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Abstract. On September 14, 2015, the newly upgraded Laser Interferometer

Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave

(GW) signal, emitted a billion light-years away by a coalescing binary of two
stellar-mass black holes. The detection was announced in February 2016, in

time for the hundredth anniversary of Einstein’s prediction of GWs within the

theory of general relativity (GR). The signal represents the first direct detec-
tion of GWs, the first observation of a black-hole binary, and the first test

of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of
its first observing run, LIGO observed two more signals from black-hole bina-

ries, one moderately loud, another at the boundary of statistical significance.

The detections mark the end of a decades-long quest, and the beginning of
GW astronomy: finally, we are able to probe the unseen, electromagnetically

dark Universe by listening to it. In this article, we present a short historical

overview of GW science: this young discipline combines GR, arguably the
crowning achievement of classical physics, with record-setting, ultra-low-noise

laser interferometry, and with some of the most powerful developments in the

theory of differential geometry, partial differential equations, high-performance
computation, numerical analysis, signal processing, statistical inference, and

data science. Our emphasis is on the synergy between these disciplines, and

how mathematics, broadly understood, has historically played, and continues
to play, a crucial role in the development of GW science. We focus on black

holes, which are very pure mathematical solutions of Einstein’s gravitational-
field equations that are nevertheless realized in Nature, and that provided the

first observed signals.
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1. Gravitational waves from black holes: a historical milestone

On February 8, 2016, the U.S. National Science Foundation announced an up-
coming press conference for February 11, modestly titled Scientists to provide up-
date on the search for gravitational waves, and yet scheduled at the high-profile
National Press Club in Washington, DC. By then it was a known secret that the
Laser Interferometer Gravitational-wave Observatory (LIGO) had accomplished the
first direct detection of gravitational waves, even if the 1,000+ scientist involved in
the experiment had amazingly kept details almost secret.

These details were stunning: LIGO had recorded waves from the inspiral and
merger of two black holes at a luminosity distance of ∼ 400 Mpc (a billion light-
years). Until then, black-hole binaries were theorized to exist, but never observed,
let alone in their final merger phase. Furthermore, the shape of the gravitational
wave implied that both holes were heavier than 25 solar masses, more than was
thought possible in the astrophysical theory of binary evolution. This would be
truly a historic scientific announcement, appropriately marking the 100th anniver-
sary of Einstein’s first prediction of the existence of gravitational waves (GWs).

At the press conference, LIGO Laboratory Executive Director David Reitze did
not waste time getting to the point. Once he reached the podium he announced
simply:

Ladies and gentlemen, we have detected gravitational waves. We did it.

In this article, we celebrate the LIGO milestone by drawing a brief history of
gravitational-wave science, a field that reached its maturity thanks to astonishing
progress in experimental physics, but also due to crucial developments in several
fields of mathematics and allied disciplines, including differential geometry, partial
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differential equations (PDEs), high-performance computation, numerical analysis,
signal processing, statistical inference, and data science.

2. Space and time

Einstein’s theory of general relativity (GR), which is the theory of gravity he
introduced to the world in 1915, has many features which are distinct from Newton’s
gravitational theory. One such feature is that it is a theory of space-time, the
geometry of which is not fixed, but instead governed by its own set of field equations.
Rather than being described as a force on a fixed space-time arena, gravity is
embedded in the geometry of space-time. In Galileo’s and Newton’s everyday notion
of space and time, we are used to the concepts of a universal time, simultaneity,
and a fixed geometry of space. The latter is governed by our everyday notion of
distances,

(∆l)
2

= (∆x)
2

+ (∆y)
2

+ (∆z)
2
,

or in infinitesimal terms,

(2.1) dl2 = dx2 + dy2 + dz2 .

More accurately, the space of Newtonian physics is a three-dimensional manifold
M (typically, but not necessarily, R3) equipped with a flat Riemannian metric g;
that is, a symmetric tensor field of rank (0, 2) with vanishing curvature, denoted
by dl2 in Eq. (2.1). The Riemannian aspect of the Newtonian metric of space
implies that at each point it can be brought into diagonal form as in (2.1) and
that its signature is (+1,+1,+1). In fact, it can be globally diagonalized, which is
equivalent to the assumption, or the consequence, of the existence of a global family
of inertial observers. It also implies that, without introducing extra structure, any
PDEs describing the gravitational field resulting from given sources must be time-
independent. Therefore, even if the sources change in time, these changes are

instantaneously transmitted to the gravitational field ~g = −~∇φ. Here, at each
instant of time, the gravitational potential is a function φ on M which satisfies
Poisson’s equation

(2.2) ∇2φ(~x) := gij∇i∇jφ(~x) = 4πGρ(~x) ,

where the gij are components of the inverse metric, the symbol ∇ denotes the
uniquely associated metric-compatible, torsion free covariant derivative, and i, j =
1, 2, 3 denote spatial indices, with repeated indices taken to imply a summation over
them (“Einstein summation convention”). The term ρ(~x) denotes the mass density
at the considered point ~x in space, and G is Newton’s constant. As mentioned
above, the Riemannian structure of space implies infinite speed of propagation,
and explicitly excludes the possibility of gravitational radiation.

In special relativity, one re-examines physical laws in the context of a combined,
but fixed, space-time geometry. The fixed character of the metric shares its nature
with the Newtonian case, but the metric is Lorentzian:

(2.3) ds2 = −c2dt2 + dx2 + dy2 + dz2 ,

with c the speed of light. Here, the ds2 is simply conventional notation, as the
metric is not positive definite: its signature is (−1,+1,+1,+1). This approach
allows, essentially, without additional structure, to build covariant PDEs which are
hyperbolic in nature, and therefore imply a finite speed of propagation (bounded
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by c). Intuitively, this opens the room for the existence of radiation, such as in the
theory of electromagnetism.

Despite their fundamentally different approaches to space and time, Newtonian
physics and special relativity share an important common feature: their geometry
is fixed and, in particular, flat. That is, there is a fixed arena (space or space-time)
where events take place. The flatness property can be characterized in a number
of ways: the Riemann tensor vanishes identically at every point of the manifold,
or, equivalently, any vector parallel transported along any closed loop returns to
itself. Examples of intrinsically non-flat two dimensional Riemannian manifolds are
spheres, while cylinders are intrinsically flat, despite being embedded in a curved
way in R3.

In order to reconcile gravity with special relativity, in GR these conditions need to
be relaxed, and space-time is intrinsically curved and dynamical. As a consequence,
there is, in general, no notion of preferred observers. The most natural object that
describes this type of space-time is a Lorentzian manifold (M, g). That is, a four-
dimensional differentiable manifoldM endowed with a non-degenerate, symmetric
rank (0, 2) tensor field g = gµνdx

µdxν on M whose signature is (−1, 1, 1, 1), as
in (2.3). The space-time (M, g) is required to satisfy the equations that Einstein
postulated in 1915, known as Einstein’s field equations,

(2.4) Rµν −
1

2
Rgµν =

8πG

c4
Tµν ,

where Rµν is the Ricci curvature tensor, R its scalar (R := Rµνg
µν), Tµν is the stress

energy-momentum tensor of any matter fields present. Greek letters are typically
used for space-time indices, µ, ν = 0, 1, 2, 3 and a sum over repeated indices is
implicitly assumed. Equation (2.4) has in the vacuum case (Tµν = 0), as expected,
the Minkowski metric (2.3) as a solution. However, it also has other non-trivial
solutions such as black holes, in particular with emission of gravitational energy in
the form of waves, as described throughout this article.

What is perhaps less commonly known is that Einstein and Hilbert were in
contact throughout the period that Einstein completed the theory of GR, leading
to an historical priority dispute. In fact, on 20 November 1915, five days before
Einstein presented his final form of the field equations to the Prussian Academy of
Sciences, Hilbert submitted an article in which he formulated the gravitational field
equations in terms of a coordinate-invariant variational principle based on what is
now called the Hilbert action [94]

(2.5) S[gµν ] =
c4

16πG

∫
M
R(gµν)

√
−|g|d4x,

where |g| is the determinant of the metric coefficients gµν . If one computes the
functional derivative of S with respect to gµν (computing its first variation), the
Euler-Lagrange system (2.4) in the vacuum case is obtained. The right-hand side
of (2.4) is obtained by adding to (2.5) a matter term,

Smatter =

∫
M
Lmatter

√
−|g|d4x ,

the first variation of which leads to Tµν := −2δSmatter/δg
µν in (2.4). Although

a closer analysis revealed that the first proof of Hilbert’s paper did not contain
the explicit form of Einstein’s field equations in terms of the Ricci tensor and its
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trace [58, 144], it is Hilbert’s work that laid the foundations for the Lagrangian and
Hamiltonian formulations of GR.

A free test particle or “falling observer” in GR follows a “straight” trajectory in
space-time with respect to its geometry; namely, a geodesic. If γ is such a trajectory
with tangent tµ, then

(2.6) tµ∇µtν = 0 .

That is, the tangent to the worldline of the observer is parallel transported along
itself. In a local coordinate system {xµ}, Eq. (2.6) constitutes a set of four ordinary
differential equations,

(2.7)
d2xν

dλ2
= −Γνµσ

dxµ

dλ

dxσ

dλ
,

where Γνµσ are the Christoffel symbols generated by the metric and λ any (affine)
parametrization of the geodesic. From the form of (2.6), there is one and only
one geodesic locally going through any point of space-time with a given direction.
If all geodesics have global solutions (for λ → ±∞) the space-time is said to be
geodesically complete. However, the physically most interesting space-times in GR,
such as the ones describing the gravitational collapse of a star or the expanding
universe we live in, can be shown to be geodesically incomplete, according to the
famous singularity theorems by Penrose and Hawking. Despite recent advances, a
problem which is still open is to prove that curvature invariants diverge along such
incomplete geodesics, yielding a more satisfactory characterization of space-time
singularities.

The fact that GR can be formulated as a geometrical theory has a conceptu-
ally beautiful consequence: it implies that the laws of physics are invariant under
any diffeomorphism of the space-time manifold M. This in turn implies that the
physical laws have precisely the same form in any local coordinate system (gen-
eral covariance), whereas in Newton’s theory and special relativity the laws are
only invariant among inertial (constant relative velocity) systems. The geometry of
space-time is built into the covariant derivative associated with the metric, which
defines the curvature tensor. The presence of curvature manifests itself in a non-
zero acceleration between neighboring geodesics (geodesic deviation). Poisson’s
equation (2.2) and Newton’s law for the motion of a test particle in a given grav-
itational field are recovered from Einstein’s field equations (2.4) and the geodesic
equation (2.6) in the limit of weak gravitational fields and slow motion.

3. Gravitational waves

Early on, GR explained, with no free parameters, several anomalous behaviors
within Newton’s theory of gravity, such as the precession of the perihelion of Mer-
cury.1 From this initial success of the theory, focus shifted to whether the field
equations (2.4) allowed for non-singular solutions which carried physical energy in
the form of gravitational waves (GWs), and what exactly would be meant by that.

