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We describe a combination of algorithms for high fidelity geometric modeling and mesh
generation. Although our methods and implementations are application-neutral, our pri-
mary target application is multiscale biomedical models that range in scales across the
molecular, cellular, and organ levels. Our software toolchain implementing these algo-
rithms is general in the sense that it can take as input a molecule in PDB/PQR forms,
a 3D scalar volume, or a user-defined triangular surface mesh that may have very low
quality. The main goal of our work presented is to generate high quality and smooth
surface triangulations from the aforementioned inputs, and to reduce the mesh sizes by
mesh coarsening. Tetrahedral meshes are also generated for finite element analysis in
biomedical applications. Experiments on a number of bio-structures are demonstrated,
showing that our approach possesses several desirable properties: feature-preservation, lo-
cal adaptivity, high quality, and smoothness (for surface meshes). The availability of this
software toolchain will give researchers in computational biomedicine and other modeling
areas access to higher-fidelity geometric models.
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1. Introduction

The finite element method (FEM) is a powerful technique for finding the approximate
solution of a partial differential equation (PDE) where the domain boundaries of a given
problem are so complex that other approaches such as the finite difference method may
have difficulties or even fail. Although the finite element method was originally developed
in the 1950’s mainly for civil or aeronautical engineering or material science problems, it
has now become one of the fundamental numerical approaches for solving PDE’s that arise
in many other fields, including biomedical simulation, which is the focus of this article.

In the finite element method, a complex domain is discretized into a number of reason-
ably “good” elements, such that a set of basis functions can be defined on the elements to
approximate the solution. The discretization of a domain into small elements is usually
referred to as mesh generation [2,7,28]. The quality of a mesh can be measured by the
associated angles − a mesh having angles close or equal to 0◦ or 180◦ is said to have
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very low-quality. Although different types of meshes may be generated depending on
the numerical solvers being employed, we restrict ourselves in this paper to triangular
(surface) and tetrahedral (volumetric) meshes. In particular, we consider mesh genera-
tion for biomedical applications, taking as inputs a set of centers and radii of atoms in a
molecule, a 3D scalar volume reconstructed with CT/MRI medical imaging techniques,
or any user-defined triangular surface meshes that may have extremely low quality.

Mesh generation from a set of atoms requires good approximation of molecular surfaces.
There are two primary ways of constructing such surfaces: one is based on the “hard
sphere” model [37] and the other is based on the level set of a “soft” Gaussian function
[24]. In the first model, a molecule is treated as a list of “hard” spheres with different
radii, from which three types of surfaces can be extracted: van der Waals surface (VDW),
solvent accessible surface (SAS), and solvent excluded surface (SES) [17,24,31,37]. The
molecular surface can be represented analytically by a list of seamless spherical patches
[17,46] and triangular meshes can be generated using such tools as MSMS [39]. In contrast,
the “soft” model treats each atom as a Gaussian-like smoothly decaying scalar function
in <3 [11,20,24]. The molecular surfaces are then approximated by appropriate level sets
(or isocontours) of the Gaussian function [11,20]. As we shall see shortly, mesh generation
from the other two sources, namely, a 3D scalar volume or a user-defined surface mesh,
can be thought of as a special case or subroutine of the mesh generation pipeline starting
from a molecule. For this reason, we shall consider mainly the mesh generation from a
set of atoms given in a PQR [19] or PDB [9] format.

The goal of the present paper is to describe a set of algorithms and implementations to
construct high quality surface triangulations and decent tetrahedral meshes for biomedical
simulations. In general, a good mesh should have the following properties: (1) feature-
preserving (meshes being as close as possible to the original surfaces), (2) adaptivity
(meshes being made denser at areas of interest or high-curvature regions), and (3) high
quality (triangles being as equilateral as possible). Among the existing mesh generation
software toolkits, Tetgen is an example of an outstanding software tool that can generate
high quality tetrahedral meshes from a triangulated surface, using constrained Delaunay
tetrahedralizations [40,41]. But the major limitation of this tool is that the input surface
mesh must be “good enough”, meaning that angles such as those close to 0◦ or 180◦

are not allowed. Another mesh generation tool, called LBIE [54], integrates the surface
triangulation, tetrahedron generation and smoothing into a stand-alone software package.
However, LBIE cannot directly handle a surface mesh − if the input is a mesh, it must
be converted into a volume by, for example, the signed distance transformation [54,55].
In addition, the input volumes must be in a power of 2, due to the octree data structure
used in this tool. Although the qualities of the interior tetrahedral meshes generated by
LBIE are usually good, there are some “sharp” triangles on the surfaces and hence some
tetrahedra near the surfaces can be poorly shaped.

