the above equation from the following identity for the
true solution u:

u = u − BAu + Bf,

yields an equation for the error ei = u − ui at each
iteration of the method:

ei+1 = (I − BA)ei = · · · = (I − BA)i+1e0. (5)

The convergence of Algorithm 1, which refers to the
question of whether ui → u (or equivalently ei → 0)
as i → ∞, is determined completely by the spectral ra-
dius (the eigenvalue of largest magnitude) of the error
propagation operator:

E = I − BA,

which we denote as ρ(E).

Theorem 1 The condition ρ(E) < 1 is necessary and
sufficient for convergence of Algorithm 1.

Proof. See for example Theorem 7.1.1 in Ortega [12].

If λ is an eigenvalue of E, then since |λ|‖u‖ = ‖λu‖ =
‖Eu‖ ≤ ‖E‖ ‖u‖ for any norm ‖·‖, it follows that ρ(E) ≤
‖E‖ for all norms ‖ · ‖ (equality holds if and only if E is
symmetric with respect the inner-product defining ‖ · ‖).
Therefore, ‖E‖ < 1 and ‖E‖A < 1 are both sufficient
conditions for convergence of Algorithm 1. In fact, it
is the norm of the error propagation operator which will
bound the reduction of the error at each iteration, which
follows from (5):

‖ei+1‖A ≤ ‖E‖A‖e
i‖A ≤ ‖E‖i+1

A ‖e0‖A. (6)

The spectral radius ρ(E) of the error propagator E is
called the convergence factor for Algorithm 1, whereas
the norm of the error propagator ‖E‖ is referred to as
the contraction number (with respect to the particular
choice of norm ‖ · ‖).

We mention now some classical linear iterations for
discrete elliptic equations Au = f , where A is an SPD
matrix. Since A is SPD, we may write A = D−L−LT ,
and where D is a diagonal matrix and L a strictly lower-
triangular matrix. Some of the classical variations of
Algorithm 1 take as B ≈ A−1 the following:
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(1) Richardson: B = λ−1
max(A)

(2) Jacobi: B = D−1

(3) Gauss-Seidel: B = (D − L)−1

(4) SOR: B = ω(D − ωL)−1

Consider the case of the Poisson equation with zero
Dirichlet boundary conditions discretized with the box-
method on a uniform mesh with m mesh-points in each
mesh direction (n = m3) and mesh spacing h = 1/(m +
1). This is equation (2) with ε ≡ 1 and κ̄ ≡ 0. In this
case, the eigenvalues of both A and the error propagation
matrix E can be determined analytically, allowing for
an analysis of the convergence rates of the Richardson,
Jacobi, Gauss-Seidel, and SOR iterations:

(1) Richardson: ρ(E) = 1 − O(h2)
(2) Jacobi: ρ(E) = 1 − O(h2)
(3) Gauss-Seidel: ρ(E) = 1 − O(h2)
(4) SOR: ρ(E) = 1 − O(h)

The same dependence on h is exhibited for one- and
two-dimensional problems. Therein lies the fundamental
problem with all classical relaxation methods: as h → 0,
then for the classical methods ρ(E) → 1, so that the
methods converge more and more slowly as the problem
size is increased. This same behavior is also demon-
strated for discretized forms of more general equations
on more general meshes, such as those considered in this
paper.

In the paper of Nicholls and Honig [13], an adaptive
SOR procedure is developed for the linearized Poisson-
Boltzmann equation, employing a power method to es-
timate the largest eigenvalue of the Jacobi iteration ma-
trix, which enables estimation of the optimal relaxation
parameter for SOR using Young’s formula (page 110 in
Varga [7]). The eigenvalue estimation technique em-
ployed is similar to the power method approach dis-
cussed on page 284 in Varga [7]. In the implemen-
tation of the method in the computer program DEL-
PHI, several additional techniques are employed to in-
crease the efficiency of the method. In particular, a
red/black ordering is employed allowing for vectoriza-
tion, and array-oriented data structures (as opposed to
three-dimensional grid data structures) are employed to
maximize vector lengths. The implementation is also
specialized to the linearized Poisson-Boltzmann equa-
tion, with constants hard-coded into the loops rather
than loaded as vectors to reduce vector loads.

In several recent papers [5, 6, 14], we considered an
SOR method provided with the optimal relaxation pa-
rameter, implemented with a red/black ordering and ar-
ray oriented data structures, yielding maximal vector
lengths and very high performance on both the Convex
C240 and the Cray Y-MP. In detailed comparisons with
specially designed linear multilevel methods (which we
will briefly review in a moment), experiments indicated
that the linear multilevel methods were superior to the

relaxation methods such as SOR, and the superiority
grew with the problem size.

Linear conjugate gradient methods

The conjugate gradient (CG) method was developed by
Hestenes and Stiefel [15] for linear systems with sym-
metric positive definite operators A. It is common to
precondition the linear system by the SPD precondition-
ing operator B ≈ A−1, in which case the generalized or
preconditioned conjugate gradient method [16] results.
Our purpose in this section is to briefly examine the al-
gorithm and its contraction properties. The Omin [17]
implementation of the CG method has the form:

Algorithm 2 (Preconditioned CG)

Let u0 ∈ R
n be given.

r0 = f − Au0, s0 = Br0, p0 = s0.
Do i = 0, 1, . . . until convergence:

αi = (ri, si)/(Api, pi)
ui+1 = ui + αip

i

ri+1 = ri − αiApi

si+1 = Bri+1

βi+1 = (ri+1, si+1)/(ri, si)
pi+1 = si+1 + βi+1p

i

End do.

The algorithm can be shown to converge in n steps since
the preconditioned operator BA is A-SPD [17]. Note
that if B = I , then this algorithm is exactly the Hestenes
and Stiefel algorithm. It can be shown (see for example
references [5, 6] for a more complete discussion and addi-
tional references) that the error in the conjugate gradient
method contracts according to the following formula:

‖ei+1‖A ≤ 2

(

√

κA(BA) − 1
√

κA(BA) + 1

)i+1

‖e0‖A,

where the generalized or A-condition number of the ma-
trix BA is defined as the quantity

κA(BA) = ‖BA‖A‖(BA)−1‖A =
λmax(BA)

λmin(BA)
.

It is not difficult to show (cf. references [5, 6]) that
the spectral radius of a linear method defined by a SPD
B, provided with an optimal relaxation parameter, is
given by:

δopt = 1 −
2

1 + κA(BA)
, (7)

whereas the CG contraction is bounded by:

δcg = 1 −
2

1 +
√

κA(BA)
. (8)

Assuming B 6= A−1, we always have κA(BA) > 1, so
we must have that δcg < δopt ≤ δ, where δ is the con-
traction rate of the linear method defined by B. This



NUMERICAL SOLUTION OF THE NONLINEAR POISSON-BOLTZMANN EQUATION 7

implies that it always pays in terms of an improved con-
traction number to use the conjugate gradient method
to accelerate a linear method; the question remains of
course whether the additional computational labor in-
volved will be amortized by the improvement.

Unfortunately, the convergence rates of both linear
methods and conjugate gradient methods depend on the
condition number κA(BA). When B is defined by the
standard linear methods or other approaches such as in-
complete factorizations, it is not difficult to show that
κA(BA) grows with the problem size, sometimes quite
rapidly, which results in the contraction rates (7) and (8)
worsening (approaching 1) as the problem size is in-
creased. Multilevel methods were created to solve ex-
actly this problem; in many cases, it can be shown that
κA(BA) remains bounded, independent of the problem
size, when the operator B is defined by a multigrid al-
gorithm.

The application of conjugate gradient methods to the
Poisson-Boltzmann equation is discussed by Davis and
McCammon [18], including comparisons with some clas-
sical iterative methods such as SOR. The conclusions of
their study were that conjugate gradient methods were
substantially more efficient than relaxation methods in-
cluding SOR, and that incomplete factorizations were
effective preconditioning techniques for the linearized
Poisson-Boltzmann equation. We showed in several re-
cent papers [5, 6, 14] that in fact for the problem sizes
typically considered, the advantage of conjugate gradi-
ent methods over SOR is not so clear if an efficient SOR
procedure is implemented, and if a near optimal param-
eter is available. Of course, if larger problem sizes are
consider, then the superior complexity properties of the
conjugate gradient methods in three-dimensions (cf. ref-
erences [5, 6] for a detailed discussion) will eventually
yield a more efficient technique than SOR.

In recent papers [5, 6, 14], we also considered sev-
eral more advanced preconditioners than considered in
by Davis and McCammon [18], including methods devel-
oped by van der Vorst and others [19], which employ spe-
cial orderings to improve vectorization during the back
substitutions. We presented experiments with a precon-
ditioned conjugate gradient method (implemented so as
to yield maximal vector lengths and high performance),
provided with four different preconditioners: (1) diag-
onal scaling; (2) an incomplete Cholesky factorization
(the method for which Davis and McCammon present
results [18]); (3) the same factorization but with a plane-
diagonal-wise ordering [19] allowing for some vectoriza-
tion of the backsolves; and (4) a vectorized modified in-
complete Cholesky factorization [19] with modification
parameter α = 0.95, which has an improved convergence
rate over standard ICCG. Experiments indicated that
the linear multilevel methods were superior to all of the
conjugate gradient methods, and the superiority grew

with the problem size.

Linear multilevel methods

Multilevel (or multigrid) methods are highly efficient
numerical techniques for solving the algebraic equa-
tions arising from the discretization of partial differential
equations. These methods were developed in direct re-
sponse to the deficiencies of the classical iterations and
conjugate gradient methods discussed in the previous
sections. Some of the early fundamental papers are are
due to Brandt [20] and Hackbusch [21], and a compre-
hensive analysis of the many different aspects of these
methods is given in the text by Hackbusch [22].