In 1916, Einstein published a paper predicting the existence of GWs [72] by
analyzing the weak-field-regime of his field equations, in which the gravitational
field is linearized around the flat space-time Minkowski metric ηµν given in (2.3).
In modern language, taking a smooth one-parameter family of solutions gµν(λ)

1See [162] for a review on the status of experimental tests of GR.
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of the field equations (2.4) with corresponding family of stress energy-momentum
tensor Tµν(λ) such that gµν(0) = ηµν and Tµν(0) = 0 for λ = 0, the linearization of
Einstein’s field equations can be written as the following constrained wave system
(cf. Section 5.2):

(3.1) �γµν =
16πG

c4
τµν , ∇µγµν = 0.

Here, � = ηµν∇µ∇ν = −(c−1∂t)
2 + ∂2x + ∂2y + ∂2z is the wave operator with respect

to the flat space-time derivative ∇, and

γµν :=
d

dλ

√
−|g|gµν(λ)

∣∣∣∣
λ=0

, τµν :=
d

dλ
Tµν(λ)

∣∣∣∣
λ=0

are the first variations of
√
−|g|gµν(λ) and Tµν(λ). Therefore, the linearized equa-

tions admit wave-like solutions which propagate at the speed of light. In the region
where the source is zero, τµν = 0, γµν can be written as superpositions of simple
plane wave solutions. Exploiting the coordinate freedom, such plane waves can be
expressed as (given here for the case of propagation in the z direction)

(3.2) γµνdx
µdxν = h+(ct− z)(dx2 − dy2) + 2h×(ct− z)dxdy

with two functions h+ and h× parametrizing the two polarizations of the wave. In
these coordinates, known as the “TT gauge,” the effect of each GW polarization
is to contract fractionally the proper distance along one axis, while expanding it
along the other (these axes being (x, y) for h+, and axes rotated by 45◦ with respect
to (x, y) for h×). In other words, the GWs do not affect the trajectories of freely
falling particles,2 but change the distances that can be measured between them—for
instance, by exchanging pulses of light (see, e.g., [119]).

In 1918 Einstein was able to write (albeit with a mistaken factor of 1/2, later
corrected by Eddington) the celebrated quadrupole formula for the emission of GWs
by a non self-gravitating system in slow motion [73]:

(3.3) hjk =
2G

c4r
[Ïjk(t− r/c)]TT,

where Ïjk denotes the second time derivative of the mass quadrupole moment, and
[·]TT the projection to the transverse–traceless TT frame; r is distance and t is
time, so that t− r/c is the retarded time.

For decades it was not clear whether these waves in the metric of space-time
had any physical significance. To begin with, it was thought that they might be
a purely coordinate artifact. At the time, and for several decades subsequent, the
concept of covariance and coordinate-invariants had not fully penetrated the minds
of relativists (the concept of a black hole was similarly an idea that was difficult
to come to terms with, as discussed in Section 6). Second, whether GWs could be
defined in the full non-linear regime in a theory where space-time itself is dynamic
(“waves with respect to what?”) was not at all clear. Third, it was not known
whether it was even possible that there could be non-pathological solutions to the
field equations that would admit the existence of such waves. Fourth, that any such
waves could interact with other forms of energy in a precise, measurable way was

2The converse is true in the “laboratory” gauge, where the GWs act as forces that modify the
trajectories, while proper distances between them follow the unperturbed Lorentzian metric.
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unknown. Finally, whether devices could be designed and built to actually directly
detect these waves seemed like science fiction.

In fact, Einstein himself had his own doubts and radically changed his position
at times. These fascinating developments have been researched and documented
by Daniel Kennefick [110]. In 1934, Einstein and Nathan Rosen, based on an exact
solution to the full (non-linear) field equations, concluded that the theory did not
allow for non-singular solutions with GWs carrying energy. They submitted their
manuscript “Do Gravitational Waves Exist?” to Physical Review, with a critical
referee report, now known from persistent historical research done by Kennefick
to have been from cosmologist Howard Percy Robertson, a report written with
exquisite detail and in a very short time. Einstein replied with a remarkably strong
yet not so well known quote:

Dear Sir,
We (Mr. Rosen and I) had sent you our manuscript for publi-

cation and had not authorized you to show it to specialists before it
is printed. I see no reason to address the - in any case erroneous -
comments of your anonymous expert. On the basis of this incident
I prefer to publish the paper elsewhere.

Respectfully,
Albert Einstein

Robertson later met Leopold Infeld, Einstein’s new research assistant. Infeld, in
turn, exchanged with Einstein, who had submitted his paper by then to another
journal (he never submitted a paper to Physical Review again). Apparently, after
his resubmission to another journal, Einstein had also realized or convinced himself
of the flaws in the original manuscript, as had Rosen while in Russia (who had
reached Einstein by mail about it, but apparently did not manage to do so in time).
The main flaw had been seeking for plane GW solutions which turned out to be
singular because the proper interpretation was that they actually corresponded to
cylindrical waves.

Einstein radically revised the paper before returning the galley proofs. In par-
ticular, he changed its title to “On Gravitational Waves” [74]. Robertson wrote to
John Torrence Tate, the editor of Physical Review at the time:

You neglected to keep me informed on the paper submitted last sum-
mer by your most distinguished contributor. But I shall nevertheless
let you in on the subsequent history. It was sent (without even the
correction of one or two numerical slips pointed out by your ref-
eree) to another journal, and when it came back in galley proofs
was completely revised because I had been able to convince him in
the meantime that it proved the opposite of what he thought. You
might be interested in looking up an article in the Journal of the
Franklin Institute, January 1937, p. 43, and comparing the conclu-
sions reached with your referee’s criticisms.

The telling of this story is not meant to undermine Einstein’s great physical
intuition but, on the contrary, to highlight the level of subtlety in making sense of
what gravitational radiation means in a theory of space-time itself, a meaning that
it might now be taken for granted as always understood. Also, in some fairness to
Einstein, at the time papers in Germany were not peer-reviewed and it was also a
rather new practice in Physical Review. Still, Robertson was right.
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The discussion of the concept of gravitational radiation continued for several
decades. As an example of the acknowledged level of confusion, the interested
reader can go through the proceedings of the second conference organized by the
International Committee on General Relativity and Gravitation (to later become
the International Society on General Relativity and Gravitation), a seminal and
pivotal meeting that took place in Chapel Hill in 1957 (Einstein passed away a few
months before the first conference, GR0, which took place in Bern in 1955). The
conference resulted in standard proceedings, but also a report for the Air Force [7],
which had sponsored the meeting (an interesting story by itself). The report has
summaries of many of the discussions which took place at the conference. As an
example of the discussion on the significance of GWs, John Archibald Wheeler
himself is quoted as having said during that meeting

How one could think that a cylindrically symmetric system could
radiate is a surprise to me (...)

(It is now known that it can.) The whole topic of GWs was finally put on firm
grounds in the sixties after extensive work by Bondi, van der Burg, Metzner, Sachs
and Penrose, among others. As it turns out, it is possible to provide an unambiguous
(that is, coordinate-invariant) definition of gravitational radiation for asymptotically
flat space-times, those which approach the flat Minkowski metric along outgoing
null geodesics in a suitable way. Asymptotic flatness captures the concept of space-
times from “isolated” or “bounded” sources. For a review, see [79].

4. Early searches for ripples in space-time

From the experimental side, in 1969 Joseph Weber announced direct observation
of GWs through bar detectors [159]. Unfortunately, these results could never be
duplicated by other groups in spite of several efforts. Such must have been the
perceived potential of such a claimed discovery that a gravimeter was sent to the
moon with the hope of detecting modes of the moon excited by GWs [9]. Notwith-
standing the inability of other groups to reproduce his results, and the NSF cutting
his funding in 1987, Weber continued to work with bar detectors with essentially
no funding until his death in 2000, with the conviction that he had detected not
just one but many events. Despite a wide consensus that his measurements did not
correspond to GWs, he is recognized as the pioneer of the field of direct GW detec-
tion. The sociologist Harry Collins makes interesting observations about scientific
interactions in the GW community, and in particular the circumstances around
Weber’s work [54].

In 1974, Russell Hulse and Joseph Taylor Jr. discovered the binary pulsar PSR
B1913+16 [105], whose orbit was later shown by Taylor and Joel Weisberg to shrink
in remarkable agreement with the emission of gravitational radiation as predicted
by Einstein’s quadrupole formula [149]. This discovery, which led to a Nobel prize
in 1993 for Hulse and Taylor, was the first clear if indirect demonstration of the exis-
tence of GWs. In fact, the precise timing analysis of PSR B1913+16 (and of other
similar pulsars) reflects and demonstrates a broader range of general-relativistic
corrections, which are computed in the post-Newtonian approximation [29]: this
is an umbrella term for updating Newton’s equations perturbatively using a va-
riety of series expansions, most notably with respect to the dimensionless source
velocity v/c.
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5. From the curvature of space-time to partial differential
equations

Being the description of a deterministic process, one expects that Einstein’s
equations (2.4) can be cast into two sets: one possibly constraining the initial
configurations which are compatible with the theory, and another one describing
their evolutions. This is indeed what occurs in other physical systems, such as

Maxwell’s equations of electromagnetism, where the electric ~E and magnetic fields
~B, in the absence of external charges and currents, are constrained to have vanishing
divergence,

~∇ · ~E = 0 = ~∇ · ~B,
while their evolution is determined by the laws of Ampère and Faraday

∂t ~E = ~∇× ~B, ∂t ~B = −~∇× ~E.

As we discuss next, Einstein’s field equations can be split in a similar way. However,
although despite their apparent simplicity as written in (2.4), their formulation as
a Cauchy problem leads to a rather complicated and subtle set of elliptic and
hyperbolic equations which are arithmetically expensive to solve for numerically
and which have given rise to rich mathematical developments. We touch on just a
few of these developments which are relevant for this article.

5.1. The 3 + 1 Decomposition of Space-time. The formulation of Einstein’s
field equations as a Cauchy problem requires “breaking” general covariance by
introducing a foliation of space-time by three-dimensional hypersurfaces which are
typically chosen to be space-like (that is, with a Riemannian intrinsic geometry).
Such a foliation is equivalent to the choice of a global time coordinate t on the space-
time manifold whose level sets (the “constant-time slices”) are three-dimensional
space-like hypersurfaces Σt. Furthermore, when formulating the problem as a PDE,
spatial coordinates (xi) within each time slice have to be chosen. Clearly, these
coordinate choices are highly non-unique, and a “good” choice (which is problem-
dependent), has been one of the main challenges in the history of mathematical
and numerical relativity. This matter is further complicated by the fact that the
geometric properties of space-time are not known before actually solving the field
equations.