In the present paper we describe a combination of algorithms and implementations to
produce feature-preserving, adaptive, and high quality surface (triangular) and volumetric
(tetrahedral) meshes for bio-modeling and other applications. Like LBIE [54], our method
is based on the level set of a Gaussian kernel function that approximates the molecular
surface of a given molecule. Because the surface meshes extracted by iso-contouring
techniques always contain many “skinny” triangles, we develop a variant of the angle-
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based approach [56] to improve the mesh quality while retaining the smoothness of the
iso-contours. In our toolchain we also develop an adaptive mesh coarsening technique, by
which the resulting meshes are made finer in regions of high curvatures or by some other
user-specified criteria and coarser elsewhere. Along with the mesh coarsening, a normal-
based surface mesh smoothing technique is employed to guarantee the smoothness of the
meshes while they are being coarsened. Once a good surface mesh is generated, the
tetrahedra are constructed using the constrained Delaunay triangulation as implemented
in Tetgen [40,41].

2. Feature-Preserving Adaptive Mesh Generation and Processing

In this section we describe the algorithms and implementations that we use to construct
the triangular surface and tetrahedral volumetric meshes. For the particular purpose of
molecular modeling, the inputs to our toolchain are a list of centers and radii of atoms
(e.g., PQR files [19] or PDB files [9] with radii defined by users), although our tool can
also read as inputs an arbitrary 3D scalar volume or a triangulated surface mesh with very
low quality. Fig.1 shows the pipeline of our mesh generation toolchain. In the following
subsections, we shall explain each step in detail.

2.1. Initial Surface Meshing
In our molecular mesh generation, the initial surface meshes are defined by the level

sets of the summation of Gaussian kernel functions defined at each atom with center ci

and radius ri:

F (x) =
N∑

i=1

e
Bi(

‖x−ci‖2
r2
i

−1)
, (1)

where the negative parameter Bi is called the blobbyness that controls the spread of
characteristic function of each atom. We usually treat the blobbyness as a constant
parameter (denoted by B0) for all atoms. When B0 goes to zero, F (x) becomes constant
and all features disappear. Our experiments on a number of molecules show that the
blobbyness at −0.5 produces a good approximation in molecular simulations, although
high-resolution molecular surfaces may require a blobbyness as small as −2.5.

The molecular surface is defined by the level set as {x ∈ <3 : F (x) = t0}, where t0
is the isovalue [11,24,55], which typically lies in the range from 2.0 to 4.0, based on our
experiments. The surface (triangular) mesh can be constructed by either the marching
cube method [32] or the dual contouring method [30]. In our toolchain we employ an
implementation of the marching cube method. The basic idea of this method is to trian-
gulate the cubes (or voxels) that intersect with the isosurface. Each cube contains 8 grid
points, each of which could be either outside or inside the iso-surface, yielding a total of
28 = 256 cases to be considered. The key of the marching cube method is to triangulate
each of such cubes according to a pre-given table containing these 256 cases. Fig.2(A)
shows an example of the isosurface extracted using this method. From this example, we
can see that: (a) the marching cube method can extract very smooth surfaces, but (b)
many triangles are extremely “sharp” and could lead to poor approximation quality in
finite element analysis. Therefore, we need to improve the mesh quality while retaining
the smoothness of the initial triangular mesh.
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2.2. Surface Mesh Quality Improvement
Mesh quality in 2D planes or 3D volumes is usually measured by the ratio of radii

of the circumscribed to inscribed circles in each triangle or spheres in each tetrahedron.
There are a number of other quality metrics such as those based on the edges, angles,
matrix norms, or a combination of these quantities, but they are more or less equivalent
to each other [35]. The mesh quality can be improved by three major techniques: insert-
ing/deleting vertices, swapping edges/faces, and moving the vertices without changing
the mesh topology [23]. The last one is the main strategy we use to improve the mesh
quality in our toolchain.

For surface meshes, however, moving the vertices may change the surface shapes such
as the curvature. Therefore, besides the mesh quality we mentioned above, several other
criteria must be taken into consideration in particular for surface mesh improvement: (1)
Important features (e.g., sharp boundaries, concavities, holes, etc.) on the original surface
should be preserved as much as possible, and (2) the surface should be kept smooth while
the vertices are moved. In the following we shall first describe the local structure tensor
that is used to quantify surface features. We then present an angle-based method for
mesh quality improvement.

