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CONVERGENCE OF GOAL-ORIENTED ADAPTIVE FINITE ELEMENT
METHODS FOR SEMILINEAR PROBLEMS

MICHAEL HOLST, SARA POLLOCK, AND YUNRONG ZHU

ABSTRACT. In this article we develop convergence theory for a class ofgoal-oriented
adaptive finite element algorithms for second order semilinear elliptic equations. We
first introduce several approximate dual problems, and briefly discuss the target prob-
lem class. We then review some standard facts concerning conforming finite element
discretization and error-estimate-driven adaptive finiteelement methods (AFEM). We
include a brief summary ofa priori estimates for semilinear problems, and then describe
goal-oriented variations of the standard approach to AFEM (GOAFEM). Following the
recent approach of Mommer-Stevenson and Holst-Pollock forlinear problems, we then
establish a contraction result for the primal problem. We then develop some additional
estimates that make it possible to establish contraction ofthe combined quasi-error, and
subsequently show convergence in the sense of the quantity of interest. Our analysis
is based on the recent contraction frameworks for the semilinear problem developed
by Holst, Tsogtgerel and Zhu and Bank, Holst, Szypowski and Zhu and those for linear
problems as in Cascon, Kreuzer, Nochetto and Siebert, and Nochetto, Siebert and Veeser.
In addressing the goal-oriented problem we base our framework on that of Mommer and
Stevenson for symmetric linear problems and Holst and Pollock for nonsymmetric prob-
lems. Unlike the linear case, one must track linearized and approximate dual sequences
in order to establish contraction with respect to the quantity of interest.
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1. INTRODUCTION

In this article we develop convergence theory for a class of goal-oriented adaptive
finite element methods for second order semilinear equations. In particular, we establish
strong contraction results for a method of this type for the problem

{

−∇ · (A∇u) + b(u) = f, in Ω,
u = 0, on ∂Ω,

(1.1)

with f ∈ L2(Ω) andΩ ⊂ R
d a polyhedral domain, ford = 2 or 3. We consider the

problem withA : Ω → R
d×d Lipschitz and almost-everywhere (a.e.) symmetric positive

definite (SPD). The standard weak formulation of the primal problem reads: Findu ∈
H1

0 (Ω) such that

a(u, v) + 〈b(u), v〉 = f(v), ∀v ∈ H1
0 (Ω), (1.2)

where

a(u, v) =

∫

Ω

A∇u · ∇v dx. (1.3)

In goal-oriented adaptive methods (cf. [10, 9] and the references therein for a detailed
survey of these methods), one is are interested in a (usuallylinear) functional of the solu-
tiong(u) rather than in the solutionu itself. Our interest is in developing such an adaptive
algorithm for semilinear problems along with a corresponding strong contraction result,
following the recent approach in [19, 14] for linear problems. In particular, we develop
a method for semilinear problems in which adaptive mesh refinement is driven both by
residual-based approximations to the error inu, and in a sequence of approximate dual
problems. While globally reducing the error in the primal problem necessarily yields a
good approximation to the goalg(u), methods of the type we describe here bias the error
reduction in the direction of the goal-functiong in the interest of achieving an accurate
approximation tog(u) in fewer adaptive iterations, and hence fewer degrees of freedom.

Contraction for the semilinear problem is established in [16] and [2]. Here we re-
call the contraction argument for the primal problem and usea generalization of this
technique to establish the contraction of a linear combination of the primal and limiting
dual problems by means of a computable sequence of approximate dual problems. We
relate this result to a bound on the error in a goal-function,or quantity of interest. Fol-
lowing [16], the contraction argument follows from first establishing three preliminary
results for two successive AFEM approximationsu1 andu2, and respectivelŷz1 andẑ2
of the primal and limiting dual problems.

1) Quasi-orthogonality: There existsΛG > 1 such that

|||u− u2|||2 ≤ ΛG|||u− u1|||2 − |||u2 − u1|||2.
2) Error estimator as upper bound on error: There existsC1 > 0 such that

|||u− uk|||2 ≤ C1η
2
k(uk, Tk), k = 1, 2.

3) Estimator reduction: ForM the marked set that takes refinementT1 → T2, for
positive constantsλ < 1 andΛ1 and anyδ > 0

η22(v2, T2) ≤ (1 + δ){η21(v1, T1)− λη21(v1,M)}+ (1 + δ−1)Λ1η
2
0|||v2 − v1|||.

In the case of the primal problem, the mesh at each iteration may be marked for refine-
ment with respect to the error indicators following the Dörfler marking strategy. In the
case of the limiting dual problem, the limiting estimator asused in the contraction argu-
ment is related to a computable quantity. This quantity is the dual estimator, based on
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the residual of the approximate dual sequence. The mesh is marked for refinement with
respect to this set of error indicators. The transformationbetween limiting and approx-
imate dual estimators couples the contraction of error in the limiting dual to the primal
problem. The final result is the contraction of what we refer to here as thecombined
quasi-error

Q̄(uj, ẑj) := |||ẑ − ẑj |||2 + γζ22 (ẑj) + π|||u− uj|||2 + πγpη
2
2(uj),

which is the sum of the quasi-error as in [6] for the limiting dual problem and a multiple
of the quasi-error for the primal problem. The contraction of this property as shown in
Theorem 5.11 establishes the contraction of the error in thegoal function as shown in
Corollary 5.12.

Our analysis is based on the recent contraction frameworks for the semilinear problem
developed by Holst, Tsogtgerel, and Zhu [16] and Bank, Holst, Szypowski and Zhu [2]
and those for linear problems as in Cascon, Kreuzer, Nochetto and Siebert [6], and No-
chetto, Siebert, and Veeser [20]. In addressing the goal-oriented problem we base our
framework on that of Mommer and Stevenson [19] for symmetriclinear problems and
Holst and Pollock [14] for nonsymmetric problems, and by combining these techniques
we establish strong contraction of the method. The analysisof the goal-oriented method
for nonlinear problems is signficantly more complex than theprevious analysis for linear
problems in [19, 14], where a much simpler analysis approachwas possible. Here, we
are faced with analyzing linearized and approximate dual sequences as well in order to
establish contraction with respect to the quantity of interest. The linearized dual in the
context of goal-oriented adaptive methods is described below, following e.g. Estep et. al
in [10] and [8].

Outline of the paper. The remainder of the paper is structured as follows. In§2, we
introduce the approximate, linear and limiting dual problems. We briefly discuss the
problem class and review some standard facts concerning conforming finite element dis-
cretization and error-estimate-driven adaptive finite element methods (AFEM). In§2.4
we include a brief summary ofa priori estimates for the semilinear problem. In§3, we
then describe a goal-oriented variation of the standard approach to AFEM (GOAFEM).
In §4 we discuss contraction theorems for the primal problem. Lastly, in §5 we intro-
duce additional estimates necessary for the contraction ofthe combined quasi-error and
convergence in the sense of the quantity of interest.

2. PRELIMINARIES

In this section, we state both the (nonlinear) primal problem and its finite element
discretization. We then introduce the linearized dual problem, and consider several more
practical and useful variants for computation and analysis.

2.1. Linearized dual problem. Unlike the linear case as in [14] and [18], the primal
problem does not have an exact formal adjoint. Instead, we consider the linearized dual
problem as in [13], [10] and [8] associated to the average derivative of the nonlinear term.

The linearized dual operatorBj based on exact solutionu and approximationuj is
given by

Bj :=

∫ 1

0

b′(ξu+ (1− ξ)uj) dξ =

∫ 1

0

b′(uj + (u− uj)ξ) dξ. (2.1)
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By the integral mean value theorem [10] or equivalently a generalized Taylor expan-
sion [13], the linearized dual operator satisfies the relation

Bj(u− uj) = b(u)− b(uj). (2.2)

In order to introduce a computable dual operator, one that isnot a function of the exact
solutionu, we define the approximate dual operatorb′(uj). This operator is instrumental
for defining a computablea posteriorierror indicator for the dual problem.

Our analysis also uses the limiting approximate dual operator b′(u). While this opera-
tor is a function of the exact solutionu and is not a computable quantity, it is the operator
used in the limit of both the linearized dual and approximatedual problems asuj → u.
The contraction result Theorem 5.11 is written with respectto the limiting dual problem
as defined by the operatorb′(u).

Consider the semilinear problem (1.2), where as in (1.3) we have

a(u, v) = 〈A∇u,∇v〉
with 〈·, ·〉 denoting theL2 inner-product overΩ ⊂ R

d. The operatorsBj , j = 1, 2, . . .
define a sequence of linearized dual problems: Findzj ∈ H1

0 (Ω) such that

a(zj , v) + 〈Bjz
j , v〉 = g(v), ∀v ∈ H1

0 (Ω). (2.3)

Similarly, the operatorsb′(uj), j = 1, 2, . . . define a sequence of approximate dual prob-
lems: Findẑj ∈ H1

0 (Ω) such that

a(ẑj , v) + 〈b′(uj)ẑ
j , v〉 = g(v), ∀v ∈ H1

0 (Ω). (2.4)

Both the linearized and approximate sequences approach thesame limiting problem, find
ẑ ∈ H1

0(Ω) such that

a(ẑ, v) + 〈b′(u)ẑ, v〉 = g(v), ∀v ∈ H1
0 (Ω). (2.5)

Here,a∗( · , · ) the formal adjoint ofa( · , · ), is equivalent toa( · , · ) for symmetricA.
The goal functional is defined through

g(u) =

∫

Ω

gu dx, (2.6)

for givenL2 functiong : H1
0 (Ω) → R.

2.2. Problem class, weak formulation, spaces and norms. We will make the follow-
ing assumptions on the data:

Assumption 2.1 (Problem data). The problem dataD = (A, b, f) and quantity of interest
g satisfy

1) A : Ω → R
d×d, Lipschitz, and a.e. symmetric positive-definite:

ess infx∈Ωλmin(A(x)) = µ0 > 0, (2.7)

ess supx∈Ωλmax(A(x)) = µ1 < ∞. (2.8)

2) b : Ω × R → R satisfies Assumption (A3) in[2]. For simplicity we writeb(u)
instead ofb(x, u). Assumeb monotone (increasing)

b′(ξ) ≥ 0, for all ξ ∈ R.

3) f, g ∈ L2(Ω).
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The native norm is the SobolevH1 norm given by

‖v‖2H1 = 〈∇v,∇v〉+ 〈v, v〉. (2.9)

Continuity ofa( · , · ) follows from the Hölder inequality, and bounding theL2 norm
of the function and its gradient by theH1 norm

a(u, v) ≤ µ1‖u‖H1‖v‖H1 = ME‖u‖H1‖v‖H1. (2.10)

Define the energy semi-norm by the principal part of the differential operator

|||v|||2 := a(v, v). (2.11)

Non-negativity follows from the Poincaré inequality withconstantCΩ

a(v, v) ≥ µ0|v|2H1 ≥ CΩµ0‖v‖2H1 = m2
E‖v‖2H1, (2.12)

which establishes the energy semi-norm as a norm. Putting this together with (2.10)
establishes the equivalence between the native and energy norms.

2.3. Finite Element Approximation. We employ a standard conforming piecewise poly-
nomial finite element approximation below.

Assumption 2.2 (Finite element mesh). We make the following assumptions on the un-
derlying simplex mesh:

1) The initial meshT0 is conforming.
2) The mesh is refined by newest vertex bisection[4], [19] at each iteration.
3) The initial meshT0 is sufficiently fine. In particular, it satisfies (4.20).

Based on assumptions 2.2 we have the following mesh constants.

1) Define
hT := max

T∈T
hT , wherehT = |T |1/d. (2.13)

In particular,h0 is the initial mesh diameter.
2) Define the mesh constantγN = 2γr where

γr =
h0

hmin
and hmin = min

T∈T0
hT

then for any two elementsT, T̃ in the same generation

hT ≤ γrhT̃

and as neighboring elements may differ by at most one generation for any two
neighboring elementsT andT ′

hT ≤ 2γrhT ′ = γNhT ′ (2.14)

3) The minimal angle condition satisfied by newest vertex bisection implies the mesh-
sizehT is comparable tohσ, the size of any true-hyperfaceσ of T . In particular,
there is a constant̄γ

hσ

hT
≤ γ̄2 for all T. (2.15)

Let T the set of conforming meshes derived from the initial meshT0. DefineTN ⊂ T

by
TN = {T ∈ T

∣

∣ #T −#T0 ≤ N}.
For a conforming meshT1 with a conforming refinementT2 we sayT2 ≥ T1.
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Define the finite element space

VT := H1
0 (Ω) ∩

∏

T∈T

Pn(T ) andVk := VTk . (2.16)

For subsetsS ⊆ T ,
VT (S) := H1

0 (Ω) ∩
∏

T∈S

Pn(T ), (2.17)

wherePn(T ) is the space of polynomials degree degreen overT . Denote the patch about
T ∈ T

ωT := T ∪ {T ′ ∈ T
∣

∣ T ∩ T ′ is a true-hyperface ofT}. (2.18)

For ad-simplexT , an true-hyperface is ad− 1 dimensional face ofT , e.g., a face in 3D
or an edge in 2D.

Define the discrete primal problem: Finduk ∈ Vk such that

a(uk, vk) + 〈b(uk), vk〉 = f(vk), vk ∈ Vk, (2.19)

and the approximate dual problem linearized aboutuj is given by: findẑjk ∈ Vk such that

a(ẑjk, vk) + 〈b′(uj)ẑ
j
k, vk〉 = g(vk) for all vk ∈ Vk. (2.20)

Finally, the discrete limiting dual problem is given by: findẑk ∈ Vk such that

a(ẑk, vk) + 〈b′(u)ẑk, vk〉 = g(vk) for all vk ∈ Vk. (2.21)

Existence and uniqueness of solutions to the primal problems (1.2) and (2.19) follow
from standard variational or fixed-point arguments as in [22] and [17]. For the dual
problems (2.4) - (2.5) and (2.20) - (2.21) the result may be derived from the Lax-Milgram
Theorem as in [12].

2.4. A priori estimates. We require the solutions to the primal and limiting and ap-
proximate dual problems satisfyL∞ bounds. As discussed below, such bounds have
been established assuming various additional conditions on either the nonlinearityb or
on the angles of the mesh.

Assumption 2.3 (A priori bounds). Let u the solution to(1.2), and uj the solution
to (2.19). We assume the followingL∞ bounds on the primal and discrete primal so-
lutions.

There areu−, u+ ∈ L∞ which satisfy

u−(x) < u(x), uk(x) ≤ u+(x) for almost everyx ∈ Ω. (2.22)

TheL∞ bound onu is discussed in [16] Lemma 7.9, [3] Theorem 2.4 and [15] Theo-
rem 2.3 noting that Assumption 2.2 in [15] is a consequence ofcondition (2) of Assump-
tion 2.1. TheL∞ bound on the discrete solution is demonstrated in [16] Lemma7.9 and
[15] Theorem 3.2 with the additional condition Assumption 3.1 of [15]. TheL∞ bound
on the discrete solutionuk is also demonstrated without angle conditions on the mesh
in [3] Corollary 4.4 . This case requires that the nonlinearity b satisfies the (sub)critical
growth condition, as stated in [3] Assumption (A4).

Assumption 2.1 together with Assumption 2.3 yield the following properties as sum-
marized below.

Proposition 2.4. Let the problem data satisfy Assumption 2.1 and Assumption 2.3. The
following properties hold:

1) b is Lipschitz on[u−, u+] ∩H1
0 (Ω) for a.e.x ∈ Ω with constantB.

2) b′ is Lipschitz on[u−, u+] ∩H1
0 (Ω) for a.e.x ∈ Ω with constantΘ.
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3) Let the mesh satisfy conditions (1) and (2) of Assumption 2.2. Let ẑ the solution
to (2.5), ẑjj the solution to(2.20) and ẑj the solution to(2.21). Then there are
z−, z+ ∈ L∞ which satisfy

z−(x) < ẑ(x), ẑj(x), ẑ
j
j (x) ≤ z+(x) for almost everyx ∈ Ω, j ∈ N (2.23)

and there is a constantKZ := max{‖z−‖L∞
, ‖z+‖L∞

}.
Remark 2.5. TheL∞ bounds on the dual solutions as in (1) of Proposition(2.4) follow
from the maximum principle as in[12] andL∞ error estimates as in[3].

3. GOAL ORIENTED AFEM

The goal oriented adaptive finite element method (GOAFEM) isbased on the standard
AFEM algorithm:

SOLVE → ESTIMATE → MARK → REFINE .

Procedure SOLVE. The procedure SOLVE involves solving (2.19) foruj, computing
b′(uj) to form problem (2.20) and solving (2.20) forẑjj . In the analysis that follows, we
suppose for simplicity the exact Galerkin solution is foundon each mesh refinement.

In practice the nonlinear problem (2.19) may be solved by a standard inexact Newton
+ multilevel algorithm as in [2]. The approximate dual problem (2.20) may be solved by
any standard linear-time iterative method so that the Galerkin solution to each problem
is found up to a given tolerance. Convergence of the goal-oriented method assuming
an inexact solution to the primal problem is currently underinvestigation by the present
authors.

Procedure ESTIMATE. The estimation of the error on each element is determined by
a fairly standard residual-based estimator, which we will now define. Thelocal strong
formof the nonlinear operator is

N (v) := ∇ · (A∇v)− b(v); (3.1)

Theresidualfor the primal problem, following the sign convention in [6]:

R(v) := f +N (v). (3.2)

For the limiting and approximate dual problems, we define thelocal strong form by

L̂∗(v) := ∇ · (A∇v)− b′(u)(v), and L̂∗
j(v) := ∇ · (A∇v)− b′(uj)(v). (3.3)

The limiting and approximate dual residuals given respectively by

R∗(v) := g + L̂∗(v), and R̂∗
j (v) := g + L̂∗

j(v). (3.4)

The jump residualfor both the primal and linearized dual problems is:

JT (v) := J[A∇v] · nK∂T (3.5)

wherejump operatorJ · K is given by

JφK∂T := lim
t→0

φ(x+ tn)− φ(x− tn) (3.6)

andn is taken to be the appropriate outward normal defined piecewise on∂T . On bound-
ary edgesσb we have

J[A∇v] · nKσb
≡ 0

so thatJ[A∇v] · nK∂T = J[A∇v] · nK∂T∩Ω. For clarity, we will also employ the notation

RT (v) := R(v)
∣

∣

T
, v ∈ VT ,
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and similarly for the other strong form operators. The errorindicator is given as

η2T (v, T ) := h2
T ‖R(v)‖2L2(T ) + hT‖JT (v)‖2L2(∂T ), v ∈ VT . (3.7)

The dual error-indicator is then given by the approximate residual

ζ2T ,j(w, T ) := h2
T‖R̂∗

j (w)‖2L2(T ) + hT‖JT (w)‖2L2(∂T ), w ∈ VT , (3.8)

and the limiting dual error-indicator by

ζ2T (w, T ) := h2
T‖R̂∗(w)‖2L2(T ) + hT‖JT (w)‖2L2(∂T ), w ∈ VT . (3.9)

The dual indicator is defined in terms of the approximate dualoperatorb′(uj) as this is a
computable quantity given an an approximationuj. The limiting dual indicator as given
by (3.9) is not computable, but remains useful in the analysis. The error estimators are
given by thel2 sum of error indicators over elements in the space.

η2T (v) :=
∑

T∈T

η2T (v, T ), v ∈ VT . (3.10)

The dual energy estimator is:

ζ2T ,j(w) :=
∑

T∈T

ζ2T ,j(w, T ), w ∈ VT , (3.11)

and the limiting estimator

ζ2T (w) :=
∑

T∈T

ζ2T (w, T ), w ∈ VT . (3.12)

To simplify the notation, welow we will useηk to denoteηTk , and similarly useζk,· to
denoteζTk,·.

As in [6] the indicators for the primal and approximate (respectively limiting) dual
problems satisfy the monotonicity property forv ∈ T1 andT2 ≥ T1

η2(v, T2) ≤ η1(v, T1), ζ2,j(v, T2) ≤ ζ1,j(v, T1) and ζ2(v, T2) ≤ ζ1(v, T1). (3.13)

For an elementT ∈ T2 ∩ T1

η2(v, T ) = η1(v, T ), ζ2,j(v, T ) = ζ1,j(v, T ) and ζ2(v, T ) = ζ1(v, T ). (3.14)

The data estimator over the meshT or a subsetT ′ ⊂ T is given by the maximum data
estimator over elements in the mesh or subset: ForT ′ ⊆ T

ηT (D, T ′) = max
T∈T ′

ηT (D, T ).

The data estimator on the initial mesh

η0 := ηT0(D, T0).

As the grid is refined, the data estimator satisfies the monotonicity property [6] for re-
finementsT2 ≥ T1

η2(D, T2) ≤ η1(D, T1). (3.15)

Procedure MARK. The Dörfler marking strategy for the goal-oriented problemis
based on the following steps as in [19]:

1) