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Abstract. We consider the solution of parabolic PDEs in three spatial dimensions by multigrid methods on
parallel architectures. The objective is to develop high performance multigrid solvers for large scale time-dependent
problems. We begin with temporal semi-discretizations with several explicit and implicit schemes, followed by a
uniform spatial discretization in a 3D rectangular region. A nearly optimal time-step is then determined empirically
for each of the resulting methods when applied to a given test problem, and the sequential performance of each method
is then compared. We examine the effect of the step size on the convergence rates of multigrid, and present results
of experiments on two parallel architectures: a four processor Cray Y-MP and a fourteen processor Alliant FX/2800.
Our results demonstrate that multigrid can achieve very high parallel efficiency on coarse-grained shared memory
machines, and that explicit methods are not likely to be competitive with multigrid based implicit methods on such
machines.
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1. Introduction. In this paper, we consider the solution of three-dimensional parabolic partial
differential equations. The objective is to develop high performance solvers using multigrid tech-
niques for large scale time-dependent problems of this type. The target machines are shared memory
multiprocessors, including specifically the Alliant FX/2800 and the Cray Y-MP. We begin the paper
with a discussion of explicit and implicit temporal semi-discretization schemes, and examine the
elliptic problems that must be solved at each time step in the implicit schemes. Our approach to
solving these shifted 3D elliptic problems is to use the multigrid method. The use of implicit time
stepping schemes coupled with multigrid for solution of the resulting elliptic problems has been
examined by Hackbusch, Brandt et al. in [8, 17] for 2D problems. We examine the behavior of
the multigrid method for implicit time discretizations of 3D problems, and focus on the efficient
parallel solution of the shifted elliptic partial differential equations arising at each time step. Issues
of step size selection, multigrid initialization at each time step, and multigrid convergence rates for
the shifted problems naturally arise, and we attempt to answer some of these questions.

The remainder of this paper is structured as follows. In § 2, we introduce the class of problems
we wish to solve. In § 3, we discuss time discretization techniques, and in particular we outline the
approach taken in our implementations. The elliptic problems arising in implicit time discretizations
are considered in § 4, and we discuss the effect of the shift introduced into the operator as a result
of the time step. In § 5 we review multigrid methods, and discuss the current state of research on
multigrid for 3D parabolic problems. Two test problems are presented in § 6: the heat equation in
three spatial dimensions, and a variable coefficient problem. In § 7, we present some experiments
investigating the performance of explicit and implicit methods for the test problems on a sequential
computer, and examine in more detail the effect of the shifted operator on the performance of
multigrid. We present performance results for our implementations on some advanced computer
architectures in § 8, namely the Alliant FX/2800 and the Cray Y-MP. Finally, we summarize our
results in § 9.

2. Parabolic Problems in Three Space Dimensions. We seek the solution u = u(x, y, z, t)
of a parabolic partial differential equation of the form

ut = Lu + f in Ω ⊂ R
3,(1)

u(x, y, z, t) = g(x, y, z, t) on ∂Ω,

u(x, y, z, 0) = h(x, y, z) at time t = 0,
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where Ω is some cuboidal region in R
3. We consider operators of the form L = ∇ · (a∇) +~b · ∇+ c,

and in particular the case when the tensor a is diagonal:
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where aii, bi, and c are functions of x, y, z, and possibly t.
Problems of this structure arise in numerous applications involving diffusive or thermodynamic

processes. Examples include groundwater and petroleum reservoir simulation, quantum mechanics,
ocean acoustics, and neutron transport.

3. Time Discretizations of Parabolic Problems. The semi-discretization of the time vari-
able in the parabolic pde ut = Lu + f can be accomplished in several ways, involving the use of
explicit or implicit techniques [29, 35]. Explicit methods, in which the solution at the new time
step is formed by a combination of previous time step solutions, are simple to code and under-
stand, and inexpensive computationally to apply at a single time step. Examples include Forward
Euler, Leapfrog, DuFort-Frankel, and Runge Kutta methods. For example, we can represent the
semi-discretization using Forward Euler as:

un+1 = un + ∆t (Lnun + fn) ,(3)

where ∆t is the time step from time tn to time tn+1, un is the solution, fn is the forcing function,
and Ln is the elliptic operator at time tn. The function un+1 is then the new approximate solution
at time tn+1, with a discretization error of O(∆t) for this method. Of course with explicit methods
there will be stability limit on the time step size.