2.2.1. Local Structure Tensor
The local structure tensor has been used for anisotropic image smoothing [22,47] and

protein secondary structure detection [52,53]. The idea of the local structure tensor
is derived from the well-known principal component analysis (PCA) technique [29]. It
basically captures the principal orientations of a set of vectors in space. For volumetric
data, the local structure tensor is constructed from the gradient vectors [22,53]. For
triangulated surface meshes, we compute the local structure tensor based on a set of
normal vectors in a neighborhood of a vertex as follows:

T (v) =
N1∑

i=1


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, (2)

where (n(i)
x , n(i)

y , n(i)
z ) is the normal of the ith neighbor of a vertex v and N1 is the total

number of neighbors. The normal of a vertex is defined by the weighted average of the
normals of all its incident triangles. From this definition, we can see that the order of
the neighbors can be arbitrary because the local structure tensor is simply the sum of
the matrices corresponding to the neighbors. In addition, the directions of the normal
vectors do not affect the local structure tensor. It is worthwhile pointing out that the
neighbors considered may be more than the incident ones of a vertex. They could extend
by several “layers” and the number of the “layers” considered depends on how large the
local features are. We usually consider 2 to 3 “layers” around a vertex, to compute the
local structure tensor in our mesh generator for molecules.

As discussed in [22,53], the eigenvalues and eigenvectors of the structure tensor indicate
the overall distribution of the vectors within a neighborhood and categorize the features
locally into different types: spheres, lines, and planes. In case of surface meshes, the types
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of features are slightly different. Let the eigenvalues be λ1, λ2, λ3 and λ1 ≥ λ2 ≥ λ3. Then
we have the following cases:

• Spheres and saddles: λ1 ≈ λ2 ≈ λ3 > 0.

• Ridges and valleys: λ1 ≈ λ2 >> λ3 ≈ 0.

• Planes: λ1 >> λ2 ≈ λ3 ≈ 0.

2.2.2. Angle-based Mesh Quality Improvement
The quality of a mesh can be improved by maximizing the minimal angles. As illustrated

in Fig.3, let x be the vertex that we want to move for quality improvement. The (incident)
neighbors are denoted by vi, i = 1, · · · , N2, where N2 is the total number of the neighbors.
The idea of the angle-based method described in [56] is to move x to a new position x̄
such that x̄ maximizes the angles 6 (x,vi,vi−1) and 6 (x,vi−1,vi) for i = 1, · · · , N2, where
v0 := vN2 . Let xi be the projection of x to the bisector of the angles 6 (vi−1,vi,vi+1) for i =
1, · · · , N2 and vN2+1 := v1, then x̄ is approximated in [56] by x̄ = (x1+x2+· · · , +xN2)/N2.
This method has been extended in [48] for improving quadrilateral mesh quality, but only
two-dimensional meshes were discussed in the above two papers.

We make some modifications of the 2D angle-based method as described in [56], in
order to deal with surface mesh processing. First, x is projected onto the bisecting plane
Π, instead of the bisecting line, of 6 (vi−1,vi,vi+1), as shown in Fig.3. Note that the
plane Π is orthogonal to the plane formed by (vi−1,vi,vi+1). Secondly, the average of
all the projections {xi, i = 1, · · · , N2} is weighted by a decreasing function of the angle
6 (vi−1,vi,vi+1):

x̄ =
1

∑N2
i=1(αi + 1)

N2∑

i=1

(αi + 1)xi, (3)

where αi is the dot product of the normalized vectors of −−−→vivi−1 and −−−→vivi+1. The use of
weighted average is due to the fact that a smaller angle 6 (vi−1,vi,vi+1) is more sensitive
to the position change of x. We shall demonstrate in Section 4.1 how this modification
can improve the performance of the angle-based method.

The above two modifications are usually sufficient to improve the mesh quality. How-
ever, as we mentioned earlier, dealing with surface meshes requires additional care − while
the mesh quality is being improved, the geometric features should be preserved as much as
possible. To this end, we take the advantage of the local structure tensor by mapping the
new position x̄ onto each of the eigenvectors of the tensor calculated at the old position
x. The projected values are weighted by the corresponding eigenvalues as follows. Let
~e1, ~e2, ~e3 denote the eigenvectors and λ1, λ2, λ3 be the corresponding eigenvalues of the
local structure tensor valued at x. The modified vertex x̂ is calculated as follows:

x̂ = x +
3∑

k=1

1

1 + λk

((x̄− x) · ~ek)~ek, (4)

where x̄ is calculated in Equation 3. The use of eigenvalues as a weighted term in the
above equation is essential to preserve surface features (with high curvatures) and to keep