Consider the nested sequence of finite-dimensional
spaces R

n1 ⊂ R
n2 ⊂ · · · ⊂ R

nJ ≡ R
n. To formu-

late a multigrid method, we require prolongation opera-
tors Ik

k−1 mapping R
nk−1 into R

nk , restriction operators

Ik−1
k mapping R

nk into R
nk−1 , and coarse space prob-

lems Akuk = fk, where Ak maps R
nk into itself. We

also require smoothing operators Rk ≈ A−1
k . The pro-

longation typically corresponds to an interpolation, and
the restriction is taken as a multiple of the transpose,
Ik−1
k = cIk

k−1. We begin with the problem Au = f in the
finest space R

n, and in each space R
nk we must somehow

construct the approximating coarse system Akuk = fk

of fewer dimensions, the smoothing operators Rk ≈ A−1
k ,

and the transfer operators Ik−1
k and Ik

k−1 relating adja-
cent spaces.

If we can construct the various operators mentioned
above, then the multilevel or multigrid algorithm can be
stated in a very simple recursive fashion. For the linear
system Au = f in the finest space R

n, the algorithm
returns the approximate solution ui+1 after one iteration
of the method applied to the initial approximate ui.

Algorithm 3 (Symmetric Multilevel Method)

ui+1 = ML(J, ui, f)

where u1
k = ML(k, u0

k, fk) is defined recursively:

IF (k = 1) THEN:
(1) Direct solve: u1

1 = A−1
1 f1.

ELSE:
(1) Pre-smooth: wk = u0

k + RT
k (fk − Aku0

k).
(2) Correction: vk = wk

+Ik
k−1{ML(k − 1, 0, Ik−1

k [fk − Akwk ])}
(3) Post-smooth: u1

k = vk + Rk(fk − Akvk).
END.

The transpose RT
k of the post-smoothing operator Rk is

used for the pre-smoothing operator because it can be
shown that the resulting operator B defined implicitly
by the multigrid algorithm is symmetric; in other words,
multigrid can be viewed as the basic linear method (1),
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Figure 3: Various multilevel algorithms.

where the symmetric operator B is only defined implic-
itly. Therefore, the multigrid algorithm can also be used
as a preconditioner for the conjugate gradient method,
even though B is not explicitly available.

The procedure just outlined involving correcting with
the coarse space once each iteration is referred to as
the V-cycle [20]. Another variation is termed the W-
cycle, in which two coarse space corrections are per-
formed per level at each iteration. More generally, the
p-cycle would involve p coarse space corrections per level
at each iteration for some integer p ≥ 1. The full multi-
grid method [20] or nested iteration technique [22] begins
with the coarse space, prolongates the solution to a finer
space, performs a p-cycle, and repeats the process, until
a p-cycle is performed on the finest level. The methods
can be depicted as in Figure 3.

Various techniques have been proposed for construct-
ing the coarse problems Akuk = fk. We mention in
particular the references [23, 24, 25, 26], in which most
of the techniques currently in use, including those dis-
cussed below, were first discovered and developed. Note
that a simple discretization of the same differential equa-
tion, but on coarser meshes, is effective only in the case
of smooth coefficients. In the presence of discontinuous
coefficients, convergent multigrid methods can be con-
structed only if special care is taken in the construction
of the coarse space subproblems Akuk = fk, and in the
construction of the transfer operators Ik

k−1 and Ik−1
k .

The effectiveness of coefficient averaging techniques, ap-
plied to the linearized Poisson-Boltzmann equation, is
discussed in detail in Holst and Saied [14], and also in
references [5, 6]. A more robust approach is to alge-
braically enforce the variational conditions

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T . (9)

This technique is described in detail and applied to the
linearized Poisson-Boltzmann equation and related prob-
lems in references [5, 6]. While it is quite computa-
tionally complex to impose (9) algebraically (the expres-
sions for which require a symbolic manipulator such as
MAPLE), the advantage of this approach can be demon-
strated both theoretically and numerically [5, 6]. Note
however that for the linearized Poisson-Boltzmann equa-
tion, the less expensive coefficient averaging approach

has been shown to be sufficient to produce very efficient
multigrid methods for nearly all test problems we have
encountered, and for the purposes of this paper, we will
consider mainly methods based on coefficient averaging,
as presented in Holst and Saied [14].

In an earlier paper [14], we presented results for the
linearized Poisson-Boltzmann equation for a single mul-
tilevel method, which was selected from several multi-
level methods as the most efficient; several different mul-
tilevel methods for a more difficult jump discontinuity
test problem are compared in references [5, 6]. The par-
ticular multilevel method chosen in Holst and Saied [14]
for the linearized Poisson-Boltzmann equation was con-
structed from the following components (discussed in de-
tail in Holst and Saied [14] and in references [5, 6]).

A harmonic coefficient averaging technique was used
to create coefficients for the coarser mesh problems,
and a standard box method was used to discretize the
problem on the coarse mesh using the averaged coeffi-
cients. Operator-based prolongation was also employed.
The pre- and post-smoothing operators which we em-
ployed corresponded to red/black Gauss-Seidel itera-
tions, where each smoothing step consisted of ν sweeps,
with each sweep consisting of one sub-sweep with the red
points followed by one sub-sweep with the black points.
A variable v-cycle [27] approach to accelerating multi-
level convergence was employed, so that the number of
pre- and post-smoothing sweeps changes on each level;
in our implementation, the number of pre- and post-
smoothing sweeps at level k was given by ν = 2J−k, so
that one pre- and post-smoothing was performed on the
finest level k = J , and ν = 2J−1 sweeps on the coarsest
level k = 1, with the number increasing geometrically
on coarser levels. The coarse problem was solved with
the Hestenes-Stiefel conjugate gradient method (Algo-
rithm 2 with B = I). It was demonstrated in Holst
and Saied [14] that this multilevel methods was sub-
stantially more efficient than relaxation and conjugate
gradient methods for the linearized Poisson-Boltzmann
equation and similar problems.

NONLINEAR PBE METHODS

Studies of numerical solution techniques for the non-
linear Poisson-Boltzmann equation have employed non-
linear Gauss-Seidel methods [28], nonlinear SOR meth-
ods [13], nonlinear conjugate gradient methods [29], and
more recently, nonlinear multigrid methods [5, 6, 30].
Therefore, we will focus on these methods for the com-
parisons to inexact-Newton-multilevel methods in fol-
lowing sections. We first briefly describe these methods,
and then discuss what results were obtained with these
methods for the nonlinear Poisson-Boltzmann equation.
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Nonlinear relaxation methods

The classical linear methods discussed earlier, such as
Gauss-Seidel and SOR, can be extended in the obvious
way to nonlinear algebraic equations of the form (3). In
each case, the method can be viewed as a fixed-point
iteration:

un+1 = G(un).

Of course, implementations of these methods, which we
refer to as nonlinear Gauss-Seidel and nonlinear SOR
methods, now require the solution of a sequence of one-
dimensional nonlinear problems for each unknown in one
step of the method. Since the one-dimensional nonlinear
problems are often solved with Newton’s method, these
methods are also referred to as Gauss-Seidel-Newton and
SOR-Newton methods, meaning that the Gauss-Seidel
or SOR iteration is the main or outer iteration, whereas
the inner iteration is performed by Newton’s method.

The convergence properties of these types of meth-
ods, as well as a myriad of variations and related
methods, are discussed in detail in Ortega and Rhein-
boldt [31]. Note, however, that the same difficulty aris-
ing in the linear case also arises here: as the problem
size is increased (the mesh size is reduced), these meth-
ods converge more and more slowly. As a result, we will
consider alternative methods in a moment, such as non-
linear conjugate gradient methods, nonlinear multilevel
methods, and finally inexact-Newton methods.

Nonlinear Gauss-Seidel is used by Allison et al. [28]
for the nonlinear Poisson-Boltzmann equation, where a
nonlinear Gauss-Seidel procedure is developed for the
full nonlinear Poisson-Boltzmann equation, employing a
continuation method to handle the numerical difficulties
created by the exponential nonlinearity. Polynomial ap-
proximations of the exponential function are employed,
and the degree of the polynomial is continued from de-
gree one (linearized Poisson-Boltzmann equation) to de-
gree nineteen. At each continuation step, the nonlin-
ear Poisson-Boltzmann equation employing the weaker
nonlinearity is solved with nonlinear Gauss-Seidel itera-
tion. The final degree nineteen solution is then used as
an initial approximation for the full exponential nonlin-
ear Poisson-Boltzmann equation, and nonlinear Gauss-
Seidel is used to resolve the final solution. This proce-
dure, while perhaps one of the first numerical solutions
produced for the full nonlinear problem, is extremely
time-consuming.

An improvement is, as in the linear case, to employ a
nonlinear SOR iteration. The procedure works very well
for the nonlinear Poisson-Boltzmann equation in many
situations and is extremely efficient [13]; unfortunately,
there are cases where the iteration diverges [32, 13].
In particular, it is noted on page 443 of Nicholls and
Honig [13] that if the potential in the solvent (where the
exponential term is evaluated) passes a threshold value

of seven or eight, then the nonlinear SOR method they
propose diverges. We will present some experiments with
a nonlinear SOR iteration, provided with an experimen-
tally determined near optimal relaxation parameter, and
implemented with a red/black ordering and array ori-
ented data structures for high performance.

Nonlinear conjugate gradient methods

Let A be an SPD matrix, B(·) a nonlinear mapping from
R

n into R, and let (·, ·) denote an inner-product in R
n.

The following minimization problem:

Find u ∈ R
n such that J(u) = min

v∈Rn
J(v),

where

J(u) =
1

2
(Au, u) + B(u) − (f, u),

is equivalent to the associated zero-point problem:

Find u ∈ R
n such that F (u) = Au + N(u) − f = 0,

where N(u) = B′(u); this follows by simply differentiat-
ing J(u) to obtain the gradient mapping F (·) associated
with J(·). We will assume here that both problems are
uniquely solvable. A more detailed discussion of convex
functionals and their related gradient mappings can be
found in references [5, 6].