To avoid the stability considerations implicit methods can be used, and the step size may be
chosen purely on the basis of accuracy. They are more costly to apply, requiring the solution of
linear algebraic equations at each time step (or nonlinear algebraic equations, if the elliptic operator
is nonlinear). Possible choices include the Backward Euler (4) and Crank-Nicolson (5) methods:

(

Ln+1 −
1

∆t

)

un+1 = −

(

1
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)

un − fn+1,(4)

(
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)
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)
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.(5)

Note that by introducing the variable V n, a recursion can be used in the Crank-Nicolson method
to avoid the application of the operator L on the right hand side:

(

Ln+1 −
2

∆t

)

un+1 = V n,(6)

where V n is defined by:

V 0 = −

(

L0 +
2

∆t

)

u0 −
(

f0 + f1
)

,

V n = −V n−1 −

(

4

∆t

)

un −
(

fn+1 + fn
)

.

This technique can result in an appreciable saving in computations (a matrix-vector product with
the discrete analogue of the operator L of equation (2)) when compared to the original method (5).
This approach is similar in spirit to one used in [12] for saving matrix-vector products in the ADI
method.
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4. Elliptic Problems Arising in Implicit Schemes. In each of the implicit methods dis-
cussed in the previous section, an elliptic partial differential equation of the following form must be
solved at each time step:

(

L −
α

∆t

)

u = f.(7)

For example, with Crank-Nicolson α = 2, while α = 1 for Backward Euler. Our approach to
solving this shifted 3D elliptic problem is to use the multigrid method, as was done for implicit time
discretizations of parabolic problems in two space dimensions in [8, 17].

Another approach appears in [28, 32, 33, 34], where 2D parabolic problems are first discretized in
space, followed by time discretization to solve the resulting system of ordinary differential equations.
In particular, several explicit and implicit time discretization methods are compared in [34], involving
the use of various linear solvers (including multigrid) for the linear algebraic equations arising at
each time step of the implicit methods.

Our purpose is to examine and compare several semi-discretizations in time of 3D parabolic
problems, study the behavior of the multigrid method for different time discretizations, and focus
on the efficient parallel solution of the shifted elliptic partial differential equations arising at each
time step.

4.1. Shifted Elliptic Operators. It is noted in [8] that when a semi-discretization in time is
performed in the case of the 2D heat equation, the resulting shifted elliptic operators at each time
step are Helmholtz operators with shift α

∆t
, and the behavior of classical relaxation methods, as well

as that of the multigrid method, is analyzed in [30] for model problems of this type.
Here, we examine the effect of the time shift on the convergence behavior of multigrid for 3D

elliptic operators, including Helmholtz-like operators, as well as more general variable coefficient
problems.

The effect of the shift is a better conditioned problem, which will have a beneficial effect on most
solution techniques. In (§ 7), we present numerical results demonstrating how multigrid methods
benefit from the shift.

4.2. Spatial Discretization of the Elliptic Problem. We put down a uniform 3D mesh
of width h on Ω, and discretize the shifted elliptic operator using centered finite difference approx-
imations (the 7-point stencil). Given that the elliptic operator is the general second order linear
operator in equation (2), and that we order the discrete unknowns using the natural ordering, a block
tri-diagonal linear system Lhuh = fh results. We denote the block tri-diagonal system corresponding
to a mesh-width of 2h as L2hu2h = f2h, and so on.

Since cross derivatives are not present in (2), the matrix Lh has the non-zero structure of the
discrete 3D Laplacian (Figure 1), where the nonzeros of the matrix lie on seven diagonals. We use a
data structure in our implementations that reflects the diagonal form of the discrete operator, and
as a result matrix-vector operations are extremely efficient on vector computers such as the Cray
Y-MP (e.g. [25]). For example, this storage format can achieve a factor of five speedup in the time
taken to compute a matrix-vector product when compared to the equivalent operation implemented
with more general sparse matrix storage formats, even when the gather-scatter hardware is used [27].