6 Z. Yu et al.

the improved surface mesh as close as possible to the original mesh by encouraging the
vertices to move along the eigen-direction with small eigenvalues (or in other words, with
low curvatures). It is worthwhile noting that our tensor-based approach can preserve the
features better than the normal-tangent decomposition method as described in [55]. In
[55], a vertex moves in the normal and tangent directions independently but the movement
within the tangent plane is treated isotropically. This could cause a problem in case of
ridge- or valley-like features, where the vertex should move only along the direction of
ridges or valleys but not the other two (one is normal direction and the other lies on the
tangent plane). Our approach, however, can readily handle these cases − the eigenvalues
are small along the ridges or valleys (hence moving in this direction is preferred) but
large in the other two directions (movements are therefore suppressed). Fig.2(B) shows
the surface mesh with quality improved, compared to the original mesh as shown in
Fig.2(A). Before quality improvement, the minimal and maximal angles are 0.02◦ and
179.10◦ respectively. These angles become 14.11◦ and 135.65◦ after the improvement (two
iterations).

2.3. Surface Mesh Coarsening
The surface meshes extracted by isocontouring techniques (e.g., the marching cube

method) often contain a large number of elements and are almost uniform everywhere.
For instance, the meshing of 1CID, a molecule of 1381 atoms, results in 62, 454 nodes
and 124, 904 triangles in total. The size of the mesh (only for surfaces!) could be over
one million triangles for very large molecules and densely discretized volumes. Such a
mesh often poses a big challenge in terms of both time and memory consumptions in
numerical simulation. Adaptive meshes are therefore preferred where fine meshes only
occur in regions containing features. In this section we first describe a feature-preserving
mesh coarsening approach. The coarsened meshes are in general less smooth due to the
deletions of nodes and reconnected triangles. A normal-based surface smoothing technique
is also described in order to improve the smoothness of the coarsened mesh.

2.3.1. Feature-Preserving Mesh Coarsening
The concept of mesh coarsening is straightforward − we choose a node, delete it, and

then re-triangulate the region containing the incident neighbors. The nodes to be deleted
should be selected according to a feature-preserving criterion: nodes in “flat” or low-
curvature regions should be deleted with higher probability. For this reason, we again
utilize the local structure tensor to quantify the features. Let x denote the node being
considered for deletion and the neighboring nodes be vi, i = 1, · · · , N2, where N2 is the
total number of the incident neighbors. The maximal length of the incident edges at x
is denoted by L(x) = maxN2

i=1{d(x,vi)} where d(.) is the Euclidean distance. Apparently
L(x) indicates the sparseness of the mesh at x. Let λ1(x), λ2(x), λ3(x) be the eigenvalues
of the local structure tensor calculated at x, satisfying λ1(x) ≥ λ2(x) ≥ λ3(x). Then the
node x is deleted if and only if the following condition holds:

L(x)α

(
λ2(x)

λ1(x)

)β

< T0, (5)

where α and β are chosen to balance between the sparseness and the curvature of the
mesh. In our experiments, they both are set as 1.0 by default. The threshold T0 is user-
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defined and also dependent on the values of α and β chosen. When α and β are fixed,
larger T0 will cause more nodes to be deleted. For the example illustrated in Fig.2(C), the
coarsened mesh consists of about 8, 846 nodes and 17, 688 triangles, about seven times
smaller than the original mesh as shown in Fig.2(B).

Once a node is selected for deletion, all of its associated edges and triangles should
be deleted as well. As a result, there is a “hole” surrounded by the neighbors. To fill
this “hole”, one way is to choose one neighbor and connect it to all other neighbors.
This strategy is called edge contraction as employed in [55]. The consequence of several
iterations by this method is that some nodes may have a large number of incident edges
while others have very few, and as a result much effort needs to be made to flip/swap the
edges in order to balance the degrees of all the nodes. In our implementation, we always
choose two neighbors that have fewest degrees (number of incident edges) and connect
them unless they are adjacent on the “ring” of the “hole”. The connection between the
nodes chosen increases their degrees by one and splits the “hole” into two smaller “holes”,
each of which is then treated recursively in the same way. This type of re-triangulation of
the “holes” guarantees balanced degrees between all the neighbors (nodes) on the “holes”.

It is worth of noting that the mesh coarsening alone may worsen the mesh quality due
to the re-triangulation. For the example shown in Fig.2(B), the minimal and maximal
angles are 0.42◦ and 177.85◦ after the coarsening, compared to 14.11◦ and 135.65◦ before
the coarsening. Therefore, it is necessary to run the mesh coarsening along with the
quality improvement algorithm as described in Section 2.2.2. Fortunately the mesh after
coarsening is much smaller; hence running the quality improvement again does not take
much extra time but it does significantly improve the mesh quality. For the example in
Fig.2, the minimal and maximal angles become 20.22◦ and 130.71◦ respectively, after 8
iterations of quality improvements on the coarsened mesh.