An effective approach for solving the zero-point prob-
lem, by exploiting the connection with the minimization
problem, is the Fletcher-Reeves version [33] of the non-
linear conjugate gradient method, which takes the form:

Algorithm 4 (Fletcher-Reeves Nonlinear CG)

Let u0 ∈ R
n be given.

r0 = f − N(u0) − Au0, p0 = r0.
Do i = 0, 1, . . . until convergence:

αi = (see below)
ui+1 = ui + αip

i

ri+1 = ri + N(ui) − N(ui+1) − αiApi

βi+1 = (ri+1, ri+1)/(ri, ri)
pi+1 = ri+1 + βi+1p

i

End do.

The directions pi are computed from the previous
direction and the new residual, and the steplength αi

is chosen to minimize the associated functional J(·) in
the direction pi. In other words, αi is chosen to min-
imize J(ui + αip

i), which is equivalent to solving the
one-dimensional zero-point problem:

dJ(ui + αip
i)

dαi
= 0.

Given the form of J(·) above, we have that

J(ui + αip
i) =

1

2
(A(ui + αip

i), ui + αip
i)

+B(ui + αip
i) − (f, ui + αip

i)
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A simple differentiation with respect to αi (and some
simplification) gives:

dJ(ui + αip
i)

dαi
= αi(Api, pi) − (ri, pi)

+(N(ui + αip
i) − N(ui), pi),

where ri = f − N(ui) − Aui is the nonlinear residual.
The second derivative with respect to αi will be useful
also, which is easily seen to be:

d2J(ui + αip
i)

dα2
i

= (Api, pi) + (N ′(ui + αip
i)pi, pi).

Now, Newton’s method for solving the zero-point prob-
lem for αi takes the form:

αm+1
i = αm

i − δm

where

δm =
dJ(ui + αm

i pi)/dαi

d2J(ui + αm
i pi)/dα2

i

=
αm

i (Api, pi) − (ri, pi) + (N(ui + αm
i pi) − N(ui), pi)

(Api, pi) + (N ′(ui + αm
i pi)pi, pi)

.

The quantities (Api, pi) and (ri, pi) can be computed
once at the start of each line search for αi, each requir-
ing an inner-product (Api is available from the CG it-
eration). Each Newton iteration for the new αm+1

i then
requires evaluation of the nonlinear term N(ui + αm

i pi)
and inner-product with pi, as well as evaluation of the
derivative mapping N ′(ui + αip

i), application to pi, fol-
lowed by inner-product with pi.

In the case that N(·) arises from the discretization
of a nonlinear partial differential equation and is of di-
agonal form, meaning that the j-th component function
of the vector N(·) is a function of only the j-th compo-
nent of the vector of nodal values u, or Nj(u) = Nj(uj),
then the resulting Jacobian matrix N ′(·) of N(·) is a di-
agonal matrix. This situation occurs with box-method
discretizations of the nonlinear Poisson-Boltzmann equa-
tion and similar equations. As a result, computing the
term (N ′(ui + αip

i)pi, pi) can be performed with fewer
operations than two inner-products.

The total cost for each Newton iteration (beyond the
first) is then evaluation of N(·) and N ′(·), and some-
thing less than three inner-products. Therefore, the line
search can be performed fairly inexpensively in certain
situations. If alternative methods are used to solve the
one-dimensional problem defining αi, then evaluation of
the Jacobian matrix can be avoided altogether, although
the Jacobian matrix is cheaply computable in the par-
ticular applications we are interested in here.

Note that if the nonlinear term N(·) is absent, then
the zero-point problem is linear and the associated en-
ergy functional is quadratic:

F (u) = Au − f = 0, J(u) =
1

2
(Au, u) − (f, u).

In this case, the Fletcher-Reeves CG algorithm reduces
to exactly the Hestenes-Stiefel [15] linear conjugate gra-
dient algorithm (Algorithm 2 discussed earlier, with the
preconditioner B = I). The exact solution to the linear
problem Au = f , as well as to the associated minimiza-
tion problem, can be reached in no more than n steps,
where n is the dimension of the space R

n (see Theo-
rem 8.6.1 in Ortega and Rheinboldt [31]). The calcula-
tion of the steplength αi no longer requires the iterative
solution of a one-dimensional minimization problem with
Newton’s method, since:

dJ(ui + αip
i)

dαi
= αi(Api, pi) − (ri, pi) = 0

yields an explicit expression for the αi which minimizes
the functional J in the direction pi:

αi =
(ri, pi)

(Api, pi)
.

In the recent paper of Luty et. al [29], a nonlinear
conjugate gradient method is applied to the nonlinear
Poisson-Boltzmann equation. The conclusions of their
study were that the Fletcher-Reeves variant of the non-
linear conjugate gradient method, which is the natural
extension of the Hestenes-Stiefel algorithm they had em-
ployed for the linearized Poisson-Boltzmann equation in
an earlier study [18], was an effective technique for the
nonlinear Poisson-Boltzmann equation. We note that
it is remarked on page 1117 of the paper by Luty et
al. [29] that solution time for the nonlinear conjugate
gradient method on the full nonlinear problem is five
times greater than for the linear method applied to the
linearized problem. We will present experiments with
the standard Fletcher-Reeves nonlinear conjugate gra-
dient method, Algorithm 4, which they employed. Our
implementation is aggressively optimized for high per-
formance.

Nonlinear multilevel methods

Fully nonlinear multilevel methods were developed origi-
nally by Brandt [20] and Hackbusch [34]. These methods
attempt to avoid Newton-linearization by accelerating
nonlinear relaxation methods with multiple coarse prob-
lems. We are again concerned with the problem:

F (u) = Au + N(u) − f = 0.
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Let us introduce the notation M(·) = A + N(·), which
yields the equivalent problem:

M(u) = f.

Consider a nested sequence of finite-dimensional spaces
R

n1 ⊂ R
n2 ⊂ · · · ⊂ R

nJ ≡ R
n, where R

nJ is the finest
space and R

n1 the coarsest space, each space being con-
nected to the others via prolongation and restriction
operators, exactly as in the linear case described ear-
lier. The full approximation scheme [20] or the nonlinear
multigrid method [22] has the following form:

Algorithm 5 (Nonlinear Multilevel Method)

ui+1 = NML(J, ui, f)

where u1
k = NML(k, u0

k, fk) is defined recursively:

IF (k = 1) THEN:
(1) Solve directly: u1

1 = M−1
1 (f1).

ELSE:

(1) Restriction: uk−1 = Ik−1
k u0

k,

rk−1 = Ik−1
k (fk − Mk(u0

k)).
(2) Coarse source term:

fk−1 = Mk−1(uk−1) − rk−1.
(3) Coarse problem:

wk−1 = uk−1 − NML(k − 1, uk−1, fk−1).
(4) Prolongation: wk = Ik

k−1wk−1.
(5) Damping parameter: λ = (see below).
(6) Correction: vk = u0

k + λwk.
(7) Post-smoothing: u1

k = Sk(vk , fk).
END.

The practical aspects of this algorithm and varia-
tions are discussed by Brandt [20], and a convergence
theory has been developed by Hackbusch [22], and more
recently by Hackbusch and Reusken [35, 36, 37, 38].

Note that we have introduced a damping parameter
λ in the coarse space correction step of Algorithm 5.
In fact, without this damping parameter, the algorithm
fails for difficult problems such as those with exponential
or rapid nonlinearities. To explain how the damping
parameter is chosen, we refer back to our discussion of
nonlinear conjugate gradient methods. We begin with
the following energy functional:

Jk(uk) =
1

2
(Akuk, uk)k + Bk(uk) − (fk, uk)k.

As we have seen, the resulting minimization problem:

Find uk ∈ R
nk such that Jk(uk) = min

vk∈R
nk

Jk(vk)

is equivalent to the associated zero-point problem:

Find uk ∈ R
nk such that Fk(uk) = 0,

where Fk(uk) = Akuk + Nk(uk) − fk = 0, and where
Nk(uk) = B′

k(uk). In other words, Fk(·) is a gradient

mapping of the associated energy functional Jk(·), where
we assume that both problems above are uniquely solv-
able.

In Hackbusch and Reusken [36], it is shown under
certain conditions that the prolongated coarse space cor-
rection wk = Ik

k−1wk−1 is a descent direction for the
functional Jk(·), meaning that there exists some λ > 0
such that

Jk(uk + λwk) < Jk(uk).

In other words, the nonlinear multigrid method can be
made globally convergent if a damping parameter λ is
found for each coarse grid correction. We can find
such a λ by minimizing Jk(·) along the descent direc-
tion wk, which is equivalent to solving the following one-
dimensional problem:

dJ(uk + λwk)

dλ
= 0.

As in the discussion of the nonlinear conjugate gradient
method, the one-dimensional problem can be solved with
Newton’s method:

λm+1 = λm −
X

Y
,

where (exactly as for the nonlinear CG method)

X = λm(Akwk, wk)k − (rk , wk)k + (Nk(uk + λmwk)

−Nk(uk), wk)k,

Y = (Akwk, wk)k + (N ′
k(uk + λmwk)wk, wk)k.

Now, recall that the “direction” from the coarse space
correction has the form: wk = Ik

k−1wk−1. The expres-
sions for X and Y then take the form:

X = λm(AkIk
k−1wk−1, I

k
k−1wk−1)k − (rk, Ik

k−1wk−1)k

+ (Nk(uk + λmIk
k−1wk−1) − Nk(uk), Ik

k−1wk−1)k,

Y = (AkIk
k−1wk−1, I

k
k−1wk−1)k

+ (N ′
k(uk + λmIk

k−1wk−1)I
k
k−1wk−1, I

k
k−1wk−1)k .

It is not difficult to show [36] that certain finite el-
ement discretizations of the nonlinear elliptic problem
we are considering, on two successively refined meshes,
satisfy the following so-called nonlinear variational con-
ditions:

Ak−1 + Nk−1(·) = Ik−1
k AkIk

k−1 + Ik−1
k Nk(Ik

k−1·),

Ik−1
k = (Ik

k−1)
T . (10)

As in the linear case, these conditions are usually re-
quired [35, 36] to show theoretical convergence results
about nonlinear multilevel methods. Unfortunately, un-
like the linear case, there does not appear to be a way
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to enforce these conditions algebraically (at least for the
strictly nonlinear term Nk(·)) in an efficient way. There-
fore, if we employ discretization methods other than fi-
nite element methods, or cannot approximate the inte-
grals accurately (such as if discontinuities occur within
elements on coarser levels) for assembling the discrete
nonlinear system, then the variational conditions will be
violated. There is then no guarantee that the coarse grid
correction is a descent direction. In other words, in the
presence of coefficient discontinuities and/or non-finite
element discretizations, the nonlinear multigrid method
may not converge, and may not be a fully reliable, robust
method.

Nonlinear multigrid methods have been considered
by Oberoi and Allewell [30] and in references [5, 6]
for the nonlinear Poisson-Boltzmann equation. For
simple Poisson-Boltzmann equation problems, it has
been shown to be an efficient method, and appears
to demonstrate O(n) complexity as does linear multi-
grid [5, 6, 30]. However, experiments performed else-
where (see references [5, 6]) and below indicate that
even a quite sophisticated implementation of nonlin-
ear multigrid may diverge for difficult problems such
as the nonlinear Poisson-Boltzmann equation with com-
plex, large, or highly charged molecules. The inexact-
Newton-multilevel methods we propose in the next sec-
tion overcome these difficulties, and converge even for
the most difficult problems.

The method we employ for our numerical experi-
ments below is the nonlinear multilevel method pre-
sented earlier as Algorithm 5. All components required
for this nonlinear method are as in the linear harmoni-
cally averaged multilevel method described in Holst and
Saied [14] and in Holst [5, 6], except for the following
required modifications. The pre- and post-smoothing
iterations correspond to nonlinear Gauss-Seidel, where
each smoothing step consisting of ν sweeps; as in the
linear case, we employ a variable v-cycle so that ν in-
creases as coarser levels are reached. Nonlinear operator-
based prolongation [5, 6] is also employed for nested it-
eration; otherwise, linear operator-based prolongation is
used. The coarse problem is solved with the nonlinear
conjugate gradient method, and a damping parameter,
as described earlier is required; otherwise, the method
does not converge for rapid nonlinearities such as those
present in the nonlinear Poisson-Boltzmann equation.

INEXACT-NEWTON

METHODS

Given the nonlinear operator F : D ⊂ R
n 7→ R

n, a
generalization of the classical one-dimensional Newton’s
method for solving the problem F (u) = 0 is as follows:

F ′(un)vn = −F (un) (11)

un+1 = un + vn, (12)

where F ′(un) is the Jacobian matrix of partial deriva-
tives:

F ′(u) = ∇F (u)T =

[

∂Fi(u)

∂uj

]

,

where F (u) = (F1(u), . . . , Fm(u))T , and where the func-
tion u = (u1, . . . , un)T . In other words, the Newton
iteration is simply a special fixed-point iteration:

un+1 = G(un) = un − F ′(un)−1F (un). (13)

There are several variations of the standard (or full)
Newton iteration (11)–(12) commonly used for nonlinear
algebraic equations which we mention briefly. A quasi-
Newton method refers to a method which uses an ap-
proximation to the true Jacobian matrix for solving the
Newton equations. A truncated-Newton method uses the
true Jacobian matrix in the Newton iteration, but solves
the Jacobian system only approximately, using an itera-
tive linear solver in which the iteration is stopped early
or truncated. Inexact- or approximate-Newton methods
refers to all of these types of methods collectively, where
in the most general case an approximate Newton direc-
tion is produced in some unspecified fashion.

The inexact-Newton approach is of interest for the
nonlinear Poisson-Boltzmann equation for the following
reasons. First, in the case of problems such as the non-
linear Poisson-Boltzmann equation, which consist of a
leading linear term plus a nonlinear term which does
not depend on derivatives of the solution, the nonlinear
algebraic equations generated by discretization have the
form:

F (u) = Au + N(u) − f = 0.

The matrix A is SPD, and the nonlinear term N(·)
is often simple, and in fact is often diagonal, meaning
that the j-th component of the vector function N(u)
is a function of only the j-th entry of the vector u, or
Nj(u) = Nj(uj); this occurs for example in the case of
a box-method discretization of the Poisson-Boltzmann
equation and similar equations. Further, it is often the
case that the derivative N ′(·) of the nonlinear term N(·),
which will be a diagonal matrix due to the fact that N(·)
is of diagonal form, can be computed (often analytically)
at low expense. If this is the case, then the entire true
Jacobian matrix is available at low cost, since :

F ′(u) = A + N ′(u).

For the nonlinear Poisson-Boltzmann equation, we have
that Ni(u) = Ni(ui) = meas(τ (i))κ̄(xi) sinh(ui), so that
the contribution to the Jacobian can be computed ana-
lytically:

N ′
i (u) = N ′

i(ui) = meas(τ (i))κ̄(xi) cosh(ui).
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A second reason for our interest in the inexact-
Newton approach is that the efficient multilevel methods
for the linearized Poisson-Boltzmann equation [5, 6, 14]
can be used effectively for the Jacobian systems; this is
because the Jacobian F ′(u) is essentially the linearized
Poisson-Boltzmann operator, where only the diagonal
Helmholtz-like term N ′(·) changes from one Newton it-
eration to the next. Our fast linear multilevel methods
should be effective as inexact Jacobian system solvers,
and this has been demonstrated numerically in earlier
papers [5, 6, 14] and will be again later in this paper.

The hope is that solving the Jacobian systems only
approximately (requiring perhaps a few more Newton
iterations due to the inexactness of the Newton direc-
tion), using a fast linear multilevel method, will be less
costly in terms of execution time than employing a full
Newton method (requiring fewer Newton iterations since
the direction is exact), and solving the Jacobian systems
exactly at each iteration. We will see that this is the
case later in the paper, and in fact the inexact approach
may be substantially more efficient than the full Newton
approach.

However, there are two important considerations
when using an inexact Newton method. First, how “in-
exactly” can one solve the Jacobian system and still con-
verge at a desirably fast rate, and how can one enforce
global convergence properties for the overall Newton it-
eration, so that the method will be robust. We state
more precisely, and then answer, both of these ques-
tions in the next two sections, and then present the re-
sulting global inexact-Newton-multilevel method in the
third section.

Inexactness and superlinear convergence

Let u ∈ R
n. A sequence {un} is said to converge strongly

to u if limn→∞ ‖u − un‖ = 0. There are three basic
important notions regarding the rate of convergence of a
sequence of iterates produce by Newton’s method, and
we state them below as definitions.

Definition 1 The sequence {un} converges Q-linearly
to u if there exists c ∈ [0, 1) and n̄ ≥ 0 such that for
n ≥ n̄,

‖u− un+1‖ ≤ c‖u − un‖.

Definition 2 The sequence {un} converges Q-super-
linearly to u if there exists {cn} such that cn → 0 and:

‖u − un+1‖ ≤ cn‖u − un‖.

Definition 3 The sequence {un} converges at rate Q-
order(p) to u if there exists p > 1, c ≥ 0, n̄ ≥ 0 such
that for n ≥ n̄,

‖u− un+1‖ ≤ c‖u − un‖p.

The following notion of continuity is also necessary.

Definition 4 The mapping F : D ⊂ R
n 7→ R

n is called
Hölder-continuous on D with constant γ and exponent p
if there exists γ ≥ 0 and p ∈ (0, 1] such that

‖F (u) − F (v)‖ ≤ γ‖u− v‖p ∀u, v ∈ D ⊂ H.

If p = 1, then F is called uniformly Lipschitz-continuous
on D, with Lipschitz constant γ. If in addition γ < 1,
then F is called a contraction mapping with contraction
constant γ.

If an initial approximation is close enough to the
true solution u, then under certain conditions it can be
shown that [39] that a full Newton’s method will con-
verge, and do so Q-superlinearly. The convergence rate
will not be so advantageous if an inexact Newton method
is employed. However, it can be shown that the con-
vergence behavior of these inexact-Newton methods is
similar to the standard Newton’s method, and Newton-
Kantorovich-like theorems can be established (see Chap-
ter 18 of Kantorovich and Akilov [39] and below).

In particular, Quasi-Newton methods are studied in
Dennis and Moré [40], and a “characterization” theorem
is established for the sequence of approximate Jacobian
systems. This theorem establishes sufficient conditions
on the sequence {Bi}, where Bi ≈ F ′, to ensure su-
perlinear convergence of a quasi-Newton method. An
interesting result which they obtained is that the “con-
sistency” condition is not required, meaning that the
sequence {Bi} need not converge to the true Jacobian
F ′(·) at the root of the equation F (u) = 0, and su-
perlinear convergence can still be obtained. In a later
paper [41], this characterization theorem is rephrased in
a geometric form, showing essentially that the full or
true Newton step must be approached, asymptotically,
in both length and direction, to attain superlinear con-
vergence in a quasi-Newton iteration.

Inexact-Newton methods are studied directly by
Dembo et al. [42]. Their motivation is the use of it-
erative solution methods for approximate solution of the
true Jacobian systems. They establish conditions on the
accuracy of the inexact Jacobian solves at each Newton
iteration which will ensure superlinear convergence. The
inexact-Newton method is analyzed in the form:

F ′(un)vn = −F (un) + rn,
‖rn‖

‖F (un)‖
≤ ηn,

un+1 = un + vn.

In other words, the quantity rn, which is simply the
residual of the Jacobian linear system, indicates the in-
exactness allowed in the approximate linear solve, and
is exactly what one would monitor in a linear itera-
tive solver. It is established that if the forcing sequence
ηn < 1 for all n, then the above method is locally con-
vergent. Their main result is the following theorem.
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Theorem 2 Assume there exists a unique u such that
F (u) = 0, that the inexact-Newton iterates {un} con-
verge to u, and that both F (·) and F ′(·) are sufficiently
smooth. Then:

1. The convergence is superlinear if: limn→∞ ηn = 0.

2. The convergence is at least Q-order(1+p) if F ′(u)
is Hölder continuous with exponent p, and

ηn = O(‖F (un)‖p), as n → ∞.

Proof. See Dembo et al. [42].