Once a foliation and the spatial coordinates have been chosen, the metric can be
decomposed in the following “3 + 1” form:

(5.1) g = gij(dx
i + βidt)(dxj + βjdt)− α2dt2,

with i, j = 1, 2, 3, and where gij describes the components of the induced metric on
Σt, where βi are components of the shift vector, and α is the lapse. The lapse is
a positive function which only depends on the choice of the time coordinate t. Its
spatial gradient determines the acceleration aµ of the observers through the relation

aµ = Dµ logα,

where D denotes the induced connection on Σt. The shift determines the velocity
of the observers with constant spatial coordinates (xi) with respect to the normal
observers (those moving perpendicular to the time slices). The 3+1 decomposition
of space-time is depicted in Figure 1.
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Figure 1. Illustration of the 3+1 decomposition. The blue curve
is the worldline of an observer with constant spatial coordinates
(xi). Its tangent vector ∂/∂t is decomposed into a component
parallel to Σt (the shift vector β) and one that is orthogonal to it
(the lapse α times the normal vector n). Image courtesy of Manuel
Morales.

Since the lapse and shift are directly related to the choice of coordinates, they
do not carry any information about the dynamical degrees of freedom of the grav-
itational field, and hence, without any further restrictions on the geometry of the
foliation or the evolution of the spatial coordinates, one does not expect the field
equations to provide any evolution or constraint equations for them. In other words,
these functions can be arbitrarily specified. Usually, the most naive choices are not
the most appropriate ones. For example, choosing α = 1 implies that the normal
observers are free falling, which might lead to coordinate-singularities after a finite
time of the evolution due to the focusing effect of the gravitational field.

Once the foliation of space-time has been chosen, the evolution and constraint
equations are obtained by considering the projections of the field equations (2.4) in
directions tangent and orthogonal to the space-like hypersurfaces Σt. The evolution
equations can be cast as a first-order system for the first and second fundamental
forms associated with the time slices, namely the three-metric gij and extrinsic
curvature kij . In vacuum, this system reads

∂tgij = −2αkij + £βgij ,(5.2)

∂tkij = α(R
(3)
ij + kkij − 2ki

lklj)−DiDjα+ £βkij ,(5.3)

with i, j = 1, 2, 3, and with R
(3)
ij the Ricci tensor associated with gij , k = gijkij the

trace of the extrinsic curvature and £β denoting the Lie-derivative operator with
respect to the shift vector. With g and k symmetric tensors, this represents 12
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equations for the 12 components of g and k, with the equations being first-order in
time and second-order in space. The four constraint equations on the 12 degrees of
freedom are

gijR
(3)
ij + k2 − kijkij = 0,(5.4)

Djkij −Dik = 0,(5.5)

and are direct consequences of the Gauss-Codazzi-Mainardi conditions which are
required for a 3-manifold to arise as sub-manifold of a 4-manifold. If matter and/or
energy sources are present, then the 12 evolution equations (5.2)–(5.3) and the
four constraint equations (5.4)–(5.5) contain additional terms for this non-vaccum
setting.

As anticipated, there are no evolution equations for the lapse and shift, nor are
they restricted by the constraints. Furthermore, it should also be noted that the
evolution equations (5.2)–(5.3) are not unique, since they can be modified using
the constraints. Such freedom has proven crucial in mathematical and numerical
relativity, such as in the formulation of a well-posed evolution problem, or being
able to simulate binary black holes on a computer.

The evolution and constraint equations can also be derived from a Lagrangian
through a variational principle; one incorporates the lapse α and shift βi into the
Hilbert action (2.5) for the space-time metric gµν , and then exploits the foliation
by splitting the space-time action integral into a time action integral of a spatial
Lagrangian. The result is a second-order constrained evolution system for the un-
known spatial metric gij . In 1959, Arnowitt, Deser, and Misner [20] developed
an analogous Hamiltonian formulation that produces a first-order constrained hy-
perbolic system for gij and a conjugate momenta πij which is directly related to
the extrinsic curvature kij . In their formulation, the lapse and shift appear as La-
grange multipliers in the Hamiltonian, and the constraint equations are produced
by varying the Hamiltonian with respect to the lapse and shift, giving rise to the
so-called Hamiltonian and momentum naming of the two constraint equations (5.4)
and (5.5).

5.2. The Evolution Problem. The study of the initial-value problem for Ein-
stein’s equations was pioneered by the French school. Darmois already in 1927 [68]
showed existence and uniqueness to the Einstein evolution equations for the case
of analytic initial data. This is too restrictive and at odds with causality, though,
since in the analytic case the initial data would be entirely determined by their
value in any (arbitrary small) open set.

In 1939 Liechnerowicz, a student of Darmois (who had also worked with Cartan)
presented in his Ph.D. thesis a geometric version of GR and of the initial-value
problem [116]. This was followed up, in turn, by Choquet-Bruhat in 1952 with
a proof of local existence and uniqueness of solutions of the initial value problem
only assuming that the initial data is smooth enough (i.e. relaxing the analyticity
condition) [78]. This analysis used harmonic coordinates for the space-time, defined
as satisfying

(5.6) ∇µ∇µxν = 0 , ν = 0, 1, 2, 3,

for which the Einstein equations turn into a set of ten quasilinear wave equations.
In the weak field regime the linearized system reduces precisely to the constrained
wave system (3.1).
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More recently, harmonic coordinates (5.6) have even been used to prove the
global non-linear stability of the Minkowski space-time by Lindblad and Rodnian-
ski [117]. Although a somehow stronger result had already been obtained much
earlier in the pioneering work by Christodoulou and Klainerman [45], the fact that
harmonic coordinates could be used to establish global results came as a surprise,
since it had been conjectured early on that in general (5.6) would not yield globally
defined coordinates even for space-times near the Minkowski solution.

In the strong field regime, one does expect harmonic coordinates to eventually
break down. One possible solution for evading coordinate pathologies is to add
low order source terms to Eq. (5.6), which do not affect the well-posedness of
the initial-value problem. A variation of this formulation, with source terms in the
spirit proposed by Helmut Friedrich years in advance [80], was one of the ingredients
used about 30 years later by Frans Pretorius to perform the first long-term stable
simulation of binary black holes [139].

There are, of course, many other ways of posing the initial-value problem in GR
which are based on different coordinate choices, different choices of variables and
different ways of using the constraints in order to modify the evolution equations.

5.3. The Constraint Equations. The four constraint equations (5.4)–(5.5), with
additional terms included when there are matter and energy sources, form an un-
derdetermined system of equations for the 12 degrees of freedom (the components
of the symmetric two index tensors g and k). Similar to the situation in electro-
magnetism (Maxwell’s equations), the constraints within the Einstein equations
restrict the class of initial data allowed for the evolution problem in GR. If the
constraint equations are written schematically as Cα = 0, α = 0, 1, 2, 3, then if
the evolution equations are satisfied, the constraint variables Cα themselves satisfy
a homogeneous evolution equation. In the Maxwell case this evolution system is

trivial, ∂t(~∇ · ~E) = ∂t(~∇ · ~B) = 0, but in GR it involves non-trivial speeds of prop-
agation. In the linearized case, Eq. (3.1) together with the fact that ∇µτµν = 0
imply that

�Cν = 0, Cν := ∇µγµν ,
so that the constraint variables satisfy a wave system on their own. Therefore, if
the initial data satisfy the constraints, one can show that they are preserved during
evolution. While this is true for exact solutions of the evolution equations, it fails to
hold for numerical (and other) approximations. In numerical GR, one thus distin-
guishes between free evolution (explicitly solving only the evolution equations, and
monitoring the growth of constraint violation as the system evolves [24]), and con-
strained evolution (explicitly solving both the evolution and constraint equations,
using techniques such as constraint projection [97]).

Working on initial-value problems in GR (either proving existence theorems or
explicitly producing numerical solutions) involves solving the constraint equations.
The constraints have been studied by mathematicians as a stand-alone PDE system
since the 1940’s [115]; this has been one of the research areas in GR that math-
ematicians have made substantial contributions. For example, it has been shown
that the set of solutions of the constraints forms an infinite-dimensional manifold,
except at a small set of points [76]; this implies that for a generic point from the
solution set, it should be possible to specify a chart of this manifold covering a
neighborhood of that point, effectively “parameterizing” the possible initial data.
The most useful tool for building such parameterizations, and for developing a more
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complete understanding of the constraint equations, has been the so-called confor-
mal method. The conformal method provides a practical computational procedure
for solving the constraint equations, and it also forms the basis for other theoretical
tools such as gluing techniques (see [59, 61, 46, 50, 129] and the references therein).
Applications of the conformal method include construction of initial data for black
holes [67], binary systems of black holes and stars [57], gravitational radiation [30],
and many other models.

5.4. The Conformal Method. The conformal method was proposed by Lich-
nerowicz in 1944 [115], and then substantially generalized in the 1970s by York [163],
among other authors. The method is based on a splitting of the initial data ĝij
(a Riemannian metric on a space-like hypersurface Σt) and k̂ij (the extrinsic cur-
vature of the hypersurface Σt) into eight freely specifiable pieces, with four re-
maining pieces to be determined by solving the four constraint equations. The
pieces of the initial data that are specified as part of the method are a spatial
background metric gij on Σt (six free functions), and a transverse, traceless tensor
σij (two free functions). The two remaining pieces of the initial data to be de-
termined by the constraints are a scalar conformal factor φ and a vector potential

wi. The full spatial metric ĝij and the extrinsic curvature k̂ij are then recovered
from φ, wi, and the eight specified functions from the expressions: ĝij = φ4gij , and

k̂ij = φ−10[σij + (Lw)ij ] + 1
3φ
−4τgij . This transformation has been engineered so

that the constraints (5.4)–(5.5) reduce to coupled PDEs for φ and wi with standard
elliptic operators as their principle parts:

−8∆φ+Rφ+
2

3
τ2φ5 − (σij + (Lw)ij)

2φ−7 = 0,(5.7)

−∇i(Lw)ij +
2

3
φ6∇jτ = 0.(5.8)

Here, ∆ is the Laplace-Beltrami operator with respect to the background metric
gij , L denotes the conformal Killing operator (Lw)ij = ∇iwj+∇jwi− 2

3 (∇kwk)gij ,

and τ = k̂ij ĝ
ij is the trace of the entrinsic curvature. A detailed overview of the

conformal method, and its variations, may be found in the 2004 survey in Ref. [22].
Note that if the hypersurface Σt has constant mean extrinsic curvature (known

as the CMC case), then the term in (5.8) involving ∇jτ vanishes, and the two equa-
tions decouple; one can first solve (5.8) for w, and then plug w into (5.7) and solve
for φ. The conformal method was initially used in this decoupled form in numerical
relativity (cf. [56, 55]), but methods for the coupled system (5.7)–(5.8) were also
developed [57, 26, 95, 136]. However, mathematical proofs of existence and unique-
ness of solutions were limited to the decoupled case through 1995 [134, 106]. Then
in 1996, it was shown [107] that if Σt has nearly-constant mean extrinsic curvature
(the near-CMC case), then some CMC results (for compact manifolds) could be
extended to the near-CMC case where the equations are coupled. Between 1996
and 2007 a number of such extensions appeared, including results for Euclidean [42]
and asymptotically hyperbolic manifolds [18]. The CMC case was also further de-
veloped, including results for open manifolds with interior “black hole” boundary
models [65, 123], results allowing for “rough” data [124, 40], and other results.

In 2008–2009, it was shown [101, 102, 125] that the near-CMC assumption could
be avoided; if other parts of the data (σ and matter sources present) are not too
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large, then there exists a solution to (5.7)–(5.8) for arbitrarily prescribed mean ex-
trinsic curvature. These “far-from-CMC” results involved an influx of ideas from
PDE and geometric analysis, including techniques used in mathematical elastic-
ity [66]. While initially for compact manifolds, these results have been extended
to asymptotically Euclidean manifolds [71, 99, 25], manifolds with asymptotically
cylindrical or periodic ends [51, 52], compact manifolds with interior black hole
boundaries [103, 100, 69], rough data and metrics [102, 25], and other settings.
More complete overviews of known results through 2011 include [47, 60, 41].

It was initially hoped that the new results that began to appear in 2008 would
lead to a solution theory for the non-CMC case that would mirror the CMC case;
however, the story has become much more interesting. The new existence results did
not come with uniqueness, and there had already been growing numerical evidence
that multiple solutions were possible in the non-CMC case [137, 23, 96]. A careful
analysis in 2011 [126] confirmed this feature of the conformal method in the non-
CMC case. This is quite undesirable for many reasons, and it has led to a new
influx of tools, such as analytic bifurcation theory and closely related numerical
continuation methods, to try understand what is going on. Later we will describe
some of the interesting mathematical problems this new activity has generated.

5.5. The Initial-Boundary Value Formulation. For numerical applications,
one usually does not consider the evolution problem on the whole spatial domain,
which is unbounded for typical applications (including the modeling of binary black
holes); one rather works on a truncated domain Σ with artificial (inner or outer)
boundaries where appropriate boundary conditions should be specified (see Fig-
ure 2). This leads to the consideration of an initial-boundary value problem (IBVP)
for Einstein’s field equations (2.4). There are several issues that render this IBVP
much more difficult than in other physical problems, which are in particular due to
the presence of constraints with non-trivial speeds of propagation, the diffeomor-
phism invariance of the theory, and the difficulty of obtaining a local characteriza-
tion of in- and outgoing gravitational radiation in the full non-linear theory. The
latter is directly related to the difficulties relativists had had in defining GWs in
an unambiguous way, see the discussion in Section 3.

The first well-posed IBVP for the full non-linear field equations in vacuum was
formulated by Friedrich and Nagy in 1999 [81], based on a tetrad description of
the gravitational field and the use of the theory of symmetric hyperbolic systems
with maximal dissipative boundary conditions. A generalization of this work to
the quasi-linear wave system for the metric fields gµν obtained using harmonic
coordinates was given a few years later [114, 113], based on Heinz-Otto Kreiss’
strong well-posedness concept, which consist of an L2-type estimate which controls
both the bulk- and the boundary-norm of the solution. Although these results allow
one to construct a unique solution of Einstein’s field equations with given initial and
boundary data on a space-time region of the form [0, T ]× Σ for T > 0 sufficiently
small, a geometric characterization of the boundary data on the boundary surface
T := [0, T ]× ∂Σ is still missing, and much less is known about global existence of
solutions for these problems. A further issue is the specification of “radiative” type
boundary condition at T . So far, this has only been addressed in some detail at
the linearized level. For a recent review on these topics, see [143].
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Figure 2. Illustration of the space-time region M := [0, T ] × Σ
on which the IBVP is posed. In numerical relativity one tries
to formulate appropriate “radiative” boundary conditions at the
artificial outer boundary T .

6. Black holes

6.1. Stationary Black Holes and the No Hair Theorem. In late 1915, just a
few months after Einstein presented the final form of the gravitational field equa-
tions, Karl Schwarzschild found the first non-trivial (i.e. other than the Minkowski
space-time) exact solution to the vacuum field equations. Einstein himself was pos-
itively surprised that an exact solution could be found at all. The circumstances
under which this happened are remarkable, if not heroic. Schwarzschild derived his
solution while serving for the German Army in World War I, which he had joined
in 1914, stationed on the Russian front and suffering from a rare and painful skin
disease for which there was no cure at the time. During that period, he managed
to write three papers. He died in 1916, two months after having been freed from
military duty due to illness.

The Schwarzschild solution is given by

(6.1) g = −
(

1− 2m

r

)
c2dt2 +

dr2

1− 2m
r

+ r2
(
dϑ2 + sin2 ϑ dϕ2

)
,

with m a real constant. It is spherically symmetric and static. In 1923, the mathe-
matician George David Birkhoff proved that any spherically symmetric solution of
the vacuum equations must be static, which implies that the Schwarzschild metric
is the most general spherically symmetric vacuum one. Note that for r → ∞ the
metric (6.1) converges to the flat space-time metric (2.3) (written in spherical co-
ordinates), and in this sense g is asymptotically flat. For finite r ≥ R > 2m, the
metric (6.1) describes the exterior of a spherically symmetric matter distribution



16 MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI

I

II

III

IV

r
=

con
st

r = 0

r
=

2m

r
=

2m

t = const

r = 0

Figure 3. Kruskal diagram showing the causal structure of the
maximally extended Schwarzschild space-time. In this diagram,
the angles (ϑ, ϕ) are suppressed, and the radial null geodesics are
straight lines with slopes 1 or −1, so that the light cones look the
same as in Minkowski space-time at each point. Region I corre-
sponds to the points with r > 2m in the original coordinates (t, r),
and region II is the black hole region. Regions III and IV are
isometric to regions I and II, and describe, respectively, another
asymptotic flat end (which is causally disconnected from region I)
and a white hole.

of mass M = mc2/G which is confined to a sphere of radius R. Due to Birkhoff’s
theorem, a spherically symmetric pulsating star cannot emit gravitational radiation.

The Schwarzschild metric as written in (6.1) seems to have a singularity at r =
2m. For a long while it was thought that it corresponded to a physical singularity
and was referred to as the Schwarzschild singularity. However, it turns out to be a
pure coordinate effect, with all curvature invariants remaining finite. A coordinate
change reveals that the metric is perfectly regular at the Schwarzschild radius and
that the set r = 2m is a null surface describing the event horizon of a black hole.
Objects or signals emanating within the region r < 2m cannot escape to the outside
region r > 2m without exceeding the speed of light. This is why black holes were
given their name: their interior cannot be observed, in particular by electromagnetic
means. The global structure and geometric understanding of the Schwarzschild
space-time as a black hole came about in the late fifties from work by physicist
David Finkelstein and mathematician Martin David Kruskal (see Figure 3).

Therefore, Schwarzschild’s metric was not only the first exact solution to the
field equations, but also one of major historical significance, since it predicted the
existence of black holes in the Universe! The fact that it took almost 50 years to
generalize the Schwarzschild solution to the physically more realistic rotating case
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is another manifestation of the complexity of Einstein’s field equations. A rotating
generalization, depending on the mass parameter m and a new parameter a related
to the spin of the black hole, was eventually found by mathematician Roy Kerr in
1963 using a particular ansatz for the metric. Later, an alternative derivation based
on a systematic study of stationary, axisymmetric solutions of the vacuum Einstein
equations was provided. In cylindrical-like coordinates (t, ϕ, ρ, z) the field equations
can be reduced to a non-linear elliptic equation, the so-called Ernst equation,

(6.2)
1

ρ
∂ρ (ρ∂ρE) + ∂2zE =

(∂ρE)2 + (∂zE)2

Re(E)
,

for a complex-valued function E of the two variables (ρ, z). Once the Ernst equation
has been solved, the metric coefficients gµν can be obtained from E by quadrature.

In addition to providing a systematic derivation for the Kerr metric, the Ernst
equation has played a prominent role in the uniqueness theorems for rotating black
holes. Under suitable regularity conditions, one can prove that the exterior of any
stationary, asymptotically flat vacuum black hole space-time (M, g) with connected,
non-degenerate event horizon is isometric to the exterior of the Kerr space-time. A
precise formulation of this uniqueness theorem, along with generalizations to non-
vacuum space-times and open problems, can be found in [49]. The most important
open issue is the question of whether or not the analyticity assumption on the
space-time, which is part of the regularity assumptions in the current formulation,
can be relaxed.

The physical implication of the uniqueness theorem is that equilibrium vacuum
black holes are very “simple” objects, uniquely characterized by their mass and
angular momentum (more precisely, by the Kerr space-time). This leads to the
popular statement that black holes “have no hair”. This should be contrasted with
the case of rotating neutron stars, where one needs to deal with microphysics or
equations of state describing the matter (much of which is largely unknown) which
can influence the external structure of space-time.

When two black holes collide, it can be shown that they merge and form a new
black hole which cannot be further split into two or more black holes. One might
wonder what the evolution of the final black hole looks like. If it decays to a
stationary state, according to the no hair theorem it has to be a member of the
Kerr family. Whether that decay takes place or not is related to the issue of black
hole stability, described below.

6.2. The Black Hole Stability Problem. Another example of the complexity
of Einstein’s field equations is that, even after 50 years since the discovery of the
Kerr solution, its stability is still an open mathematical question. The Kerr stabil-
ity problem is the following: given initial data (gij , kij) which consists of a small
perturbation of the data corresponding to a Kerr black hole with initial parameters
(mi, ai), does this data give rise to a global (in time) solution which settles down
to a Kerr black hole with final parameters (mf , af ) close to the initial parameters?

This is not just an academic problem, since (as described above) it is related
to the expected final state of the collision of two black holes. When searching
for gravitational waves through matched filtering as described in Section 11, the
answer to this question impacts the types of scenarios that should be considered
when building catalogs of GW templates. Despite rapid recent progress towards
the stability problem, so far only results in the linearized case are available.
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In 1957, the first perturbative analysis of the Schwarzschild metric was published
by Regge and Wheeler, using mode analysis [141]. They found that under certain,
physically inspired, boundary conditions at the “Schwarzschild singularity” and
at infinity, there were no growing modes. In 1989, Bernard Whiting proved mode-
stability of the Kerr solution [161]. Although mode stability is a necessary condition
for stability, it does not imply on its own that solutions stay bounded for all time.

Moving beyond mode stability, a toy model for black hole stability consists of
studying the behavior of the solutions to the wave equation on the fixed background
geometry of a Schwarzschild or Kerr black hole. Although the coupling with gravity
is neglected, if there was an instability under these conditions, it would be a very
strong indication that when such an external field is coupled to gravity, the black
hole would be unstable.

In the Schwarzschild case, in 1987 Bernard Kay and Robert Wald showed that
for smooth, compactly supported initial data on a Cauchy surface, the solution to
the scalar wave equation on a Schwarzschild background is uniformly bounded in
the exterior region at all times [109]. Here, the key innovation was to allow for the
first time for initial data that is not assumed to vanish at the event horizon. More
recently, work by Mihalis Dafermos, Igor Rodnianski and collaborators considerably
strengthened the results by Kay and Wald by proving decay of solutions to the
scalar wave equation for the more general case of a Kerr black hole background,
thus providing the first proof of asymptotic stability [63].

Regarding gravitational perturbations, Dafermos, Holzegel and Rodnianski, just
a few months prior to this writing, have presented a proof showing that solutions of
the linearized Einstein vacuum equations around a Schwarzschild black hole arising
from regular initial data decay to a linearized Kerr metric [62], with the decay being
inverse-polynomial with respect to the time function of a suitable foliation.

7. Origins of numerical analysis and numerical relativity

In parallel to all these theoretical and mathematical developments, in the 1940’s,
Crank and Nicholson, von Neumann, and collaborators, presented the first stabil-
ity analyses for numerical solution of time dependent PDE problems. The early
1950’s were marked by the first pure and applied mathematical computations on
the first general purpose electronic computer, the ENIAC [131], including the first
weather modeling calculation on an electronic computer, by John von Neumann
and colleagues [37].

Bryce DeWitt is perhaps best known for his work on quantum gravity. While
at Lawrence Livermore National Lab, however, where he worked between 1952 and
1955, he became involved in numerical hydrodynamical calculations. At the 1957
GR1 conference, DeWitt and Charles Misner suggested the use of computers to
numerically solve Einstein’s equations. Misner summarized one of the sessions in
the following way:

First we assume that you have a computing machine better than
anything we have now, and many programmers and a lot of money,
and you want to look at a nice pretty solution of the Einstein equa-
tions. The computer wants to know from you what are the values
of gµν and ∂gµν/∂t at some initial surface, say at t = 0. Now, if
you don’t watch out when you specify these initial conditions, then
either the programmer will shoot himself or the machine will blow
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up. In order to avoid this calamity you must make sure that the
initial conditions which you prescribe are in accord with certain
differential equations in their dependence on x, y, x at the initial
time. These are what are called the “constraints” (. . .).

Through the years these concerns proved to be even more serious in practice in
numerical simulations of the Einstein evolution equations. Even if solving for the
initial constraints exactly or within machine precision, the behavior of the evolved
solutions under constraint violations (which are always present due to finite ma-
chine precision or truncation errors) greatly depends on how the equations are
written [111]. This was for decades one of the most important problems in numeri-
cal relativity, with devised mechanisms to overcome it such as making the space of
constraint-satisfying solutions an attractor [32] or using constraint projection-based
methods [97].

In 1957, Susan Hahn completed her Ph.D. thesis, Stability criteria for Difference
Schemes [91], under the supervision of mathematician Peter Lax at NYU. That year
coincided with von Neumann’s death, who had pioneered the field of numerical
methods for PDEs and their applications; however, he did not witness the birth of
numerical relativity.

By 1958, Hahn was already working at IBM, which eventually turned out to
be very useful (if not crucial) for being able to carry out the first simulations of
colliding black holes. The reason for this was two fold: her expertise on numerically
solving PDEs and her access to supercomputers at IBM. Already by the 28th of
January in 1958, at the Stevens Meeting in New Jersey, Richard Lindquist, by then
a student of Wheeler, reported on his ongoing work on numerically computing the
gravitational radiation emitted from an encounter of two black holes [31]. Part of
the interest was to measure the acceleration between black holes, but also trying
to shed light, by numerical means, on the by then ongoing theoretical discussion
and research about the concept itself of GWs. In more modern terms, one could
rephrase that effort as “exploratory analysis”.

The research trajectories of applied mathematician Hahn and general relativist
Lindquist were about to collide.

8. The first simulations of head-on black hole collisions

The first numerical relativity simulation of two black holes was carried out by an
applied mathematician and a physicist—a synergy between basic and applied math-
ematics, GR and what is now referred to as scientific computing or computational
science, that would persist over time.

In 1964, Hahn and Lindquist published the first (super) computer simulation of
binary black holes [92], evolving Misner’s initial data for the axisymmetric head-on
collision of two non-spinning black holes initially at rest. The evolution equations
were written as a first order (in time and space) system of 12 2+1 (2 space di-
mensions plus time) equations. At the discrete level, second order centered spatial
differences and an explicit forward (Friedrich’s) scheme for time integration were
used. This effort constituted not only a historical landmark in the numerical sim-
ulation of Einstein’s equation, but Ref. [92] also contains a detailed discussion of
numerical stability, to an extent that is comparable to work in numerical relativity
in the present day. In terms of accuracy, the 2-dimensional spatial mesh consisted
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of modest 51× 51 points. The computations were done on an IBM 7090 supercom-
puter, with a reported speed of 4 minutes per time step, for a total evolution time of
50 steps. These simulations would become unstable very quickly, but they consti-
tuted the foundations of what decades later would become one of the cornerstones
of GW science.

The IBM 7090 is reported to have had the following speed [5]: The 7090 can
perform any of the following operations in one second: 229,000 additions or sub-
tractions, 39,500 multiplications, or 32,700 divisions. The machine cost around
USD $3, 000, 000 and could be rented for about USD $60, 000 a month. In com-
parison, as of this writing a relatively high-end smartphone is capable of orders of
magnitude more FLOPs (floating point operations per second). For example, tests
on standard linear algebra benchmarks (LINPACK) currently give a few hundred
of MegaFLOPs (millions of FLOPs) on one thread to more than a GigaFLOPs
(billions of FLOPs) on some multithread, quad-core smartphones.

In the early 70’s, DeWitt took aim at again numerically tackling the equivalent
of the two body problem in GR. In a milestone piece of work, a student of DeWitt,
Larry Smarr, revisited the axisymmetric head-on collision of two black holes. His
simulations were restricted to relatively small initial separations between the black
holes. However, they were long enough and had enough accuracy to “extract”, for
the very first time, GWs from computer-generated space-times [148]. The aspects
which led to such improvements were not just raw computational power, but a much
better understanding of the problem at the continuum. In, particular concerning
coordinate conditions that would avoid coordinate singularities or difficulties to
simulate unphysical small or multi-scale structures. In conjunction with work by
Kenneth Eppley [75], this effort by Smarr is recognized as the second milestone in
the numerical simulation of black holes.

From a chronological perspective, as discussed in Section 5.5, in the early seven-
ties Kreiss, Gustafsson and Sundstrom introduced a well-posedness/numerical sta-
bility analysis framework for time-dependent initial-boundary-value problems [90].
However, it would not reach the field of numerical relativity until three decades
later.

9. From numerical relativity to supercomputing

Remarkably enough, as documented in the Lax report [6], by 1982 supercom-
puters in the United States were only available to industry and federal labs (in the
latter case mostly for classified projects). Many of the supercomputer simulations
by US researchers in academia were carried out in Germany, for example. Smarr
had used for his black hole simulations supercomputer resources from Livermore
Lab through James Ricker Wilson, who worked on weapon design but also pioneered
the field of numerical relativistic hydrodynamics.

In 1983, Smarr submitted to NSF the first unsolicited proposal to be funded by
the agency, A Center for Scientific and Engineering Supercomputing. Also known
as the “Black Proposal” for the color of its cover [3], it resulted in the first network
of supercomputer centers in the US available to academia: the Cornell Theory Cen-
ter, the National Center for Supercomputer Applications (NCSA) at the University
of Illinois in Urbana-Champaign, the Pittsburgh and San Diego Supercomputer
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Centers, and the John von Neumann Center at Princeton. The current “incarna-
tion” of this first network is XSEDE (Extreme Science and Engineering Discovery
Environment), a consortium of 16 supercomputers across the US.

We have highlighted the role and importance of mathematical theory, numerical
analysis and computational science on numerical relativity from the birth of the
field and throughout the years. The Black Proposal and its award is an example
of the opposite: a numerical relativist taking the lead in making supercomputing
accessible to any academic institution and research area in the US.

10. Interferometric detectors

In 1972, Rainer Weiss distilled early ideas to measure GWs with km-scale laser
interferometers in a detailed (if hard to find) technical report [160]. The report
identified and analyzed the crucial sources of noise, their impact, and mitigation.
Along with the contributions of LIGO co-founders Ronald Drever and Kip Thorne,
Weiss’ work provided the foundation for the design of LIGO, the U.S. GW observa-
tory that would be realized in almost identical facilities in Hanford (Washington)
and Livingston (Louisiana); the completed detectors are depicted in Figure 4. The
French–Italian Virgo collaboration implemented a similar design in Italy.

These first-generation detectors took data (but reported no detections) between
2000 and 2010, then both were upgraded to more daring and sensitive advanced
configurations. Advanced LIGO performed its first (and ultimately successful) ob-
serving run in late 2015, while Advanced Virgo is, as we write, in the final stages
of commissioning. Smaller, less sensitive interferometers were built in Germany
(GEO600) and Japan (TAMA), and were operated through the early 2000s. Japan
is now building its own km-scale interferometer (KAGRA); India is planning to
build a 4 km LIGO-like infrastructure to house an already-built third Advanced
LIGO detector (LIGO-India). The primary motivations to build an international
network of detectors are to improve the localization of GW sources, which is per-
formed essentially by triangulation; to extract information about the polarization
of the wave; and to provide greater detector “uptime”.

LIGO-like detectors measure GWs by using laser interferometry to monitor the
differential changes in length along two perpendicular arms. As explained in Sec-
tion 3, GWs produce a fractional change (a strain) in the proper distance between
freely-falling reference masses initially at rest (in this case, the LIGO mirrors).
Since the strain produced at Earth by the strongest expected GW sources is of
order 10−21, long interferometer arms (for LIGO, 4 km), high laser power, and
extraordinary efforts to avoid any forces on the test masses are required to reach
sufficient sensitivity.

In 1991 Congress approved first-year funding for LIGO. In 1992, a detailed de-
scription of the project was published in Science [15], and an artist’s depiction of
the sheer size of LIGO was featured on the front cover of that issue. The Virgo
project was approved in 1993 by the French Centre National de la Recherche Sci-
entifique (CNRS), and in 1994 by the Italian Istituto Nazionale di Fisica Nucleare
(INFN).

The prospective GW sources for Earth-based interferometric detectors include
compact binary coalescences (CBCs): pairs of black holes and neutron stars (in
any combination). As we shall discuss in Section 11, searches based on matched
filtering allow the identification of signals buried well below noise level, if their shape
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Figure 4. The completed LIGO detectors near Hanford, Wash-
ington (top image) and near Livingston, Louisiana (bottom image).
Images courtesy of Caltech/MIT/LIGO Laboratory.

is known precisely. While post-Newtonian calculations [29] can handle the early and
intermediate phases of binary inspirals, and the particle-physics-inspired effective-
one-body formalism [34] can provide sufficient precision for the late inspiral and
plunge, fully non-linear numerical simulations of the Einstein equations are required
to model the final merger, and to provide initial conditions for the perturbative
relaxation of the final remnant black hole [27]. (Indeed, the quasinormal modes of
black-hole ringdown can be handled analytically, but require numerical relativity to
be connected to the merger phase.) The need for accurate gravitational waveforms
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lent importance (and some urgency) to the task of modeling black-hole and neutron-
star collisions, as well as the resulting GW emission, within the field of numerical
relativity.