2.3.2. Normal-based Anisotropic Surface Smoothing
Mesh coarsening can greatly reduce the mesh size to a user-specified order. However,

the nodes on the “holes” are usually not co-planar; hence re-triangulating the “holes”
often results in bumpy surface meshes, as we can see in Fig.2(C). The bumpiness can be
reduced or removed by smoothing the surface meshes. Note that the mesh smoothing seen
below is different from the mesh quality improvement we discussed in Section 2.2, although
in some literature, mesh quality improvement is also referred to as mesh smoothing.

There are vertex-based and normal-based approaches for mesh smoothing. The first
approach is to move the vertices based on certain criteria, such as the Laplacian operator
[44] and mean curvature flows [18,33]. In contrast, the normal-based approach smoothes
meshes using the normal information of neighboring triangles, which turns out to preserve
sharp features and prevent volume shrinkages [14] better than the vertex-based approach.
In our mesh generator, we utilize the normal-based approach.

A number of feature-preserving filters seen in signal/image processing have been ex-
tended to surface mesh smoothing, such as the bilateral filter [21], mean [34] and median
[49] filters. The idea that we shall describe is based on the well-known anisotropic image
filter, called the Perona-Malik method [36], which was extended to anisotropic vector dif-
fusion in [51]. Let us first describe the isotropic smoothing at a vertex x. Our goal is to
move x such that the normal vectors smoothly change among all the incident triangles
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and their neighboring ones (dashed triangles in Fig.4). Without lose of generality, let us
consider one of the incident triangles (colored in yellow in Fig.4), whose normal vector is
denoted by ni. For the mesh to be smooth, the normal vector ni could be adjusted by the
average of the normal vectors of the adjacent three triangles (colored in blue in Fig.4),
that is, ñi = (ni1 +ni2 +ni3)/3. To adjust the normal vector from ni to ñi, we rotate the
vertex x around the edge ei by an angle of θi = 6 (ni, ñi). The new position is denoted by
R(x; ei, θi). By summing up all the adjustments, we have the following smoothing scheme
at x:

x̃ =
1

∑N2
i=1 wi

N2∑

i=1

wiR(x; ei, θi) (6)

where wi is the area of the ith triangle incident to x.
As we mentioned earlier, the above scheme is isotropic, meaning that the smoothing is

independent of the features. The consequence of an isotropic scheme is that sharp features
often become weakened or even disappear after a certain number of iterations. To remedy
this problem, we incorporate the anisotropic diffusion [36,51] into the calculation of ñi as
follows:

ñi =
1

∑3
j=1 eκ(ni·nij)

3∑

j=1

eκ(ni·nij)nij (7)

where κ is a user-defined positive parameter. All normal vectors ni and nij are assumed
to be normalized. The weighting function used in Equation 7 is decreasing with respect
to the angle between ni and nij such that sharp features where the angle between ni and
nij are large can be preserved. Fig.2(D) shows the result after the normal-based mesh
smoothing.

2.4. Tetrahedron Generation
Once the surface triangulation is generated with good quality, Tetgen [40,41] can pro-

duce tetrahedral meshes with user-controlled quality. Besides the triangulated molecular
surface, our toolchain will have three other outputs for a given molecule: the interior
tetrahedral mesh, the exterior tetrahedral mesh, and both meshes together. For the in-
terior tetrahedral mesh we force all atoms to be on the mesh nodes. The exterior mesh
is generated between the molecular surface and a bounding sphere whose radius is set
as about 40 times larger than the size of the molecule being considered (or some other
user-specified radii). The size of a molecule is defined as follows. We first compute the
spacial average of all atom centers; then the maximal distance between the atoms to the
averaged center is defined as the size of the molecule. In the following section, we shall
see several experiments on both surface triangulation and tetrahedral generation.

3. Results

3.1. Mesh Generation for Biomolecules
The example we demonstrate here is the mouse acetylcholinesterase (mAChE) monomer,

which has a total of 8, 362 atoms. The blobbyness of the Gausian kernel function is



High-Fidelity Geometric Modeling for Biomedical Applications 9

set as −0.5 and the 3D volume is discretized by 0.67Å per grid yielding a volume of
126× 111× 148 grids. The initial molecular surface containing 51, 260 nodes and 102, 516
triangles is extracted using the marching cube method [32] at the isovalue of 3.5. After
the mesh coarsening, where the threshold T0 in Equation 5 is set as 0.2, the mesh size
is reduced to 15, 207 nodes and 30, 410 triangles, as shown in Fig.5(A). Note that the
active site has been colored differently and meshed more densely than elsewhere, which
is preferable in finite element methods in order to achieve a higher accuracy around the
regions of interest. A closer look at the active site, rotated by 90◦, is shown in Fig.5(D).
The quality of the entire mesh is significantly improved: 25.4◦ (minimal angle) and 126.3◦

(maximal angle), in contrast to the minimal angle (0.0◦) and maximal angle (179.4◦) in
the original mesh generated by the marching cube method.

The adaptive tetrahedral meshes are computed by constrained Delaunay triangulation
using Tetgen [40,41], based on the surface mesh in Fig.5(A). Fig.5(B) and (C) show the
cross sections of the interior and exterior tetrahedral meshes of the mAChE molecule
respectively. Since all atoms are forced to lie on the interior mesh nodes, the interior
mesh is more uniform and denser than the exterior mesh. The bounding sphere for the
exterior mesh is usually chosen to be about 40 times larger than the size of the molecule
being considered. But for better illustration, the sphere we show here is about twice
as big as the molecule. Fig.5(E) and (F) show a closer look at the interior and exterior
meshes, respectively, near the active site. The entire mesh has a total of 90, 163 nodes and
564, 026 tetrahedra. The computational costs are 24 seconds (molecular surface extraction
from PDB), 58 seconds (surface mesh post-processing), and 50 seconds (tetrahedral mesh
generation) on a single Intel Xeon 2.0GHz CPU.

3.2. Mesh Generation for Other Applications
In addition to biomolecular mesh generation, our meshing tool can also take other

forms of inputs such as an arbitrary 3D scalar volume (e.g., medical imaging data) or
a user-defined arbitrary triangular mesh that has very low quality or is too large for
numerical simulations. To demonstrate the generality of our mesh tool, we show here
several other examples: the neuromuscular junction given as a triangulated surface mesh
[15,45], a human head model given as a scalar volume (mimicked by the signed distance
function) [54], and an actual CT medical image of human cardiovascular system. Fig.6(A)
shows the surface mesh after the post-processing as discussed in Section 2. In order to
simulate the ionic diffusion from the pre-synaptic active zone to the post-synaptic area,
the interior tetrahedral mesh is generated in the synaptic domain as shown in Fig.6(B)
and a closer look at the mesh is given in Fig.6(C). This mesh contains 125, 231 nodes
and 779, 967 tetrahedra. The interior and exterior tetrahedral meshes of the human head
model are shown in Fig.6(D) and (E) respectively. This mesh consists of 32, 754 nodes and
200, 988 tetrahedra. In Fig.6(F) we show an example of human cardiovascular system.
The mesh is generated directly from the segmented blood vessels [5] using the marching
cube method. The region indicated by arrow is enlarged and shown on the left-bottom.
The mesh after quality improvement and mesh smoothing by our methods demonstrates
much more regular angles and smoother surfaces as shown in Fig.6(G).
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4. Discussion

4.1. Mesh Quality Analysis
As we saw in previous section, the mesh quality of surface meshes can be greatly

improved using the angle-based approach as described in Section 2.2.2. Compared to the
approach in [56], the weighted vertex movement we formulate in Equation 3 proves to
be more efficient in mesh quality improvement. In Fig.7, we compare the performance of
the original angle-based method presented in [56] and the modified method described in
Section 2.2.2. Both algorithms are executed for ten iterations (the horizontal axis) on the
original surface mesh of the mAChE monomer. The blue curve (the one on the bottom)
and the green one on the top stand respectively for the minimal and maximal angles of the
entire mesh with quality improved by the original method [56]. The other two curves are
the minimal and maximal angles of the entire mesh processed by the weighted angle-based
method as described in Section 2.2.2. We can see that the modified method demonstrates
a better performance than the original method by producing larger minimal angles and
smaller maximal angles in each iteration.

The minimal and maximal angles, used as quality measurement of surface meshes, are
significantly improved after our mesh post-processing methods. These criteria, however,
may fail in measuring tetrahedral mesh quality as the well-known “slivers” may exist in
tetrahedral meshes (a tetrahedron is called a sliver if it has “decent” edge lengths but
almost zero volume). For this reason, we use the dihedral angles within a tetrahedron
to measure the quality of a tetrahedral mesh. Fig.8 shows the normalized histogram of
the dihedral angles calculated from the entire tetrahedral meshes of the three examples
we showed above. Due to the way by which Tetgen generates the tetrahedral meshes
and removes the “slivers”, all three examples show almost the same distribution of the
dihedral angles. Note that the numbers on the horizontal axis are given as follows: 1 for
{0◦ − 5◦}, 2 for {5◦ − 10◦}, 3 to 9 for every 10◦ of {10◦ − 80◦}, 10 for {80◦ − 110◦}, 11 to
16 for every 10◦ of {110◦ − 170◦}, 17 for {170◦ − 175◦}, and 18 for {175◦ − 180◦}.

4.2. Multilevel Mesh Generation and Multigrid-based Solvers
By coarsening the surface triangular meshes using different parameters T0 in equation

5, we can achieve a set of meshes with different levels of detail. Fig.9 illustrates the meshes
of the human head data at three resolutions: T0 = 0.001, 0.03 and 0.1. We can see that,
as T0 increases, the overall mesh size decreases but the mesh points are selectively deleted
so that important features (with high curvature) can be preserved.

Having access to a hierarchy of meshes can be leveraged to build fast solvers for partial
differential equations (PDEs) posed in the volume mesh around the biological structure,
or posed on the surface mesh. It is well-known that the most efficient numerical methods
for solving certain classes of PDEs (called elliptic PDEs) are based on multilevel or hier-
archical methods, which are extensions of the original multigrid algorithms developed for
the Poisson equation in the 1970s [12,25]. The basic idea behind such multilevel meth-
ods for solving a linear system Au = f is the recursive application of a simple two-level
method having the following form [26,13]:

1. Smoothing. Perform iterative relaxations on Afuf = f f on the fine mesh using,
for instance, the Gauss-Seidel method. This step has an effect of reducing high
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frequency errors on the fine mesh.

2. Restriction. Compute the residual error rf = f f −Afuf and down-sample it to the
coarse mesh by rc = Ic

fr
f , where Ic

f is called restriction operator.

3. Equation-Solving. Solve the residual equation Acec = rc on the coarse mesh to obtain
the errors ec. The matrix Ac is defined either by the finite element discretization
on the coarse mesh or by the mesh-independent Galerkin formula Ac = Ic

fA
f (Ic

f )
T .

(This step is accomplished by doing the two-level scheme recursively, until the coarse
mesh is small enough so that the cost of finding the direct solution of the coarse
problem is negligible.)

4. Prolongation. Interpolate the errors onto the fine mesh by ef = If
c ec, where If

c =
(Ic

f )
T , and correct the errors at the fine grid by uf ← uf + ef .

In the setting of nested uniform mesh refinement from an initial coarse mesh, one can show
that for PDE problems like the Poisson equation, the cost of a single recursive application
of the two-level scheme is linear in the dimension of the discrete problem on the finest
mesh. Unfortunately, complex geometries and PDE coefficients make it difficult to use
either uniform mesh refinement or generate nested mesh hierarchies. If nesting is lost
(necessary for example to retain the interpolatory property of surface meshes of varying
resolution), then one must use generalizations of the basic multilevel idea; techniques
include non-nested geometric multigrid methods [10] or algebraic multigrid methods [1].
Moreover, if local adaptivity is required to deal with geometric or solution singularities,
then a different class of multilevel method must be employed to retain linear storage
and solver complexity; these are based on stabilizations of the Hierarchical Basis Method
(cf. [4,3] for detailed discussions of this class of methods and further references).

The mesh hierarchies of varying resolutions that our toolchain generates are well-
positioned for leveraging such fast solver technology. The key objects that must be con-
structed to use most of these multilevel techniques is the restriction operator Ic

f . For
example, following the work in [10], we can calculate the restriction operator as follows:

Ic
f =




φc
1(v1) φc

1(v2) · · · φc
1(vNf

)
φc

2(v1) φc
2(v2) · · · φc

2(vNf
)

...
...

...
...

φc
Nc

(v1) φc
Nc

(v2) · · · φc
Nc

(vNf
)




Nc×Nf

, (8)

where φc
i(vj) is the ith interpolation function, defined on the coarse mesh and valued at

the jth node of the fine mesh. Nc and Nf are the numbers of nodes of the coarse and
fine meshes respectively. Alternatively, Ic

f can be constructed essentially algebraically,
using geometrical information about the mesh [1], or it can be constructed completely
algebraically, using ideas from graph theory [8].