As a result of this theorem, they suggest the tolerance
rule:

ηn = min

{

1

2
, C‖F (un)‖p

}

, 0 < p ≤ 1, (14)

which guarantees Q-order convergence of at least 1 + p.

Inexactness and global convergence

As noted in the previous section, Newton-like methods
converge if the initial approximation is “close” to the so-
lution; different convergence theorems require different
notions of closeness. If the initial approximation is close
enough to the solution, then superlinear or Q-order(p)
convergence occurs. However, the fact that these the-
orems require a good initial approximation is also indi-
cated in practice: it is well known that Newton’s method
will converge slowly or fail to converge at all if the initial
approximation is not good enough.

On the other hand, methods such as those used
for unconstrained minimization can be considered to be
“globally” convergent methods, although their conver-
gence rates are often extremely poor. One approach to
improving the robustness of a Newton iteration without
loosing the favorable convergence properties close to the
solution is to combine the iteration with a global min-
imization method. In other words, we can attempt to
force global convergence of Newton’s method by requir-
ing that:

‖F (un+1)‖ < ‖F (un)‖,

meaning that we require a decrease in the value of the
function at each iteration. But this is exactly what
global minimization methods, such as the nonlinear con-
jugate gradient method, attempt to achieve: progress
toward the solution at each step.

More formally, we wish to define a minimization
problem, such that the solution of the zero-point prob-
lem we are interested in also solves the associated mini-
mization problem. Let us define the following two prob-
lems:

P1: Find u ∈ R
n such that F (u) = 0.

P2: Find u ∈ R
n such that J(u) = minv∈Rn J(v),

where J(·) is a functional, mapping R
n into R. We as-

sume that Problem 2 has been defined so that the unique
solution to Problem 1 is also the unique solution to Prob-
lem 2; note that in general, there may not exist a natural
functional J(·) for a given F (·), although we will see in
a moment that it is always possible to construct an ap-
propriate functional J(·).

A descent direction for the functional J(·) at the
point u is any direction v such that the directional
derivative of J(·) at u in the direction v is negative, or
(J ′(u), v) < 0, where (·, ·) is an inner-product in R

n, and
J ′(·) is the derivative of the functional J(·):

J ′(u) = ∇J(u)T =

(

J(u)

∂u1
, . . . ,

J(u)

∂un

)T

.

If v is a descent direction, then it is not difficult to show
(Theorem 8.2.1 in Ortega and Rheinboldt [31]) there ex-
ists λ > 0 such that:

J(u + λv) < J(u). (15)

This follows from a generalized Taylor expansion (cf.
page 255 in Kesavan [43]), since

J(u + λv) = J(u) + λ(J ′(u), v) + O(λ2).

If λ is sufficiently small and (J ′(u), v) < 0 holds (v is
a descent direction), then clearly J(u + λv) < J(u). In
other words, if a descent direction can be found at the
current solution un, then an improved solution un+1 can
be found for some steplength in the descent direction v;
i.e., by performing a one-dimensional line search for λ
until (15) is satisfied.

Therefore, if we can show that the Newton direction
is a descent direction, then performing a one-dimensional
line search in the Newton direction will always guarantee
progress toward the solution. In the case that we define
the functional as:

J(u) =
1

2
‖F (u)‖2 =

1

2
(F (u), F (u)),

we can show that the Newton direction is a descent direc-
tion. While the following result is easy to show for R

n,
it is also true in the general case of a Hilbert space [5, 6]
when ‖ · ‖ = (·, ·)1/2:

J ′(u) = F ′(u)T F (u).

The Newton direction at u is simply v = −F ′(u)−1F (u),
so if F (u) 6= 0, then:

(J ′(u), v) = −(F ′(u)T F (u), F ′(u)−1F (u))

= −(F (u), F (u)) < 0.

Therefore, the Newton direction is always a descent di-
rection for this particular choice of J(·), and by the in-
troduction of the damping parameter λ, the Newton it-
eration can be made globally convergent in the above
sense.
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Consider now the inexact Newton method; since only
the exact Newton direction is known to be a descent di-
rection, we have no assurance that the inexact direction
will give descent, so the global properties gained by a
damping parameter are lost. We can still attempt to in-
troduce the damping parameter λ as before, so that the
resulting algorithm for solving F (u) = 0 is:

Algorithm 6 (Damped-Inexact-Newton Method)

F ′(un)vn = −F (un) + rn,
‖rn‖

‖F (un)‖
≤ ηn,

un+1 = un + λnvn,

where we have left as unspecified how “large” the resid-
ual rn is allowed to be, and how the damping parameters
λn are chosen.

The following theorem from references [5, 6] gives
a necessary and sufficient condition on the residual rn

of the Jacobian system system for the resulting inexact
Newton direction to be a descent direction. This will
allow us to use the damping parameter to achieve global
convergence properties in the inexact-Newton algorithm.

Theorem 3 Inexact-Newton (Algorithm 6) yields a de-
scent direction v at u if and only if the residual of the
Jacobian system, r = F ′(u)v + F (u), satisfies:

(F (u), r) < (F (u), F (u)).

Proof. We remarked earlier that an equivalent minimiza-
tion problem (appropriate for Newton’s method) to as-
sociate with the zero point problem F (u) = 0 is given
by minu∈Rn J(u), where J(u) = (F (u), F (u))/2. We
also noted that the derivative of J(u) can be written as
J ′(u) = F ′(u)T F (u). Now, the direction v is a descent
direction for J(u) if and only if (J ′(u), v) < 0. The exact
Newton direction is v = −F ′(u)−1F (u), and as shown
earlier is always a descent direction. Consider now the
inexact direction satisfying:

F ′(u)v = −F (u) + r, or v = F ′(u)−1[r − F (u)].

This inexact direction is a descent direction if and only
if:

(J ′(u), v) = (F ′(u)T F (u), F ′(u)−1[r − F (u)])

= (F (u), r − F (u))

= (F (u), r) − (F (u), F (u))

< 0,

which is true if and only if the residual of the Jacobian
system r satisfies:

(F (u), r) < (F (u), F (u)).

This leads to the following simple sufficient condition for
descent.

Corollary 4 Inexact Newton (Algorithm 6) yields a de-
scent direction v at the point u if the residual of the Ja-
cobian system, r = F ′(u)v + F (u), satisfies:

‖r‖ < ‖F (u)‖.

Proof. From the proof of Theorem 3 we have:

(J ′(u), v) = (F (u), r) − (F (u), F (u))

≤ ‖F (u)‖‖r‖ − ‖F (u)‖2,

where we have employed the Cauchy-Schwarz inequality.
Therefore, if ‖r‖ < ‖F (u)‖, then the rightmost term is
clearly negative (unless F (u) = 0), so that v is a descent
direction.

The sufficient condition presented as Corollary 4 ap-
pears in references [5, 6], and also as a lemma in [44].
Note that most stopping criteria for the Newton iter-
ation involve evaluating F (·) at the previous Newton
iterate un. The quantity F (un) will have been com-
puted during the computation of the previous Newton
iterate un, and the tolerance for un+1 which guarantees
descent requires (F (un), r) < (F (un), F (un)) by Theo-
rem 3. This involves only the inner-product of r and
F (un), so that enforcing this tolerance requires only an
additional inner-product during the Jacobian linear sys-
tem solve, which for n unknowns introduces an addi-
tional n multiplies and n additions. In fact, a scheme
may be employed in which only a residual tolerance re-
quirement for superlinear convergence is checked until
an iteration is reached in which it is satisfied. At this
point, the descent direction tolerance requirement can
be checked, and additional iterations will proceed with
this descent stopping criterion until it too is satisfied. If
the linear solver reduces the norm of the residual mono-
tonically (such as any of the linear methods discussed
earlier), then the first stopping criterion need not be
checked again.

In other words, this adaptive Jacobian system stop-
ping criterion, enforcing a tolerance on the residual for
local superlinear convergence and ensuring a descent di-
rection at each Newton iteration, can be implemented
at the same computational cost as a simple check on the
norm of the residual of the Jacobian system.

Alternatively, the sufficient condition given in Corol-
lary 4 may be employed at no additional cost, since
only the residual norm need be computed, which is also
required to insure superlinear convergence using Theo-
rem 2.

Inexact-Newton-MG for the PBE

Discretization of the nonlinear Poisson-Boltzmann equa-
tion (1) with the box-method discussed earlier produces
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a set of n nonlinear algebraic equations in n unknowns
of the form (3), which we repeat here:

F (u) = Au + N(u) − f = 0.

The “holy grail” for this problem is an algorithm which
(1) always converges, and (2) has optimal complexity,
which in this case means O(n).

As we have just seen, the inexact-Newton method
can be made essentially globally convergent with the in-
troduction of a damping parameter. In addition, close
to the root, inexact-Newton has at least superlinear con-
vergence properties thanks to Theorem 2. If a method
with linear convergence properties is used to solve the
Jacobian systems at each Newton iteration, and the com-
plexity of the linear solver is the dominant cost of each
Newton iteration, then the complexity properties of the
linear method will determine the complexity of the re-
sulting Newton iteration asymptotically. With an effi-
cient inexact solver such as a multilevel method for the
early damped iterations, employing a more stringent tol-
erance for the later iterations as the root is approached,
a very efficient yet robust nonlinear iteration should re-
sult; in fact, if the linear method behaves as O(n), then
a superlinearly-convergent nonlinear iteration should as
well.

The idea here, motivated by the work of Bank and
Rose [45, 46], is to combine the robust damped inexact-
Newton methods with the fast linear multilevel solvers
developed by Holst and Saied [14] and Holst [5, 6] for
the inexact Jacobian system solves. Combination with
linear multilevel iterative methods for the semiconduc-
tor problem has been considered by Bank and Rose [46],
along with questions of complexity. In a paper of Bank
and Rose [45], an analysis of inexact-Newton methods
is performed, where a damping parameter has been in-
troduced. A quite sophisticated algorithm GLOBAL is
constructed, enforcing both global and superlinear con-
vergence properties; the sufficient descent condition es-
tablished above is implicitly imbedded in their algorithm
GLOBAL.

We propose the following alternative globally conver-
gent inexact-Newton algorithm which is easy to under-
stand and implement, based on the simple necessary and
sufficient descent conditions established in the previous
section.

Algorithm 7 (Damped-Inexact-Newton method)

(1) Inexact solve: F ′(un)vn = −F (un) + rn,
TST (rn) = TRUE,

(2) Correction: un+1 = un + λnvn,

where λn and TST (rn) are defined as:

TST (rn) : IF: ‖rn‖ ≤ C‖F (un)‖p+1, C, p > 0,
(local Q-order(1+p) convergence)

AND: (F (un), rn) < (F (un), F (un))
(guaranteed descent)

THEN: TST ≡ TRUE
ELSE: TST ≡ FALSE.

λn: ‖F (un + λnvn)‖ ≤ ‖F (un)‖ by line search;
Always possible if TST (rn) = TRUE.
The full inexact-Newton step (λn = 1)
is always tried first.

An alternative less expensive TST (rn) is as follows:

TST (rn) : IF: ‖rn‖ ≤ C‖F (un)‖p+1, C, p > 0,
(local Q-order(1+p) convergence)

AND: ‖rn‖ < ‖F (un)‖
(guaranteed descent)

THEN: TST ≡ TRUE
ELSE: TST ≡ FALSE.

In Algorithm 7, the second condition in the first
TST (·) procedure is the necessary and sufficient con-
dition for the inexact-Newton direction to be a descent
direction, established in Theorem 3. The second con-
dition in the alternate TST (·) procedure is the weaker
sufficient condition established in Corollary 4. Note that,
in early iterations when Q-order(1+p) for p > 0 is not
to be expected, just satisfying one of the descent condi-
tions is (necessary and) sufficient for progress toward the
solution. Algorithm 7 decouples the descent and super-
linear convergence conditions, and would allow for the
use of only the weakest possible test of (F (un), rn) <
(F (un), F (un)) far from the solution, ensuring progress
toward the solution with the least amount of work per
Newton step.

Note also that the Q-order(1+p) condition

‖rn‖ ≤ C‖F (un)‖p+1

does not guarantee a descent direction, so that it is in-
deed important to satisfy the descent condition sepa-
rately. The Q-order(1+p) condition will impose descent
if

C‖F (un)‖p+1 < ‖F (un)‖,

which does not always hold. If one is close to the so-
lution, so that ‖F (un)‖ < 1, and if C ≤ 1, then the
Q-order(1+p) condition will imply descent. By this last
comment, we see that if ‖F (un)‖ < 1 and C ≤ 1, then
the full inexact-Newton step is a descent direction, and
since we attempt this step first, we see that our algorithm
reduces to the algorithm studied by Dembo et al. [42]
near the solution; therefore, Theorem 2 above applies to
Algorithm 7 near the solution without modification.

Note that due to the special form of the nonlin-
ear operator arising in the discrete nonlinear Poisson-
Boltzmann equation, the damping step can be imple-
mented in a surprisingly efficient manner. During the
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one-dimensional line search for the parameter λn, we
continually check for satisfaction of the inequality:

‖F (un + λnvn)‖ < ‖F (un)‖.

The term on the right is available from the previous New-
ton iteration. The term on the left, although it might ap-
pear to involve computing the full nonlinear residual, in
fact can avoid the operator-vector product contributed
by the linear term. Simply note that

F (un + λnvn) = A[un + λnvn] + N(un + λnvn) − f

= [Aun − f ] + λn[Avn] + N(un + λnvn).

The term [Aun−f ] is available from the previous Newton
iteration, and [Avn] need be computed only once at each
Newton step. Computing F (un+λnvn) for each damping
step beyond the first requires only the “saxpy” operation
[Aun −f ]+λn[Avn] for the new damping parameter λn,
and evaluation of the nonlinear term at the new damped
solution, N(un + λnvn).

For the numerical comparisons with other methods,
we employ Algorithm 7, taking p = 1 and C = 1.0×10−2

in the procedure TST (·), using the less expensive, suf-
ficient descent condition form of the TST (·) procedure.
The Jacobian system is solved inexactly at each step to
the residual tolerance specified by TST (·) by employ-
ing the linear multilevel we designed for the linearized
Poisson-Boltzmann equation [5, 6, 14]. The damping pa-
rameters λn are selected by a standard line search tech-
nique. The result is an extremely robust and efficient
numerical method for the nonlinear Poisson-Boltzmann
equation, as we will see shortly.

SOME TEST PROBLEMS

We describe briefly the nonlinear Poisson-Boltzmann
equation test problems which we use to numerically eval-
uate and compare the methods which have been pro-
posed for the nonlinear Poisson-Boltzmann equation.
We also describe a test problem which has a rapid non-
linearity and very large jump discontinuities in the co-
efficients, which will be used to evaluate some of the
multilevel techniques.

The nonlinear PBE

Consider a very broad range of possible temperatures
T ∈ [200K, 400K], a broad range of possible ionic
strengths Is ∈ [0, 10], and the following representative
polygonal domain:

Ω = [xmin, xmax] × [ymin, ymax] × [zmin, zmax],

where the diameter of Ω is on the order of 10
o

A to 500
o

A.
We assume that the set of discrete charges {x1, . . . ,xNm

}

representing the molecule lie well within the domain, and
hence far from the boundary Γ of Ω. The nonlinear
Poisson-Boltzmann equation for the dimensionless po-
tential u(x) then has the form:

−∇ · (ε(x)∇u(x)) + κ̄(x) sinh(u(x))

= C

Nm
∑

i=1

ziδ(x − xi), in Ω ⊂ R
3,

u(x) =
C

4πεw

Nm
∑

i=1

[zie
−κ̄(x)|x−xi|/

√
εw ]/|x − xi|, on Γ,

where C = 4πe2
c/k−1

B T−1, and εw = 80. We have em-
ployed one of the known analytical solutions for the lin-
earized problem to obtain the boundary condition on Γ
appearing above. As remarked earlier, this is commonly
done; see for example Tanford [4] or in references [5, 6]
for more detailed discussions of analytical solutions.

It is easy to show [5, 6] that the problem coefficients
satisfy the following bounds for the given temperature
and ionic strength ranges:

1. 2 ≤ ε(x) ≤ 80.

2. 0 ≤ κ̄2(x) ≤ 127.0.

3. 5249.0 ≤ C ≤ 10500.0.

4. −1 ≤ zi ≤ 1.

The nonlinear Poisson-Boltzmann problem will then be
completely defined by specifying the following quantities:

• xmin, xmax, ymin, ymax, zmin, zmax; the domain.

• ε(x); the electrostatic molecular surface.

• κ̄(x); defined by ionic strength and exclusion layer.

• C; constant depending only on the temperature T .

• {x1, . . . ,xNm
}; the charge locations.

• {z1, . . . , zNm
}; the associated fractional charges.

For all of our molecule test problems, we use T = 298
which determines the constant C; this is a common pa-
rameter setting for these types of problems. The domain
geometry will be defined by the particular molecule, as
well as the parameters ε(x) and κ̄(x), although we must
specify also the ionic strength Is to completely deter-
mine κ̄(x). The charge locations and corresponding frac-
tional charges will also be determined by the particular
molecule.

The test data is taken from the Brookhaven protein
databank, with the help of the DELPHI and UHBD soft-
ware packages (described below). The test molecules
chosen for our study of the nonlinear Poisson-Boltzmann
equation are the following:
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• Acetamide (CH3CONH2) at 1.0 molar, a small
molecule (few angstroms in diameter).

• Crambin at 0.001 molar, a medium size molecule.

• tRNA at 0.2 molar, a large highly charged molecule
creating numerical difficulties.

• SOD at 0.1 molar, a large enzyme currently under-
going intensive study in the biophysics community.

Brookhaven data and existing software

We have connected the software implementations of our
methods to both the DELPHI and UHBD electrostatics
programs, and we will use data provided by these pack-
ages. The DELPHI package was developed in the labo-
ratory of Dr. B. Honig at Columbia University, and the
UHBD package was developed in the laboratory of Dr.
J. A. McCammon at the University of Houston. These
codes are designed to begin with a protein data bank
(pdb) file description of the protein or enzyme in ques-
tion, obtained from the protein data bank at Brookhaven
National Laboratory. The pdb files contain the coordi-
nates of all of the atoms in a particular structure, ob-
tained from X-ray crystallography pictures of the struc-
ture. The UHBD and DELPHI programs begin with
the atom coordinates, and then construct both the elec-
trostatic surface and the exclusion layer by moving a
probe around the molecule which has the radius of a
representative ion. We remark that quite sophisticated
algorithms are now being employed for surfacing [32].

Both UHBD and DELPHI are designed around
Cartesian meshes (both implementations are actually re-
stricted to uniform Cartesian meshes), and the electro-
static surface and exclusion layer information are repre-
sented as three-dimensional discrete grid functions εh(x)
and κ̄h(x). The mesh function κ̄h(x) is produced at
the same mesh-points where the unknowns uh(x) are lo-
cated, whereas the mesh function εh(x) is produced at
half-mesh-points in each coordinate direction as needed
for the box-method discretization we described earlier in
the paper (also employed in both UHBD and DELPHI).
The atoms themselves, which will most likely not lie on
a Cartesian mesh, must be mapped to the Cartesian co-
ordinates, and their corresponding charges distributed
to the neighboring mesh points. Several approaches are
possible; a trilinear interpolation approach is taken in
both packages.

Note that the selection of the domain completely de-
termines the boundary conditions for a given problem,
as we have specified the boundary function g(x) above.
Several different approaches have been proposed to ap-
proximate g(x), since it is clear that to evaluate g(x)
at each boundary point of the three-dimensional domain
will require all pair-wise interactions of the charges and
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Figure 4: Accuracy of polynomial approx. to sinh.

the boundary points; efficient versions are offered as op-
tions for example in UHBD, all of which appear to give
similarly good approximations of the true boundary con-
dition u(∞) = 0 (when the molecule is taken to lie well
within the domain Ω). In both UHBD and DELPHI,
the problem domain Ω is typically constructed around
the selected molecule so that no more than thirty per-
cent of Ω in each coordinate direction is taken up by
the molecule, which is centered in the domain. The lin-
earized analytical solution used for the boundary condi-
tion function g(x) above, and employed in both DELPHI
and UHBD, appears to give very good approximation of
the true boundary conditions in most situations.

Polynomial nonlinear forms of the PBE

It has been common in the literature to use low-degree
polynomial approximations to the hyperbolic sine func-
tion, avoiding the difficulties which occur with the ex-
ponential terms in the true sinh function. For example,
in the paper of Jayaram et al. [47], three term polyno-
mials are used. However, Figure 4 illustrates how poor
such approximations are in situations (which frequently
occur) when the argument becomes on the order of 10
or more. Note that the units on the vertical axis are
1 × 1012. In the figure, the true hyperbolic function
is plotted with the dotted line; polynomial approxima-
tions of degree five and twenty-five are plotted with the
solid lines. It seems clear that the full exponential terms
must be included in the nonlinear equation in these situ-
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ations, which occur even in the case of lysozyme [32]. In
some sense it is a mute point, since our global inexact-
Newton-multilevel methods control the numerical prob-
lems of the exponential nonlinearity well, and for imple-
mentation reasons (the intrinsic exponential functions
are much faster than a loop which evaluates a polyno-
mial) the polynomial nonlinearity solution actually takes
longer to compute numerically with our methods (and
other methods, when they converge for the exponential
case) than the full exponential case. Therefore, we will
consider only the more correct exponential model.

A nonlinear jump discontinuity problem

The following test problem will be used to explore the
convergence behavior of the multilevel methods. The
domain is the unit cube:

Ω = [0, 1]× [0, 1] × [0, 1].

The nonlinear equation has the form:

−∇ · (ā(x)∇u(x)) + b(x, u(x)) = f(x) in Ω ⊂ R
3,

u(x) = g(x) on Γ. (16)

where the coefficients in equation (16) are taken to be:

1. ā : Ω 7→ L(R3), aij(x) = δijε(x), 1 ≤ ε(x) ≤ 103.

2. b : Ω × R 7→ R, b(x, u(x)) = λeu(x), λ ≥ 0.

3. f : Ω 7→ R, − 1 ≤ f(x) ≤ 1.

4. g : Γ 7→ R, g(x) = 0.

We will construct ε(x) to be piecewise constant, taking
one value in a subdomain Ω1 ⊂ Ω, and a second value in
the region Ω\Ω1, so that ε(x) is defined as follows:

ε(x) =

{

1 ≤ ε1 ≤ 1.0 × 103 if x ∈ Ω1,
1 ≤ ε2 ≤ 1.0 × 103 if x ∈ Ω\Ω1.

}

We will take ε1 and ε2 to be quite different in magnitude,
so that their ratio:

D =
ε1
ε2

will be 103 or 10−3, similar to the nonlinear Poisson-
Boltzmann equation. (Additional experiments were per-
formed by Holst [5, 6], taking D to be be as large as 108

or as small as 10−8, and the resulting convergence behav-
ior of the various methods was analyzed in detail.) We
define the subdomain Ω1 ⊂ Ω to consist of the following
two smaller cubes:

Ω1 = [0.25, 0.50]× [0.25, 0.50]× [0.25, 0.50]

∪ [0.50, 0.75]× [0.50, 0.50]× [0.50, 0.75].

Table 1: Nonlinear PBE methods.

Method Description

DINMH damped-inexact-Newton-MH
DFNMH damped-full-Newton-MH
NMH nonlinear MH
NCG nonlinear CG (Fletcher-Reeves)
NSOR nonlinear SOR (1-D Newton)
NGS nonlinear Gauss-Seidel (1-D Newton)

For this simple problem, it would of course be possi-
ble to construct all coarse meshes as needed for the mul-
tilevel methods to align with Ω1; this would not possible
with problems such as the nonlinear Poisson-Boltzmann
equation and a complex molecule. Therefore, since we
wish to simulate the case that the discontinuities in ε(x)
cannot be resolved on coarser meshes, the multiple lev-
els of tessellations of Ω into discrete meshes Ωk are con-
structed so that the discontinuities in ε(x) lie along mesh
lines only on the finest mesh. In addition, we employ
a non-uniform Cartesian mesh, as shown in Figure 1,
which attempts to provide a more accurate description
of the discontinuity interface on the finest mesh.

Note that if ε1 = ε2 ≡ 1, then problem (16) with
the above coefficients is the Bratu problem (see page
432 in Davis [48] for information about this interesting
problem) on the unit cube.

NUMERICAL COMPARISONS

The global inexact-Newton-multilevel method presented
earlier is investigated numerically when applied to the
nonlinear Poisson-Boltzmann equation and to a non-
linear test problem with large jump discontinuities in
the coefficients and exponential nonlinearity. A detailed
comparison to other methods is presented, including
comparisons to the classical nonlinear multigrid method,
the nonlinear conjugate gradient method, and nonlin-
ear relaxation methods such as SOR. Our results indi-
cate that the two multilevel-based methods are supe-
rior to the relaxation and conjugate gradient methods,
and that the advantage of the multilevel-based methods
grows with the problem size. In addition, experiments
indicate that the inexact Newton-multilevel approach is
the most efficient and robust method for the test prob-
lems, and in particular is both more efficient and more
robust than the nonlinear multigrid method.

Table 1 provides a key to the plots and tables to
follow. For reference, at times we also will refer to the
linear methods in Table 2. Unless otherwise indicated,
all data in the plots and tables to follow include the pre-
processing costs incurred by the various methods. In
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Table 2: Some linearized PBE methods.

Method Description

MH harmonically averaged MG [14]
MICCG modified incomplete Cholesky CG [14]
DSCG diagonally preconditioned CG [14]

other words, the multilevel methods times include the
additional time required to set up the problem on coarse
grids. This gives a complete and fair assessment of the
total time required to reach the solution.

An initial approximation of zero was taken to start
each method, and each method used a stopping criteria
based on the norm of the nonlinear function:

‖F (ui)‖ < TOL = 1.0e− 9,

where ui represents the ith iterate, and F (·) is the
discrete nonlinear algebraic operator for the equation
F (u) = 0 which we are trying to solve. Of course, this
is not the most appropriate stopping criteria for nonlin-
ear iterations (more appropriate stopping tests are dis-
cussed in detail in references [5, 6]), but for our test
problems this test does indicate well when the solution
is approached, and it is the best approach for comparing
different methods since it guarantees that each method
is producing a solution of the same quality.

We remark that it was required to perform all com-
putations in double precision; this is necessitated by the
rapid nonlinearities present in the equations, which re-
sult an extreme loss in precision. Note that calculations
in double precision are more costly than single precision
calculations, and so the execution times reported here
for some of the methods will be somewhat longer than
some of the single precision times reported in earlier pa-
pers [5, 6, 14]

Timing figures on the Convex C240 and the Con-
vex C3 were obtained from the system timing routine
getrusage. A more detailed performance analysis on
several more sequential as well as some parallel machines
can be found in references [5, 6].

Results for acetamide

Figure 6 compares the methods in Table 1 for the ac-
etamide problem. For this problem, all of the methods
converge, and the two multilevel-based algorithms are
superior. The nonlinear conjugate gradient and nonlin-
ear SOR methods have comparable performance. The
method DINMH is extremely efficient, representing an
improvement of more than a factor of fifty over the non-
linear SOR and nonlinear conjugate gradient methods,
and a factor of ten over the nonlinear multigrid method
NMH.

Results for crambin

Figure 5 compares the methods in Table 1 for the cram-
bin problem. Again, all of the methods converge, and
the two multilevel-based algorithms are superior. The
nonlinear conjugate gradient shows superiority to the
nonlinear relaxation methods. The method DINMH is
again extremely efficient, representing an improvement
of more than a factor of fifty over the nonlinear conjugate
gradient method, and a factor of ten over the nonlinear
multigrid method NMH.

Results for tRNA

We included this test problem because it appears to
cause severe difficulties for other methods which have
been tried; in fact, the nonlinear SOR procedure pro-
posed by Nicholls and Honig [13] was known to di-
verge for this problem [32]. However, we note that
their method was not a true SOR-Newton iteration, and
was instead a fixed-point iteration based on a certain
splitting of the operator (see page 443 in Nicholls and
Honig [13]). When a true SOR-Newton iteration is em-
ployed, the method converges for this problem. Figure 7
shows the relative performance of the various methods.
Again, the method DINMH is the most efficient by far
of the methods presented, representing a factor of fifty
improvement over the next best method.

Note that for this problem, the nonlinear multilevel
method diverges, even with linesearch for a damping pa-
rameter. Since we do not enforce the nonlinear varia-
tional conditions exactly, as outlined earlier and in more
detail in references [5, 6], we have no guarantee that
the coarse level correction is a descent direction, and so
this method is not a global method; this particular test
problem illustrates this fact. It also shows that nonlin-
ear multigrid method NMH is not only less robust than
DINMH, but also less reliable than NSOR and NCG.

Results for SOD

Figure 8 shows only two methods applied to the superox-
ide dismutase (SOD) test problem: the method DINMH
applied to the full nonlinear Poisson-Boltzmann equa-
tion; and the linear DSCG method applied to the lin-
earized Poisson-Boltzmann equation. All other nonlin-
ear methods studied here diverged for this test problem.
Again, the method DINMH converges very rapidly, and
the superlinear convergence is clearly visible.

We have included the plot of the linear method
DSCG to show clearly that the DINMH method, solv-
ing the full nonlinear problem, is more than a factor of
two times more efficient than one of the best available
methods in the literature for only the linearized problem.



NUMERICAL SOLUTION OF THE NONLINEAR POISSON-BOLTZMANN EQUATION 21

0 100 200 300 400 500

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Nonlinear Poisson-Boltzmann Equation Methods
Molecule: CRM

DINMH

NMH NCG NSOR

NGS (1490)

CPU Seconds

Re
la

tiv
e 

Re
sid

ua
l

Convex C240 (1 Processor) with 31x31x31 Grid

Figure 5: Comparison of various methods for the nonlinear crambin problem.
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Figure 6: Comparison of various methods for the nonlinear acetamide problem.
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Figure 7: Comparison of various methods for the nonlinear tRNA problem.
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Jump discontinuity problem results

Figure 9 shows the behavior of the five methods in Ta-
ble 1 when applied to the jump discontinuity dest prob-
lem, with D = ε1/ε2 = 10−3. The three multilevel-based
methods are substantially superior to the nonlinear re-
laxation and conjugate gradient methods. More interest-
ingly, the comparison between the full Newton method
(DFNMH) and the inexact Newton method (DINMH)
shows at least a factor of four improvement gained by
employing the inexactness strategy outlined earlier (and
can be found in more detail in references [5, 6]).

Figure 10 shows the first 200 CPU seconds of Fig-
ure 9 expanded to the whole axis. We have included
the linear methods MH, MICCG, and DSCG on the plot
to illustrate more graphically how efficient the method
DINMH is; it requires less than a factor of two times
more CPU seconds than the linear method MH for the
linearized problem, and is a factor of two times more ef-
ficient than the next best linear method, MICCG with
vectorizable orderings (operating at near peak efficiency
on the Convex C3, which is a vector processor).

Storage requirements

We make a few remarks about the storage required for
the multilevel methods as well as some of the other meth-
ods appearing in this paper. We are faced with the dis-
crete problem of the form:

Au + N(u) = f,

where A is an n × n SPD matrix, N(·) is a nonlinear
function mapping R

n into R
n, u is the n × 1 vector of

unknowns, and f is the n × 1 vector of source function
values. The number of unknowns n is related to the orig-
inal discrete mesh as n = I ·J ·K, where I , J , and K are
the number of mesh-points in each direction of the Carte-
sian mesh. Employing the box-method on the Cartesian
mesh, the matrix A can be represented by seven diago-
nals, only four of which need be stored in arrays of length
n, due to the symmetry of A. The box-method produces
“diagonal” nonlinear functions N(·) from the types of
nonlinear partial differential equations we consider in
this paper, and N(·) can be represented by a single real
nonlinear function and a coefficient array of length n.
Therefore, simply to store the nonlinear algebraic prob-
lem on the finest desired (possibly non-uniform) Carte-
sian mesh requires approximately 4n+1n+1n+1n = 7n.
The nonlinear iterative algorithms we have considered
here require various amounts of additional storage for
implementation.

With regard to multilevel methods, since the number
of unknowns drops by a factor of eight as one moves to a
coarser mesh in three dimensions if standard successively
refined non-uniform Cartesian meshes are used, we see

that the storage required to represent on all meshes a
vector having length n on the finest mesh is:

n +
n

8
+

n

64
+ · · · = n ·

(

1

8
+

1

64
+ · · ·

)

≤
8

7
· n.

We will assume that enough levels are always used so
that not only is the coarse problem computational cost
negligible, but also the storage requirement (including
possibly direct factorization of the matrix) is negligible
due to the size of the coarse problem.

Table 3 gives the required storage for a selection of
methods. These figures reflect the storage requirements
in our implementations; in particular, while the NGS,
NSOR, and NCG storage requirements are minimal or
close to minimal, the storage requirements for our multi-
level methods could be reduced somewhat. To maintain
a logically modular structure in our implementations, we
have allowed some redundant storage in the implementa-
tions. In the methods NMH and DINMH, it is possible
to implement the (linear or nonlinear) operator-based
prolongation Ik

k−1 completely in terms of the matrix A
(and the nonlinearity N(·)), without requiring explicit
storage of Ik

k−1. This can save 27n/7 ≈ 4n, which makes
these methods almost equivalent to NCG in terms of
storage requirements, with NMH and DINMH requiring
approximately 13.7n and 16n, respectively.

Therefore, as in the case of the linear multilevel
methods presented in Holst and Saied [14] and in ref-
erences [5, 6], not only do the multilevel methods dis-
cussed here demonstrate superior complexity properties,
we see that they can be implemented with very efficient
memory use, requiring the same or only slightly more
storage than that required for competing methods such
as nonlinear conjugate gradient methods.

CONCLUSIONS

We have shown numerically that the multilevel-based
methods discussed in this paper are generally more ef-
ficient than existing methods for the nonlinear Poisson-
Boltzmann equation for a range of test molecules, and
for a difficult test problem with large coefficient discon-
tinuities and rapid nonlinearity. In addition, our results
indicate that the damped-inexact-Newton-multilevel ap-
proach is not only the most efficient approach for these
problems, but is also the most robust of all the meth-
ods considered. It converged in all situations, and for
the SOD test problem was the only nonlinear method to
converge.

Regarding the nonlinear multigrid method, both the-
oretical and numerical evidence here and elsewhere [5, 6]
suggests that without careful use of special techniques
for constructing the coarse problems (discussed in Holst
and Saied [14] and Holst [5, 6]), and without the use
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Table 3: Storage required by various nonlinear (and some linear) elliptic solvers.

Method Storage Requirements
Name A N(·) u f Ik

k−1 WORK TOTAL

NGS 4n 1n 1n 1n 0n 1n 8n
NSOR 4n 1n 1n 1n 0n 1n 8n
NCG 4n 1n 1n 1n 0n 6n 13n
NMH 4n + 4

7n 1n + 1
7n 1n + 1

7n 1n + 1
7n 27

7 n 5n + 5
7n ≈ 17.6n

DINMH 4n + 4
7n 1n + 1

7n 1n + 1
7n 1n + 1

7n 27
7 n 7n + 7

7n ≈ 19.9n

of a damping parameter, nonlinear multigrid methods
are inherently non-reliable (may not converge) for prob-
lems with exponential nonlinearities and large coefficient
discontinuities, such as the nonlinear Poisson-Boltzmann
equation and equations occurring in semiconductor mod-
eling.

We believe that this was not observed in the study
of Oberoi and Allewell [30] due to the small number of
examples considered. In fact, they did not seem to re-
quire either the damping parameter or the coefficient
averaging techniques built into the method NMH em-
ployed here. Our experiments with such a “vanilla”
nonlinear multigrid method showed divergence except
for the simplest possible molecules (acetamide) at very
low ionic strengths (Is < 0.0001) and small mesh sizes
(31 × 31 × 31). To obtain convergence even for the
crambin case (Figure 5) required both the harmonic
coefficient averaging approach developed in Holst and
Saied [14] and the damping parameter discussed earlier
in this paper. We are not aware of other techniques for
increasing the robustness of nonlinear multigrid, with-
out sacrificing most of the efficiency of the multilevel
approach.

The damped inexact-Newton-multilevel method ap-
pears to be the most robust of all methods that have been
proposed; it converges for all cases we have encountered
(this behavior is supported by the theory presented in
this paper, which was used to construct the method),
and in particular it converges for cases which cause all
other proposed methods to fail. In addition, it appears
to be substantially more efficient than all other meth-
ods that have been proposed (by orders of magnitude
for some test problems), and is even more efficient than
some of the best existing linear methods producing only
a linearized solution.

These considerations demonstrate that the damped
inexact-Newton-multilevel method presented in this pa-
per not only makes the nonlinear model completely fea-
sible by providing a very reliable solution technique, but
it actually improves on the efficiency of available linear
algorithms which are currently used for the less accurate
linear model. We remark that initial numerical experi-
ments with larger mesh sizes show that the improvement

of the damped-inexact-Newton-multilevel approach over
methods grows with the problem size [49].
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ings of Köln-Porz Conference on Multigrid Meth-
ods, Lecture notes in Mathematics 960, W. Hack-
busch and U. Trottenberg, eds., Berlin, Germany,
1982, Springer-Verlag.

[22] W. Hackbusch, Multi-grid Methods and Applica-
tions, Springer-Verlag, Berlin, Germany, 1985.

[23] R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and
J. W. Painter, SIAM J. Sci. Statist. Comput.,
2 (4), 430–454 (1981).

[24] J. E. Dendy, Jr. and J. M. Hyman, in Elliptic Prob-
lem Solvers, M. Schultz, ed., New York, NY, 1981,
Academic Press.

[25] J. E. Dendy, Jr., J. Comput. Phys., 48, 366–386
(1982).

[26] J. E. Dendy, Jr., SIAM J. Sci. Statist. Comput.,
8 (2), 673–685 (1987).

[27] J. H. Bramble and J. E. Pasciak, Math. Comp.,
49 (180), 311–329 (1987).

[28] S. A. Allison, J. J. Sines, and A. Wierzbicki, J.
Phys. Chem., 93, 5819–5823 (1989).

[29] B. A. Luty, M. E. Davis, and J. A. McCammon, J.
Comput. Chem., 13 (9), 1114–1118 (1992).

[30] H. Oberoi and N. M. Allewell, Biophysical Journal,
(1993). (To Appear).

[31] J. M. Ortega and W. C. Rheinboldt, Iterative So-
lution of Nonlinear Equations in Several Variables,
Academic Press, New York, NY, 1970.

[32] A. Nicholls, Private communication, 1993.

[33] R. Fletcher and C. Reeves, Comput. J., 7, 149–154
(1964).

[34] W. Hackbusch, Numer. Math., 32, 83–95 (1979).

[35] W. Hackbusch and A. Reusken, in Robust Multigrid
Methods, W. Hackbusch, ed., Braunschweig, 1988,
Vieweg, pp. 105–113.

[36] W. Hackbusch and A. Reusken, Numer. Math.,
55, 225–246 (1989).

[37] A. Reusken, Numer. Math., 52, 251–277 (1988).

[38] A. Reusken, Numer. Math., 53, 663–686 (1988).

[39] L. V. Kantorovich and G. P. Akilov, Functional
Analysis, Pergamon Press, New York, NY, 1982.

[40] J. E. Dennis, Jr. and J. J. Moré, Math. Comp.,
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