5. Multigrid Methods for 3D Elliptic Problems. Multigrid methods are highly efficient
techniques for solving certain types of partial differential equations. The study of these methods
constitute a very active research area in numerical analysis and scientific computing, and this section
represents a survey of some of the basic methods, mentioning special considerations for 3D problems.
More detailed discussions can be found in any of [5, 6, 18, 30].

5.1. The Multigrid Idea. The basic idea behind multigrid methods for partial differential
equations is the use of multiple grids to resolve different features of the solution on the appropri-
ate scales. In particular, multigrid methods avoid the inefficiency of dealing with “coarse scale”
phenomenon (low frequency errors) on the finest grid.
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Fig. 1. Block tri-diagonal form of the discretized 3D elliptic operator for a 3× 3× 3 mesh.

The Two-Grid Algorithm. If uniform three dimensional meshes of widths h and 2h are used
to discretize the elliptic partial differential equation discussed in § 4, we will then have two sets
of equations representing discrete approximations to the original PDE; namely Lhuh = fh, and
L2hu2h = f2h. A two-grid Correction Storage (CS) multigrid scheme [5, 30] using both the fine grid
and coarse grid equations to solve the underlying PDE can be represented graphically as in Figure 2
(cf. [30]).
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Fig. 2. The two grid Correction Storage (CS) scheme.

The method begins with an initial approximation uold
h

on the finest grid. A relaxation (or
smoothing) method Rh is then employed for ν1 iterations, resulting in an approximation ūh with
smooth error and residual. Next, a residual computation is performed, and this residual rh is
restricted to the coarse grid via the restriction operator I2h

h
, resulting in a residual on the coarse

grid, r2h.
The coarse grid problem is solved in some way (perhaps directly, or by more relaxations), and

the correction c2h obtained from the residual equation is then interpolated back to the fine grid via
the operator Ih

2h
, resulting in the correction ch. The correction is added to the approximate solution,

and ν2 smoothings are done to reduce any high frequency error that has been introduced by the
interpolation operator, resulting in the final approximation unew

h
from the multigrid cycle.

Note that linearity was used to motivate the CS scheme correction equation: Le = L(u∗ − u) =
Lu∗ − Lu = f − Lu = r. While there is no direct analogue in the case of a nonlinear operator
L, a modified correction equation can be used, and the resulting algorithm will require a nonlinear
relaxation operator Rh, in addition to an analogous coarse-grid correction step. (If the nonlinearities

4



occur in the discrete equations in particularly simple forms, which is the case in many applications
such as computational fluid dynamics, then nonlinear analogues of the classical relaxation procedures
such as Jacobi iteration are easily defined [7].)

A description of the two-grid Full Approximation Storage (FAS) scheme employing the more
general correction scheme can be found in [5, 18]. In this scheme, a combination of the fine grid
residual rh and the fine grid solution ūh are transferred to the coarse grid to become the right-hand
side of the coarse grid correction equation:

f̄2h = L2h(Ī2h

h
ūh) + I2h

h
(fh −Lh(ūh)).

The correction u2h is then returned to the fine grid as:

ch = Īh

2h(u2h − I2h

h ūh).

(Note that Īh2

h1
and Ih2

h1
may be defined independently.) While the FAS scheme is more expensive

than the CS scheme because of the more complicated formula for f̄2h, it has several advantages: it
can be used for both linear and nonlinear problems, whereas the CS scheme is restricted to the linear
case; truncation error estimates are easily obtained, enabling adaptive implementations, including
adaptive time step-size control for the parabolic problems we are considering in this paper.

Smoothers. The smoothing operator Rh can be chosen to be one of the classical methods
such as Jacobi, Red/Black Gauss-Seidel (point, line, and plane versions), or weighted Jacobi. Of
particular interest for 3D problems are the alternating plane relaxations, which become increasingly
important for problems with anisotropic or discontinuous coefficients [9, 31]. Other methods that
have been proposed include incomplete LU factorizations, as well as the conjugate gradient method
[1]. The 2D multigrid method itself has been proposed as a smoother for 3D multigrid [9, 31].

The results presented in this paper are based on the weighted Jacobi method, which can be
written for a linear system Ax = b as:

x(n+1) = x(n) + ωD−1(b − Ax(n)),

where D represents the diagonal of the matrix A.

Grid Transfer Operators. The grid transfer operators we have used are the natural 3D
extensions of some of the standard 2D operators, as described in [24]. In particular, we use a 3D
full weighting restriction operator for fine to coarse grid transfers, which involves twenty seven fine
grid points to form a single coarse grid point, and a tri-linear interpolation operator for coarse to
fine grid transfers.

Solution of the Coarse Grid Problem. Our choice of the coarse grid solution technique was
banded Gaussian elimination [10]. For reasons discussed in [22], we typically use enough grid levels
so that the percentage of time spent in coarse grid solves amounts to roughly five percent of the
total solution time or less. This implies a small coarse grid problem, and a banded direct solve is
quite fast for these problem sizes. Although sparse Gaussian elimination is asymptotically cheaper,
banded Gaussian elimination can solve the small coarse grid problems in comparable time (if not
faster, particularly on vector processors).

5.2. The V-cycle and Full Multigrid. Multigrid is a recursive application of the two-grid
algorithms discussed above. This idea can be applied successively, until the cost of solving the coarse
grid problem is negligible. If the algorithm begins with the fine grid, cycles down to the coarse grid,
and then returns to the fine grid, it is called a V-cycle (MG) [5, 18]. An alternative procedure begins
with the coarse grid, interpolates the solution (not a correction) to a finer grid, performs a V-cycle
from that grid level, interpolates the solution to still a finer grid, and repeats the process, until
a V-cycle is performed on the finest grid. This is called full multigrid (FMG) or nested iteration
[5, 18]. Both algorithms are depicted in Figure 3. The dashed lines in the FMG picture represent
coarse-to-fine interpolations in which a fine grid is visited for the first time. Ideally, an accurate
interpolation scheme (e.g., cubic) should be used in these steps, but in the results presented in this
paper, we have used tri-linear interpolation.
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Fig. 3. Two multigrid algorithms.

The advantage of FMG over MG is that it provides a more accurate initial guess for the V-Cycle
than an arbitrary or zero initial guess, at a small additional cost. (Discretization error accuracy can
usually be reached in one FMG iteration, whereas several MG iterations may be required to reach
the same accuracy.) However, time-dependent problems naturally provide a third option: we can
exploit information available from previous time steps (the simplest approach is to use the solution
at time tn as the initial guess for multigrid at time tn+1). We discuss this further in § 7.

For an n × n × n grid, the cost of dense, banded, and sparse Gaussian elimination is O(n9),
O(n7), and O(n6), respectively. In contrast, one iteration of multigrid costs O(n3) operations, and
the number of iterations of multigrid required to solve the problem to discretization error accuracy
is typically very small. For certain classes of problems, it can be shown rigorously that the number
of iterations required is independent of n, which implies that multigrid methods are of optimal order
for these problems.

In three dimensions, the additional memory required by multigrid is not excessive. If Mh is the
memory required to describe the problem on the finest grid, then the total memory M needed by
multigrid is approximately:

M = Mh + M2h + M4h + · · · = Mh(1 +
1

8
+

1

16
+ · · ·) ≤

8

7
Mh.

Many convergence proofs can be found in the literature [1, 2, 4, 16] and are based on an analysis
of the iteration matrix of the multigrid method, which for the two-grid CS scheme is given by:

G2h

h
= Sν2

h
(Ih − Ih

2h
L−1

2h
I2h

h
Lh)Sν1

h
,

where Sh represents the iteration matrix for the relaxation process Rh.

6. Test Problems. Our test problems are defined on the unit cube and are of the form given
in equations (1) and (2). We will present results for the following two test problems.

Problem 1. For this problem, L is chosen to be the Laplacian, i.e., in (2) we set

a11 = a22 = a33 = 1, b1 = b2 = c = 0.

The boundary and the initial conditions are chosen to agree with a test solution which we have
chosen, namely:

u(x, y, z, t) = e−tsin(πx)sin(πy)sin(πz).

Problem 2. This problem is a generalization to three dimensions of a 2D test problem that
appeared in [34]. In particular, L is a time-dependent, variable coefficient, non-self-adjoint, elliptic
operator. The coefficients in (2) are defined as follows:

a11 =
t

6(x + 1)2
, a22 =

t

6(y + 1)2
, a33 =

t

6(z + 1)2
,

b1 =
−t

6(x + 1)3
, b2 =

−t

6(y + 1)3
, b3 =

−t

6(z + 1)3
, c = 0.
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Fig. 4. Effect of varying the Crank-Nicolson time shift in Problem 2 on a 15× 15× 15 mesh.

The boundary and initial conditions are chosen to agree with the test solution which we choose as

u(x, y, z, t) = e−t
2

sin((x + 1)2 + (y + 1)2 + (z + 1)2).

The results which we present in § 7 are for Problem 2, while the results presented in § 8 are for
Problem 1.

7. Sequential Behavior and Performance. In this section, we first consider the issue of step
size selection for both the explicit and implicit time stepping schemes. Next, we mention several
possible techniques for starting the multigrid iteration at a particular time step of an implicit scheme,
and explain the approach we took. We then examine the sequential behavior and performance of
the three time stepping methods we implemented, when each method uses nearly optimal step sizes.
Finally, we make some comments about the effect of the time step on multigrid convergence rates.

7.1. Step Size Selection. In our experiments, we first select the spatial meshwidth ∆x, and
then determine a time step ∆t that is as large as possible while maintaining a degree of accuracy at
the final time point commensurate with the spatial discretization error.

An important issue regarding the time step selection arises when using the multigrid method
for the implicit equations. It was noted in § 4.1 that the size of the time step chosen effects the
conditioning of the elliptic equation (7). As ∆t approaches zero, the operator becomes more well-
conditioned, and this is reflected in a smaller convergence factor for multigrid; this is shown in
Figure 4. Naturally, we are interested in taking large time steps and it is clear that the multigrid
convergence rates for the shifted elliptic operator in equation (7) is never larger than for the unshifted
operator L1.

When solving an application problem rather than a test problem, the luxury of determining the
optimal step size, either analytically or empirically, does not exist, and therefore either a fixed time
step must be chosen a priori, or some type of adaptive time stepping strategy must be employed. If
one has a spatial error estimate, then one could attempt to maintain maximal accuracy while taking
the fewest possible time steps by exploiting the spatial error information. The structure of multigrid

1 It is interesting to note that the ill-posedness of time-reversed parabolic equations is reflected in poor convergence
behavior of multigrid when ∆t is chosen to be negative. Standard multigrid procedures fail to converge if the coarse
grid problem is too small [14, 23].
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methods makes it easy to estimate the accuracy of the computed solution. We outline two simple
possibilities.

In the CS multigrid scheme, the solution on the 2h grid, when transferred to the finest h grid,
can be viewed as an approximation to the error on the finest grid. In the notation of Figure 2,
‖ch‖/‖ūh‖ could be used as an error estimator in the spirit of iterative improvement (e.g., [15]).

Alternatively, if the FMG and/or FAS multigrid approach is used, we have approximate solutions
on each grid. The solutions on the h and 2h grids can be combined to produce an error estimate,
using either Richardson extrapolation or τ extrapolation [7].

Ideally, the spatial error estimate thus obtained would be combined with an error estimate in
time, to implement adaptive time stepping. Eventually, it would be desirable to implement methods
which are adaptive in both space and time for 3D parabolic problems. This question is addressed
for nonlinear parabolic problems in one space dimension in [26].

7.2. Initial Guess for Multigrid. The Multigrid V-cycle solution of the discrete equations
at time tn+1 can in principle be initialized in one of several ways, including:

• the solution un from the previous time step,
• an initial approximation from FMG,
• use of a predictor.

Since explicit methods used as predictors typically violate their stability limits, they may excite high
frequency modes in the predicted value, and therefore may create more work to be done on the fine
grid of the next time step [8]; for this reason, the predictor approach may not be worthwhile.

Brandt et al. [8] argue that while the previous time step or some extrapolated approximation
other than a predictor can be used, the FMG approach coupled with a variation of the V-Cycle, the
F-Cycle, is optimal. For the particular problems we have looked at, and for our implementation,
our experiments seem to indicate that the previous time step is a marginally better initialization
to the V-cycle than is the FMG approach. Whether this would remain true for other problems or
multigrid method formulations (e.g., if cubic interpolation is used in FMG; cf., Figure 3) remains
open.

7.3. Comparisons of Explicit and Implicit Methods. We integrated the test problem,
using our empirically determined nearly optimal time step, with each of the three methods to time
t = 1, noting the cost of each method on a sequential computer. Note that the implicit equations
were solved with the multigrid method at each time step.

Table 1 presents some results, in which we give the number of time steps required to reach a
given tolerance, the cost of each step, and the total cost of all time steps, for the solution of a
variable coefficient problem (Problem 2) on a 15× 15× 15 mesh. Table 2 presents the results of the
same experiments for a 31× 31× 31 mesh.

The number of steps required by each of the methods to reach the final time point is dictated
by the stability limit in the Forward Euler method, while accuracy considerations constrain the
Backward Euler method to taking more time steps than Crank-Nicolson. However, the cost for each
time step is more expensive for the implicit methods. The question then arises as to whether the
explicit method is so inexpensive to apply that it can overcome the penalty imposed by the stability
limit.

The results presented in Tables 1 and 2 indicate that this is not the case on sequential computers,
at least when an efficient solver (multigrid in this case) is used for the implicit equations. On parallel
computers this situation could change, if the explicit method ran at a much higher parallel efficiency
than the implicit method. However, noting that the ratio of the total sequential times given in
Table 1 for Forward Euler and Crank-Nicolson is roughly five, this would imply that the explicit
method would have to achieve a parallel efficiency five times greater than the implicit method to be
competitive. In this scenario, if the implicit method achieves over twenty percent parallel efficiency,
then the explicit method is not likely to be competitive. As we will see in § 8.1 and § 8.2, we are
able to achieve substantially more than twenty percent parallel efficiency, from FORTRAN, for our
implementation of the Crank-Nicolson method with multigrid.

From Table 2 we see that the advantage of the implicit method increases as we go to larger
problems. For the types of problems we are considering, we do not expect explicit methods to be
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Table 1

Solution of Problem 2 on a 15 × 15 × 15 mesh. CPU seconds on a Convex C240 to reach tfinal = 1.

Method Number of Time for Time for Accuracy
Steps N 1 step N steps

Forward Euler 1010 1.87E − 02 18.9 1.6E − 03
Backward Euler 105 1.97E − 01 20.7 2.0E − 03
Crank-Nicolson 20 2.01E − 01 4.0 2.6E − 03

Table 2

Solution of Problem 2 on a 31 × 31 × 31 mesh. CPU seconds on a Convex C240 to reach tfinal = 1.

Method Number of Time for Time for Accuracy
Steps N 1 step N steps

Forward Euler 4040 1.51E − 01 610.0 3.9E − 04
Backward Euler 350 1.51E + 00 528.5 5.0E − 04
Crank-Nicolson 30 1.55E + 00 46.5 6.2E − 04

competitive with implicit methods, for sequential or coarse-grained parallel computers.

8. Performance on Advanced Computer Architectures. We have implemented a 3D
multigrid solver for a class of problems that includes the elliptic problems arising at each time step
of an implicit method. This solver has been interfaced with a parabolic equation integrator which
implements both Backward Euler and Crank-Nicolson time stepping. The multigrid solver can use
either the V-Cycle algorithm (with either zero or the previous time level solution as the initial
guess) or the FMG algorithm, with weighted Jacobi smoothing, full-weighting restrictions, tri-linear
interpolation, and banded Gaussian elimination for the coarse grid solves.

The FORTRAN code executes with high vector and parallel efficiency on machines such as the
Alliant FX/2800, the Cray Y-MP, and also executes efficiently on the IBM RS6000, the Convex
C240, and the Sun SPARC-1. The multigrid code consists of four central routines: the smoothing
routine, the residual routine, and the restriction and interpolation routines. The restriction and
interpolation routines consist of triply nested loops which scan through the grid functions by plane,
line, and point; appropriate compiler directives must be placed in the code in order for parallelization
across the planes to take place. The smoothing and residual routines, on the other hand, consist
of long single loops as a result of the diagonal matrix storage scheme. These loops may need to be
restructured in order for parallelization to be enabled on different architectures.

The performance figures presented below, as well as the summary in Table 3 refer to identical
code, other than the insertion of necessary compiler directives mentioned above to force paralleliza-
tion across planes in the restriction and interpolation routines (this was automated for a number of
compilers), and hand restructuring of long single loops in the smoothing and residual routines to
enable parallelization in the case of the Cray Y-MP.

In what follows, we examine the parallel and vector performance on the Cray and the Alliant in
detail. Table 3 summarizes these results along with the overall performance of the code on several
other machines. For the results that follow in § 8.1 and § 8.2, we use the notions of parallel speedup
SP , parallel efficiency EP , and Megaflops as performance indicators. The standard definitions for
these measures are (for a program running on P processors of a parallel computer):

SP ≡
Execution time on 1 processor

Execution time on P processors
, EP ≡ SP ×

1

P
× 100%.

8.1. Parallel Performance on the Alliant FX/2800. The Alliant FX/2800 used for our ex-
periments is located at the Center for Supercomputing Research and Development at the University
of Illinois, Urbana-Champaign. The architecture is shared memory multiprocessor, with fourteen
Intel i860 processors. There is compiler support for parallel programming in FORTRAN. In partic-
ular, the sequential code was run on this machine with no alterations, other than the insertion of a
few compiler directives.
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Table 3

Performance summary of the 3D parabolic multigrid solver on several architecures.

Machine Megaflops
Cray Y-MP (4 processors) 641.0
Cray Y-MP (1 processor) 224.0
Alliant FX/2800 (14 processors) 51.1
Alliant FX/2800 (1 processor) 6.4
Convex C240 16.1
IBM RS6000 12.7
Sun SPARC 1 0.6

Table 4

Percentage of solution time spent in main multigrid components when solving Problem 2 on a 31 × 31 × 31 mesh.

Multigrid Alliant FX/2800 Cray Y-MP
Component P=1 P=14 P=1 P=4

Smoothing 76% 75% 75% 79%
Residual 14% 14% 12% 10%
Interpolation 4% 5% 8% 6%
Restriction 2% 3% 3% 3%
Coarse Grid Solve < 1% < 1% < 1% < 1%

Figures 5 through 8 display the execution times, speedup, parallel efficiency for the overall
solution process, and the megaflop rate breakdown for each major component in the multigrid
method at one particular time step.

Figure 5 shows the reduction in execution time as more processors are used. Figure 6 shows a
speedup of nearly eight on fourteen processors, which when translated to parallel efficiency in Figure 7
shows nearly sixty percent efficiency. Figure 8 shows an overall performance of over fifty megaflops
on fourteen processors, and also reveals a routine that lags in performance: the interpolation routine.
(Note that interpolation is only about three to eight percent of the overall solution time, and therefore
does not constitute a substantial bottleneck; see Table 4.)

From these figures we can make a few observations. First, the code runs at about six megaflops
on a single processor. This is somewhat disappointing, given the high peak performance of the
i860 chips (thirty to forty megaflops for SAXPYs [11, 21]). Secondly, the leveling off in the parallel
efficiency curve is at first glance somewhat unexpected. However, for a method like multigrid where
O(N) operations are performed on data of size N , it is harder for the cache management algorithm
to do a good job, than, say, for Gaussian elimination, where O(N 3) operations are performed on
O(N2) data. This in turn leads to greater contention for the bus, as the number of processors is
increased.

8.2. Parallel and Vector Performance on the Cray Y-MP. Our implementation was
also run on the Cray Y-MP, located at the National Center for Supercomputer Applications at the
University of Illinois, Urbana-Champaign. The architecture is also a shared memory multiproces-
sor, with four Cray vector processors. We used the micro-tasking facility (do-loop level) rather
than macro-tasking (subroutine level) to parallelize our code. There is compiler support for some
parallel programming, which is used through a compiler front-end which inserts micro-tasking (“au-
totasking”) compiler directives. However, we were forced to hand nest the long single loops of the
smoothing and residual routines in order for the autotasking directives to be correctly inserted by
the compiler front-end; this was not necessary for the Alliant compiler.

Shown in Figures 9 through 12 are the Cray performance results for the same problem we
considered in the previous section: execution times, speedup, parallel efficiency, and megaflop rate
breakdown. Figure 9 shows the usual execution time reduction as more processors are used. Figure 10
shows a speedup of nearly three on four processors, which translates to a parallel efficiency of over
seventy percent, shown in Figure 11. Figure 12 shows the overall performance of over two hundred
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and twenty megaflops on one processor, and over six hundred and forty megaflops on four processors.
(Again, the lagging interpolation routine is revealed.)

From these figures we can see that the choice of diagonal matrix data structures paid a large
dividend in performance: the smoothing and residual routines are the fastest components of the
multigrid method on the Cray. Secondly, on one processor of the Cray Y-MP, we achieve over
two hundred and twenty megaflops, which is nearly the peak performance of the older Cray X-MP.
Finally, if an eight processor version of the Cray Y-MP had been available, a performance of over
a gigaflop seems plausible, given the slope and curvature of the speedup plot on four processors in
Figure 10.

9. Conclusions. We conclude by making a few observations.
First, it is clear that if the implicit equations are solved using the multigrid method, not only

is the resulting method sequentially very efficient, but it can also achieve high vector and parallel
efficiencies. This is of course not new [3, 13], but what can be said is that this performance is
achievable from FORTRAN with very little special coding considerations.

Second, the shifted elliptic operators arising at each time step of an implicit time discretization
results in rapid multigrid convergence. Furthermore, multigrid can exploit information available
from previous time steps by using the previous solution as an initial guess for the multigrid V-Cycle.

Third, explicit methods may achieve somewhat higher computation rates, but not enough to
overcome their inherent disadvantages, at least on coarse grained parallel architectures such as the
ones considered in this paper. In particular, for the methods we implemented, the implicit methods
were superior even for small problems, and as the problem size grows, the superiority of the implicit
methods will only increase.

Finally, although we did not implemented this idea, we feel that adaptive step-size selection will
be straightforward to implement when using multigrid for the implicit equations, and lead to even
greater efficiency.
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[17] , Parabolic multi-grid methods, in Computing Methods in Applied Sciences and Engineering, VI, New

York, NY, 1984, North Holland.
[18] , Multi-grid Methods and Applications, Springer-Verlag, Berlin, Germany, 1985.
[19] W. Hackbusch and U. Trottenberg, eds., Berlin, Germany, 1982, Springer-Verlag.
[20] , eds., Multigrid Methods II: Proceedings of the Second European Conference on Multigrid Methods held

at Cologne, Berlin, Germany, 1986, Springer-Verlag.
[21] M. T. Heath, G. A. Geist, and J. B. Drake, Early experience with the Intel iPSC/860 at Oak Ridge National

Laboratory, Tech. Report ORNL/TM-11655, Oak Ridge National Laboratory, 1990.
[22] M. Holst and F. Saied, Vector multigrid: An accuracy and performance study, Tech. Report UIUCDCS-R-

90-1636, Numerical Computing Group, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1990.

[23] , Multigrid methods for computational ocean acoustics on vector and parallel computers, in Proceedings
of the Third IMACS Symposium on Computational Acoustics, New York, NY, North Holland, 1991.

[24] W. H. Holter, A vectorized multigrid solver for the three-dimensional Poisson equation, Appl. Math. Comp.,
19 (1986), pp. 127–144.

[25] T. L. Jordan, A guide to parallel computation and some Cray-1 experiences, in Parallel Computations, G. Ro-
drigue, ed., Academic Press, New York, NY, 1982, pp. 1–50.

[26] J. Lawson, M. Berzins, and P. M. Dew, Balancing space and time errors in the method of lines for parabolic
problems, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 573–594.

[27] J. G. Lewis and H. D. Simon, The impact of hardware gather/scatter on sparse gaussian elimination, SIAM
J. Sci. Statist. Comput., 9 (1988), pp. 304–311.

[28] C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations, BIT, 27 (1987), pp. 217–
234.

[29] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience Publishers,
New York, NY, second ed., 1957.
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Fig. 5. Execution times over 14 processors on the Alliant FX/2800.
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Fig. 6. Speedup over 14 processors on the Alliant FX/2800.
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Fig. 7. Parallel efficiency over 14 processors on the Alliant FX/2800.
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Fig. 8. Megaflop rates for each multigrid component on the Alliant FX/2800.
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Fig. 9. Execution times over 4 processors on the Cray Y-MP.
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Fig. 10. Speedup over 4 processors on the Cray Y-MP.
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Fig. 11. Parallel efficiency over 4 processors on the Cray Y-MP.
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Fig. 12. Megaflop rates for each multigrid component on the Cray Y-MP.
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