5. Conclusion

We presented a general mesh generation toolchain that has been demonstrated on a
number of examples to produce smooth, adaptive, and high quality meshes with fea-
tures well preserved. Our mesh generator consists of several surface mesh generation and
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post-processing algorithms, including angle-based mesh quality improvement, adaptive
feature-preserving mesh coarsening, and normal-based surface mesh smoothing. Tetra-
hedral meshes are constructed by constrained Delaunay triangulation as implemented in
Tetgen [40,41]. Although this paper focused on the molecular mesh generation having
the center and radius of each atom as inputs, our toolchain can also generate and process
meshes from arbitrary scalar volumes (e.g., reconstructed 3D medical or cellular data)
or low-quality surface meshes provided by users, as demonstrated in Fig. 6. One of our
future directions is to extend the triangular and tetrahedral meshing toolchain presented
here to other types such as quadrilateral/hexahedral meshes. We also plan to work on
quality improvement of tetrahedral meshes, to further improve the tetrahedral meshes as
generated by Tetgen.

The approaches described have been implemented in ANSI-C and incorporated into
the Finite Element ToolKit (FETK) software suite [27] (http://www.fetk.org) as one of its
major components, called GAMER (Geometry-preserving Adaptive MeshER). The FETK
libraries and tools are developed by the Holst Research Group at UCSD and are designed
to solve coupled systems of partial differential equations (PDE) and integral equations
(IE) using parallel adaptive multilevel finite element methods. Built on top of this highly
portable software toolkit are two widely used application-oriented molecular modeling
tools: the APBS [6] and the SMOL [16,43]. The GAMER together with other libraries in
FETK will be made available in source form under the GNU Lesser General Public License.
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Figure 1. Illustration of our mesh generation toolchain.

Figure 2. Illustration of the surface generation and post-processing. The PDB used is
ICID with 1381 atoms. (A) The 3D volume is computed using the Gaussian blurring
approach (Equation 1). Shown here is part of the molecular surface triangulation gener-
ated by the marching cube method. (B) The surface mesh after two iterations of quality
improvement. The small windows shown in (A) and (B) are a closer look at the right-top
corner of the mesh. (C) After coarsening (T0 = 0.2 in Equation 5), the mesh size is
reduced by about seven times. (D) After normal-based surface smoothing (2 iterations).
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Figure 3. Illustration of the angle-based quality improvement algorithm.

Figure 4. Illustration of normal-based surface mesh smoothing.



18 Z. Yu et al.

Figure 5. Illustration of mesh generation on the mAChE molecule. (A) A 3D volume
is generated from the molecule’s PQR file and then the surface mesh is constructed by
the marching cube method and then processed by the methods described above. The
region in yellow is the active site that has denser sampling rate than elsewhere. (B) and
(C) show the cross sections of the interior and exterior tetrahedral meshes generated by
Tetgen based on the surface mesh in (A). (D) An interior and closer look at the active
site, rotated by 90◦. (E) and (F) are closer views of (B) and (C), respectively, near the
active site.
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Figure 6. Illustration of mesh coarsening on other data at different scales. (A) The
neuromuscular junction is given as a triangulated surface mesh. Shown here is the surface
mesh after the post-processing by our methods. (B) The interior tetrahedral mesh is
generated in the synaptic domain. (C) A closer look at the mesh around the third finger to
the right. (D) and (E) The interior and exterior tetrahedral meshes are generated from the
3D volume of the human head model using our methods. No mesh coarsening is applied
here due to the relatively small mesh size. (F) An example of human cardiovascular
system. The mesh is generated directly from the segmented blood vessels using the
marching cube method. The region indicated by arrow is enlarged and shown on the
left-bottom. (G) Same as (F) but with mesh quality improvement and mesh smoothing
by our methods.
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Figure 7. Comparisons between the original and modified angle-based methods for mesh
quality improvement. The molecule being studied is mAChE monomer. Ten iterations of
mesh smoothing are executed for both methods. The two curves on the bottom represent
the minimal angles improved with respect to the number of iterations. The other two
curves are the maximal angles during the quality improvement. The blue (bottom) and
green (top) curves stand for the results by the original angle-based method while the other
two are the results by the modified method.

Figure 8. Quality analysis of our mesh generation toolchain. Three examples are con-
sidered: mAChE, NMJ, and Head. The vertical axis is the normalized histogram of the
dihedral angles calculated from the entire tetrahedral meshes of the three examples. Due
to the way by which Tetgen generates the tetrahedral meshes and removes the “slivers”,
all three examples show almost the same distribution of the dihedral angles. See text for
the correspondence between the numbers on the horizontal axis and the dihedral angles.
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Figure 9. Hierarchical mesh generation by coarsening (experiments on the human head
data). The parameter T0 is described in equation 5. The original surface mesh has 12, 362
nodes and 24, 720 triangles. With different coarsening parameters, we have: (A) Nodes =
12,012 and triangles = 24,020 for T0 = 0.001. (B) Nodes = 5,513 and triangles = 11,022
for T0 = 0.03. (C) Nodes = 3,242 and triangles = 6,480 for T0 = 0.1.