Predicted CBC rates for first-generation interferometric detectors had uncer-
tainties of orders of magnitude, extending to very low values [11], so it was not
surprising when no detection were reported. In fact, the discussion of LIGO in
Ref. [15] had anticipated:

This first detector system may discover GWs. If not, experimenters
will press forward with detector improvements (...), leading towards
LIGO’s advanced detector goals. These improvements are expected
to lead to the detection of waves from many sources each year.

Starting around year 2011, LIGO and Virgo underwent extensive upgrades from
their initial configurations to more advanced designs, with the goal of increasing
sensitivities by an order of magnitude. This translates into thousand-fold increase in
the sensitivity volume, and thus in the rate of accessible events. Advanced LIGO’s
first observing run (“O1”) took place between September 2015 and January 2016,
with further runs planned starting in fall 2016 at progressively higher sensitivities,
until the limits of the design are reached. As of this writing, Advanced VIRGO is
expected to start taking data at the end of 2016.

11. The analysis of gravitational-wave detector data

From the standpoint of data analysis, GWs of different nature are searched for
using different, customized techniques; we outline some of these efforts below.

11.1. Burst-GW Searches. For short, unmodeled GW transients (in GW lingo,
bursts), such as the waves from core-collapse supernovae [82], one first recasts the
data in a time–frequency representation appropriate to describe the local energy
content of the signal. Such representations find their origin in the short-time Fourier
transform introduced by Gabor in 1946; see [53] and [146] for reviews of the steady
developments in this field. In the time–frequency plane, a sufficiently loud GW
burst appears as a localized cluster of excess power on top of a diffuse background
of stationary detector noise. Search algorithms identify promising clusters, normal-
izing amplitudes by the baseline detector noise at different frequencies, and elim-
inating non-stationary detector glitches by way of a coherence constraint among
multiple detectors.

The coherence constraint is formulated in the context of signal reconstruction.
Specifically, the GW perturbation tensor introduced in Eq. (3.2) can be rewritten
more generally as

(11.1) hij(t− klxl) = e+ij(k
l)h+(ct− klxl) + e×ij(k

l)h×(ct− klxl),

where e+ij and e×ij are the symmetric, traceless, and transverse (e+ijk
j = e×ijk

j = 0)

GW polarization tensors, and kl describes the direction of propagation of the GW
signal (or equivalently the sky position of its source). The signal registered by
detector A then becomes

(11.2)
hA(t) = dijAhij(t− klxlA)

= F+
A (kl)h+(ct− klxlA) + F×A (kl)h×(ct− klxlA),
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where xlA describes the position of the detector and the tensor dijA the orientation

of its sensitive axes. The projection coefficients F+
A (kl) and F×A (kl) are known as

antenna patterns. The phases of the waveform components h+ and h× are also
related under the assumption that the signal is linearly, circularly, or elliptically
polarized. Given the data recorded by multiple detectors around a “bright” excess-
power cluster, Eq. (11.2) sets up the inverse problem for bursts, providing the basis
for estimating the waveforms h+ and h×, the GW polarization, and the sky location
of the source (see, e.g., [112]). Crucially, this analysis yields a measure of signal
coherence, which is used to identify strong detection candidates.

In practice, these principles are implemented in sophisticated software pipelines
that emphasize robustness, online use (i.e., the processing of detector data as they
are collected), low latency, and source-parameter estimation (especially of sky lo-
cation, which is crucial to the electromagnetic follow up of GW detections). One
such burst pipeline first reported GW150914 as a very significant transient just
three minutes after the GW passed the Earth; a second pipeline confirmed the
event after a few hours. Many details and further references can be found in the
GW150914 burst-search companion paper [150]. We will discuss at the end of Sec.
11.3 the assessment of statistical significance of GW candidates; in the meantime,
let us continue our brief review of detection methods.

11.2. Stochastic-GW Searches. Stochastic GW sources include the fossil radia-
tion from the early universe [119] and the incoherent superposition of individually
undetectable waves from compact-binary inspirals [142]. The random character of
this radiation makes it very different than short bursts or frequency-coherent chirps
from binary inspirals: while a stochastic signal will be recorded by a single detector,
it will be indistinguishable from that instrument’s intrinsic noise. However, thanks
to the (almost) omnidirectional sensitivity of GW detectors, closely related stochas-
tic signals will be recorded by all instruments targeting the same frequency band.
Thus, the favored search relies on cross-correlating the data of one or more detec-
tor pairs, under the assumption that all other noise sources remain uncorrelated.
This technique was used as early as 1975 for resonant-bar detectors [104], and it
was given its current mathematical formalism in [17], building on well-established
notions in signal processing and probability theory, such as spectral estimation and
Neyman–Pearson optimal detection (see [145] for a textbook treatment).

In the simplest case of coincident, coaligned, and identical detectors, one may
form the product of the two detector outputs s1(t) and s2(t),

(11.3) S =

∫ T/2

−T/2
s1(t)s2(t) dt,

where T is the duration of the observation, which we center arbitrarily at t = 0. The
crucial figure of merit is the signal-to-noise ratio µ/σ, where µ is the expectation
value of S and σ is the square root of its variance. Because the intrinsic noise of
the two detectors is uncorrelated, µ depends only on the GWs, and it integrates
to Tσ2

h, with σ2
h the total variance of the GW as registered in each instrument.3

By contrast, σ is dominated by intrinsic detector noise; since it is the product of

3For interferometric detectors, σ2
h is 3H2

0/(20π2)
∫∞
0 |f |

−3Ωgw(|f |) df , with H0 the Hubble
constant, and Ωgw(f) ≡ 1/ρcdρgw/d log f the logarithmic density of the GW energy that (isotrop-

ically) bathes the Universe, in units of critical energy density [17].
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two uncorrelated random processes, it scales as a random walk: σ2 ∝ T times
the integrated product of the two detectors’ noise spectral densities. The larger
the µ/σ, the more statistically confident we are that a stochastic GW signal is

actually present in the data. Since µ/σ scales with
√
T , statistical significance is

accumulated (slowly) with longer and longer experiments.
Of course, in actual practice things are more complicated. Most important, the

product S, and therefore the sensitivity of a search, are reduced for non-coincident
and non-aligned detector pairs. Because of the time delay between them, detectors
respond to instantaneously different (if partially correlated) wavefronts; because of
the difference in orientation, they register different combinations of polarizations.
Thus, the GW strains observed in any two instruments will overlap only partially.
The reduction in sensitivity is quantified by the overlap reduction function γ(f) [77].
The function γ(f) is unity at f = 0 if the detectors are aligned; it crosses zero
slightly above f = c/(2d), with d the distance between the detectors; and it exhibits
a rapidly damped oscillation about zero for higher frequencies. The optimal filter
S′ that maximizes µ/σ is in fact given by a variant of Eq. (11.3) that takes into
account γ(f) as well as the spectra of the GW stochastic signal and of detector
noise [17].

11.3. Modeled-GW Searches. For GW transients whose exact shape may be
known a priori from theory (in the case of GW150914, the waves from the inspiral,
merger, and ringdown of a black-hole binary), the reference search involves matched
filtering, a technique originating in radar applications in the middle of the 20th
century [164, 154].

The need for accurate waveforms in matched filtering has been a driving moti-
vation behind the quest for analytical and numerical solutions of GR, so it is worth
understanding the basic principles of matched filtering.

In matched filtering, one looks for a known signal h(t) embedded in additive
noise [so the data can be represented as s(t) = h(t) + n(t)] by computing the
signal-to-template correlation integral

(11.4) ρ =

∫ T

0

s(t)ĥ(t) dt =

∫ T

0

h(t)ĥ(t) dt +

∫ T

0

n(t)ĥ(t) dt;

here ĥ(t) is the matched filter, which is obtained by applying a noise-weighting linear
operator to h(t) (more about this below). For the purpose of this illustration, we

can take ĥ(t) = h(t), which is appropriate for white noise.4 Again, the ratio µ/σ
(in this case, for the variable ρ) is a measure of statistical confidence that the signal
h(t) is present in the data. The two integrals on the right-hand side of Eq. (11.4)
correspond to µ and σ respectively: the first accumulates as ∼ h20T , where h0 is the
characteristic amplitude of the signal h(t); the second grows only as (τ0T )1/2n0h0
(in random-walk fashion), where n0 is the characteristic amplitude of the noise, and
τ0 is related to the noise timescale (e.g., for band-limited white noise τ0 ∼ 1/fmax).
Since µ/σ ∼ (T/τ0)1/2h0/n0, we see that the matched filter allows detection even
if h0/n0 is significantly less than one. The enhancement is again proportional to√
T .

4White noise is a random signal with constant power spectral density. In applications that
involve discretely sampled data, it is useful to think of white noise as a sequence of uncorrelated

random variables with zero mean and finite variance.
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More formally, the random variable ρ is used as a detection statistic [145] as
follows: in the presence of noise alone, the probability distribution pn(ρ) is dictated
by the properties of noise; in the presence of noise and signal, the probability
distribution pn+h(ρ) becomes displaced to larger values. If we measure a sufficiently
large ρ, we can conclude with high confidence that the signal h is present in the
data. To quantify that confidence, we set a false-alarm probability PFA and obtain
the threshold ρtr such that the cumulative probability Pn(ρ > ρtr) = PFA. In other
words, if we claim a detection whenever ρ > ρtr, we are only wrong PFA of the times.
Conversely, this scheme results in falsely dismissing a fraction Pn+h(ρ < ρtr) ≡ PFD

of true signals. The matched filter is the optimal linear filter in the sense that it
minimizes PFD for a fixed PFA.

The simplified picture that we have just drawn describes a search for a signal of
known shape, occurring at a known time. The generalization to unknown source
parameters involves trying out many different signal shapes. For some parameters,
the variation of the signal can be handled with analytical techniques; such is the
case of overall amplitude, initial phase, and merger time of inspiral signals, all of

which map into simple transformations of the filter ĥ in the Fourier domain (see,
e.g., [120]). To tackle the variation due to other parameters, such as the component
masses in a binary inspiral, it is necessary to evaluate the detection statistic across
a bank of signal templates. The templates must be placed strategically across the
space of source parameters: densely enough that no real signal is missed because
its phase evolution matches no template in the bank; sparsely enough that the
computation remains feasible. This is an interesting geometrical problem that can
be formulated in terms of differential geometry [135], ad hoc tilings [19], as well
as lattice-based and randomized sphere coverings [140, 130]. If we filter detector
data against a template bank, we need to raise the detection threshold to take into
account the fact that we are running multiple independent “experiments,” each
of which can result in a false alarm.5 For the Advanced LIGO search that led to
the detection of GW150914 as a modeled transient, 250,000 templates were placed
across parameter space, with each component mass ranging from 1 to 100 solar
masses [152].

The other immediate generalization is to colored noise. Under the restrictive
but enabling assumption that the instrument noise n(t) is Gaussian and station-
ary, its sampling distribution is determined entirely by its correlation function, or
equivalently by its power spectral density P (f) (see, e.g., [119]). To wit,

(11.5) pn(n) ∝ exp

{
−2

∫ ∞
0

ñ∗(f)ñ(f)

P (f)
df

}
= exp {−〈n|n〉/2} ,

where ñ(f) is the Fourier transform of n(t), ñ∗(f) is its complex conjugate, and
P (f) is defined by the ensemble (i.e., noise-realization) average 〈ñ∗(f)ñ(f ′)〉 =
δ(f − f ′)P (|f |)/2. The power spectral density can be estimated empirically from a
nearby stretch of data, under the assumption that it is not affected significantly by
the presence of GW (see [16] for the details of a sophisticated implementation). It is
straightforward to show that in the presence of colored Gaussian noise the optimal

matched filter can be written in the frequency domain as ĥ(f) = h̃(f)/P (f) [164].

5The actual number of independent trials is difficult to control analytically because of partial
template correlations, and is best determined by experiment.
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In fact, while the assumption that noise is stationary and Gaussian is pervasive
in the theoretical development of GW data-analysis methods, it cannot be trusted
to establish the true false-alarm probability of detection candidates, since interfero-
metric detectors are neither stationary nor Gaussian. Instead, the background rate
of noise-induced false alarms is determined empirically. For instance, in searches
that require coincident candidates in multiple detectors, the background is mea-
sured by artificially sliding the time axis of the data in one detector, and then
performing the coincidence analysis. Any resulting joint candidates are necessarily
the product of noise alone. This very procedure established that the false-alarm
probability of GW150914 was (much) less than one in 203,000 years [14].

11.4. Parameter Estimation. Neverthless, Eq. (11.5) is the basis of the proba-
bilistic treatment of detection and parameter estimation for GW signals of known
shape; this is with good reason, since detected signals are likely to be found in well-
behaved noise; furthermore, the assumption of Gaussian noise can be validated a
posteriori.

Together with the assumption of additive noise (again, that the detector data s(t)
equals GW signal h(t) plus instrument noise n(t)), Eq. (11.5) leads to the likelihood
p(s|h(θ)) that the data contain a GW signal determined by the parameter vector
θ:

(11.6) p(s|h(θ)) ∝ exp
{
−
〈
s− h(θ)

∣∣s− h(θ)
〉
/2
}
,

where the product 〈·|·〉 has the same form as in Eq. (11.5). Among the templates
{h(θi)} in a bank, the template that results in the largest ρ [of Eq. (11.4)] is also
the template that maximizes the likelihood p(s|h(θ)). If we extend the bank to a
continuous family over parameter space, we obtain the maximum-likelihood point
estimate of the source parameters as [119]

(11.7) θML = maxlocθ p(s|h(θ)).

The error of this estimate is quantified by the Fisher information matrix Fµν =
〈∂µh|∂νh〉|θML , where the ∂µ denote partial differentiation with respect to the source
parameters [155]. Specifically, for sufficiently strong signals the error vector θML −
θtrue is distributed normally with parameter covariance given by F−1µν . (For weaker
signals detected near the threshold, the story is more complicated [155, 156].) The
probability distribution of the errors refers to a hypothetical infinite sequence of
experiments (each with a different noise realization) that result in the same θML, a
construct typical of frequentist (a.k.a., classical) statistics.

In fact, the GW data-analysis community has by now largely transitioned to
Bayesian methods for parameter estimation [88]. This happened for several rea-
sons: to distill maximum information out of the data we will have from rare (at
least initially) detections; to incorporate prior information from astrophysical the-
ory or non-GW observations; and to draw physical conclusions jointly from mul-
tiple sources (e.g., about astronomical populations [13], or violations of general-
relativistic predictions [151]). In this respect, GW analysts have anticipated a
broader movement in the larger astronomical community [118].

In Bayesian inference [88], one thinks of a GW observation in the data s(t) as
updating the prior probability density p(θ) of the source parameters into their
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posterior density, by way of Bayes’ theorem:6

(11.8) p(θ|s) =
p
(
s|h(θ)

)
p(θ)∫

p
(
s|h(θ)

)
p(θ) dθ

.

The Bayesian view is that the posterior, taken as a whole, quantifies our informed
belief about the signal. It is still possible to distill the posterior into point esti-
mators, such as conditional means, and simple measures of uncertainty, such as
parameter covariances. The denominator in Eq. (11.8) is the Bayesian evidence
P (s), a measure of the overall credibility of the data as having been generated ac-
cording to the mathematical model encoded in the prior and likelihood. A Bayesian
analyst may compare the evidence of different models to decide between them: for
instance, between template families representing black-hole vs. neutron-star bina-
ries, or even between a signal model vs. a noise-only model, which sets up a Bayesian
detection scheme [145].

In most cases, the posterior must be explored and integrated numerically. This
is a difficult problem: because of the moderately high dimensionality of parameter
space, all schemes that involve a structured walkthrough of parameter space (e.g.,
along multidimensional grids) require huge computational resources. The break-
through in Bayesian computation took place in the 1990s, when statisticians began
to apply Markov Chain Monte Carlo to inference (see, e.g., [86] for an introduction).
The technique originates with the seminal paper by Metropolis, the Rosenbluths,
and the Tellers [132]: the idea is to explore statistical ensembles in stochastic fashion
on a computer, (crucially) sampling states directly from the target distribution:7

Instead of choosing configurations randomly, then weighting them
with exp(−E/kT ), we choose configurations with a probability exp(−E/kT )
and weight them evenly. [132]

This becomes possible thanks to a clever scheme (the Metropolis rule, later gener-
alized in many ways and directions [86]) to conditionally accept or reject each step
of a random walk, in such a way that the trajectory approaches asymptotically the
distribution of interest—whether exp(−E/kT ) or the Bayesian posterior. Markov
Chain Monte Carlo was first applied to GW searches by Christensen and Meyer
in 1998 [43]. Its current implementation in the LIGO software library [157] relies
on GW-signal-specific customizations of a few broadly applicable modern variants
of Monte Carlo, such as parallel tempering [83] and nested sampling [147]. (See
instead [87] for a broader review of the state of the art in Bayesian computation.)
In the case of GW150914, these techniques were able to confidently determine the
masses of the component black holes, the distance and sky location of the system,
and much more [153]; and even to test key predictions of GR for such a binary [151].

12. Numerical Relativity in the 21st Century

Driven to a large extent by the search for direct detection of GWs, a Binary Black
Hole Grand Challenge Alliance (GCA) was funded by the NSF from 1993 to 1998,

6Mathematically, Bayes’ theorem is nothing more than a restatement of the law of compound

probabilities, but the name carries the import of its interpretation in terms of rational (and
axiomatized) degree of belief [108].

7The reason this is so important is that, for most distributions of interest, a state selected
randomly across parameter space is likely to have very small probability, thus contributing very

little to statistical integrals and distributions.
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involving 40 researchers at 10 institutions. Its goal was to develop mathematical
and numerical techniques, along with a high performance computing (HPC) infras-
tructure, specifically tailored to the binary black hole problem that would allow
stable simulations of generic collisions of binary black holes. In particular, to move
from head-on collisions to the more general case of black holes which inspiral around
each other while emitting GWs, their orbits shrinking, and eventually merging to
form a new black hole which, assuming non-linear stability of black holes under
large perturbations (Section 6.2), it should decay to a member of the Kerr solution
according to the no hair theorem (Section 6.1).

The GCA started a number of efforts which continued well beyond the funding of
the project, regarding manifestly hyperbolic formulations of the Einstein equations,
methods for extracting gravitational radiation from numerical space-times, evolu-
tion approaches ranging from Cauchy to characteristic formulations, HPC tools for
large scale parallel computations and visualization, and adaptive numerical tech-
niques. The latter was pioneered by Matt Choptuik, in his studies of gravitational
collapse which led to his discovery of critical behavior [38].

The first attempts at black hole excision were made, whereby one uses the fact
that the region inside a black hole is causally disconnected from the outside to
excise it from the computational domain. Practical approaches to outer boundary
conditions were also explored, although the mathematical formulation as an initial-
boundary-value problems, and its well posedness, was not carefully addressed until
the 2000’s (Section 5.5). From a physical point of view, the head on collision of
Misner’s initial data was revisited in great detail, though still with limited initial
separations. A 1998 summary of the GCA by its PI, Richard Matzner, can be found
in [121].

After the GCA, or by the end of it, a systematic mathematical analysis of the
Einstein equations as an initial-boundary value problem was initiated (earlier in
Section 5.5 we discussed some of this work, including [81, 114, 113]). At the same
time, a thorough numerical analysis was being done to develop more accurate and
reliable numerical methods for the Einstein equations. Both activities involved
an increasing level of interaction between numerical relativists from the physics
community and specialists in numerical analysis and PDEs from the mathematics
community. This interaction happened by design rather than accident, due to
the forsight of a number of people working in these three areas. Starting around
2002, a number of workshops were held with the specific goal of bringing together
researchers from all three communities. These began with a Hot Topics Workshop
on numerical relativity held at the IMA in June 2002, followed by a year-long
Mathematical/Numerical Relativity Visitor Program at Caltech from 2002-2003
(and continuing for some time into 2003-2004). These led to additional workshops
focussing on both mathematical and numerical relativity organized by some of
the participants of these first two meetings. These included an AIM/Stanford
Relativity workshop in 2003, an IPAM/UCLA Geometric Flows workshop in 2003,
a second IMA Workshop in 2004, a BANFF/BIRS Numerical Relativity Workshop
in 2005, and a Mathematical Relativity Workshop Visitor Program at the Isaac
Newton Institute at Cambridge in 2005. Minisymposia were also organized at
larger mathematics meetings that involved speakers from both the mathematics and
numerical relativity communities, including sessions at the Miami Waves Workshop
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in 2004. (Various subsets of the authors of this article attended all of these meetings,
and met for the first time at one of the meetings.)

These interactions helped accelerate the infusion of useful ideas and tools from
the mathematics community into numerical relativity. For example, for some time
it had been thought that the simulation of black holes would benefit from advanced
high resolution shock capturing methods, even in the absence of matter fields. How-
ever, it was pointed at the 2002 IMA Workshop by participants that in the vacuum
case, the Einstein equations are linearly degenerate, and shocks are not expected.
That is, while the solution is finite, it is expected to be smooth. Therefore, on
the contrary, one expects high order or spectral methods to be best suited for such
cases, and indeed, they became dominant in the 2000’s (for example [8]). High
resolution simulations of single black holes using spectral methods showed that in-
stabilities present in some simulations would not be ruled out by more powerful
supercomputers, but a deeper understanding of the continuum properties of the
field equations was needed. During the intensive interactions between researchers
during this period, a number of known numerical analysis techniques were refined
and tuned for the Einstein equations, and some completely new techniques were de-
veloped to handle the unique problems that arise with numerical simulation of the
Einstein equations. By 2005, what had seemed in 2002 to be an almost intractible
simulation problem was starting to crack.

In 2005, at the Banff International Research Station in Canada Numerical Rel-
ativity meeting, Pretorius reported the first set of long-term simulations of binary
black holes inspiraling around each other, merging and decaying to a stationary
black hole, with no signs of growing instabilities and with the accuracy to extract
waveforms from the numerical space-time [139]. One of the key insights in this
breakthrough was a previously proposed constraint damping mechanism [32, 89],
originally stemming from computational fluid dynamics and quoted as privately
proposed to relativists by Heinz-Otto Kreiss in Ref. [32].

Soon thereafter, two groups reported at the same meeting in NASA-Goddard
the independent discovery of a very different approach to produce equally stable
and accurate long-term simulations based on the BSSN formulation of the Einstein
equations [21, 35]. This approach has since then been coined moving punctures
because the key ingredient is to use coordinate conditions which allow the black
hole punctures to move across the computational domain. Punctures do not repre-
sent the location of black holes; instead, they represent a compactification of each
“infinity” region in non-trivial topological constructions of multiple black holes, see
for example [33].

In 1987 [93] Thorne had predicted that

For black hole [collisions] numerical relativity seems likely to give
us, within the next five years, a detailed and highly reliable picture
of the final coalescence and the wave forms it produces, including the
dependence on the hole’s masses and angular momenta. Compari-
son of the predicted wave forms and the observed ones will constitute
the strongest test ever of general relativity.

It actually took about two more decades; that is, around four more decades after
the original simulations of Hahn and Lindquist, to get to the point in which any
single configuration could be systematically simulated. The long quest to be able
to simulate binary black holes came just in time for the new era of GW science. In
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Figure 5. Illustration of the GW150914 detection. Top image
shows the inspiral, merger, and ringdown phases of the GW150914
event relative to the dominant part of a theoretical model of the
emitted gravitational waveform. Bottom image shows two numeri-
cal simulations of a binary black hole system producing waveforms
closely matching GW150914. The two simulations were produced
by different computer codes, developed by separate groups, using
different numerical techniques. Top image courtesy of the Cen-
ter for Computational Relativity and Gravitation at the Rochester
Institute of Technology [1]. Bottom image courtesy of Geoffrey
Lovelace in the Gravitational Wave Physics and Astronomy Cen-
ter at the California State University, Fullerton [2].

particular, numerical simulations have been critical in developing semi-analytical
and phenomenological models of the GW emission from CBCs. A recent review
of numerical relativity as a probe of gravity in its strong regime, part of a book
commemorating the 100th anniversary of GR, can be found in [39].
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13. The Discovery of GW150914

The approximately hour-long press conference that we mentioned in Section 1
included NSF director France Córdova, LIGO Laboratory Executive Director David
Reitze, LIGO Scientific Collaboration spokesperson Gabriela Gonzalez, and LIGO
co-founders Rainer Weiss and Kip Thorne (Ronald Drever could not attend for
health reasons). The announcement provided details about the first direct detection
of GWs from a binary black-hole coalescence in data collected by the two Advanced
LIGO detectors on September 14, 2015, shortly after the detectors were turned on.
The NSF press release is available at [4].

The event was named GW150914. Analysis of the data showed that the waves
were generated by the coalescence of two black holes, with masses ' 29 and 36
times that of our Sun, inspiraling and then merging to form a final Kerr black hole
of ' 62 solar masses. The measured signal was rather short (0.2 s), covering the
final 8 cycles of the coalescence. The detection was unambiguous, with a measurable
significance greater than 5σ, for a false alarm rate of less than one event per 203, 000
years. (This was an upper limit, corresponding to the empirical background that
could be explored using time slides. The actual significance was arguably much
higher). It was reported by the LSC collaboration that 50 million CPU core hours
(on recent high-end “conventional” cores) were devoted to the data analysis of the
signal. The production discovery analyses were run on dedicated LIGO Data Grid
clusters, XSEDE and the Open Science Grid (in particular on Comet, at the San
Diego Supercomputer Center, and Stampede, at the Texas Advanced Computing
Center).

The signals recorded at the two LIGO sites showed exquisite agreement, and
were observed with a combined signal-to-noise ratio of 24. The time delay between
the sites was 7 milliseconds, and the event released the energy equivalent of three
solar masses into GWs, with a peak luminosity ' 3× 1056 erg/s, greater than the
visible light emitted (continuously) by the rest of the Universe. As Kip Thorne
commented:

It is by far the most powerful explosion humans have ever detected
except for the Big Bang.

The LIGO and Virgo collaborations had agreed that a detection would be pre-
sented publicly only after peer review, and indeed a letter describing GW150914
appeared in the Physical Review on February 11 [14]. The excitement was such
that as soon as the press conference began, the Physical Review Letters webpage
was overwhelmed by more than 10,000 downloads per minute, to the point that it
remained inaccessible until the journal could add more servers. Several companion
papers, covering many complementary aspects of the detection and of its theoreti-
cal consequences, were also released on that day (see papers.ligo.org for links).
Issue 8 of the LIGO Magazine [10] presents a collection of articles about LIGO, the
discovery of GW150914, its implications, and the future of GW astronomy.

On June 15, 2016, the LIGO and Virgo collaborations announced a second
highly statistically significant detection of GWs from the coalescence of two black
holes [12]. This signal, named GW151226, was recorded by the two LIGO detectors
on December 26, 2015, toward the end of the first Advanced LIGO observation run
(“O1”). The black holes responsible for the signal are lighter than for GW150914,
with masses ' 14 and 8 times that of the Sun (although uncertainties are large)

papers.ligo.org
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The signal was weaker than GW150914 but it lasted longer (1 s and 55 cycles) and
it ended at a higher frequency within the sensitive detector band. Again the mea-
sured significance was 5σ, and the true significance arguably much higher. LIGO
plans to start a second observation run (O2) of six months with slightly higher
sensitivity in fall 2016, to be joined by VIRGO soon thereafter. With increasing
sensitivities and longer runs, the expectation is that detections will become almost
routine (up to tens per year), and the hope that black-hole binaries will be joined
in the “catch” by other systems, especially those involving neutron stars, which
could have observable electromagnetic counterparts.

14. Opportunities for further mathematical developments

GW science faces a number of challenges in mathematics, computational science,
and data analysis, in addition to ongoing work in instrumentation, physical and
astrophysical modeling, and in developing new ways to explore the Universe using
GW detectors. We mention just a few of these challenges to close this article,
highlighting not only past synergies between the mathematical sciences and GW
science, but also what might lay ahead.

The most interesting challenges in the statistical theory of GW detection and
parameter estimation revolve on the astrophysical and theoretical interpretation of
observed GW sources. For instance, how does one use a catalog of CBC obser-
vations to constrain populations of binaries across the Universe, or the physical
processes that led to their formation? What is the best statistical formulation to
test GR through CBC signals? How can we robustly take into account the system-
atic uncertainties due to the calibration of detectors, imperfect waveform modeling,
and other perturbations?

Because extracting physical parameters from individual observed signals requires
accurate theoretical waveforms as a function of the parameters, the field faces a ma-
jor obstacle in the curse of dimensionality, both for the forward problem (modeling:
parameters to waveforms) and inverse problem (inference: signals to parameters).
For binary black-hole waveforms, even under the simplifying assumption of negligi-
ble orbital eccentricity, modeling involves an 8-dimensional parameter spaces (two
masses and two spin vectors), while inference requires exploring a 15-dimensional
parameter space that includes also explicit signal-presentation parameters such as
source position, orientation, and merger time.

Now, finding solutions to the Einstein equations is numerically intensive: hun-
dreds of thousand of hours of computing time for the final phase of inspiral–merger–
ringdown signals, which cannot be modeled analytically with sufficient accuracy.
Even with the largest supercomputers available at the time of writing, the full pa-
rameter space of interest cannot be surveyed directly, so LIGO analysts have relied
on semi-analytical phenomenological waveforms calibrated to a small number of
numerical simulations [153]. Techniques based on state-of-the-art reduced order
modeling for parameterized systems (see [28, 36] and references therein) are also
being explored and commissioned; in this case one directly interpolates among a
small number of numerical waveforms, without the intermediate step of developing
a parameterized phenomenological representation. Once waveforms are available,
reliable statistical inference requires sophisticated sampling schemes to explore pa-
rameter space efficiently.
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Both the forward and inverse problems have inherent sources of uncertainty from
modeled and unmodeled sources of noise, numerical errors in simulations, approxi-
mations in initial and boundary conditions, and even the possibility of corrections
to Einstein’s theory of gravity. Moreover, in these theoretical studies instrumental
noise is usually assumed (as in many other fields) to be Gaussian and stationary,
which is almost never the case. While GW science has developed both general and
ad hoc techniques to deal with these uncertainties, useful approaches may come
from the field of Uncertainty Quantification, which relies on different tools and
formulations than Bayesian inference.

There are two very active, and somewhat distinct, research programs in the
mathematics community that focus on developing a more complete analytical un-
derstanding of two different aspects of the Einstein equations. The first of these
programs involves primarily open problems associated with the solution theory for
the evolution equations; there are still a number of important remaining issues
in addition to the ones we have already mentioned in this article. For example,
apart from proving that Kerr black holes are stable under small perturbations, one
wishes to have a complete mathematical description for the gravitational collapse
of matter to form a black hole. Here, the “holy grail” consists in proving the cosmic
censorship conjecture, which essentially states that the Cauchy evolution of regu-
lar, asymptotically flat initial data should not produce any naked singularities (in
other words, singularities may form but they must be hidden inside a black hole).
So far, due to groundbreaking work by Christodoulou, a fairly complete picture
has emerged in certain spherically symmetric models including the collapse of a
dust ball and the critical collapse of a massless scalar field. However, the general
case still remains widely open. For more details and recent developments see the
introduction in Christodoulou’s monograph [44].

The second of these research programs involves primarily open problems as-
sociated with solution theory for the Einstein constraint equations. One of the
major activities in this program has been to complete the theory for the conformal
method, and this is currently undergoing rapid development. It was hoped that the
new analysis frameworks developed in 2008 that led to the first “far-from-CMC”
existence results would lead to a complete solution theory. However, after it was
shown in 2011 [126] that multiple solutions are possible in the non-CMC case, a
number of additional techniques were developed that have led to a more refined un-
derstanding of the conformal method. In [64], scaling and blowup techniques were
developed for the conformal method, giving a new approach to obtain non-CMC
existence results [84, 85]; this was further refined in [133], giving the best character-
ization to date for multiplicity of general solutions in the non-CMC case. Analytic
bifurcation theory and numerical continuation methods are now also being used
where possible [158, 98, 138, 48, 70] to characterize fold and bifurcation phenom-
ena in the conformal method. These studies could point the way to generalizations
of the conformal method, such as the drift system [127, 128, 122], that may provide
better parameterizations of the initial data for GR in the truly non-CMC setting.

These are just a few examples. Many additional synergies, including unforeseen
ones, between mathematics, computational science, data analysis, and gravitational
wave science, are expected to play crucial roles, just as they have over the past 100
years.
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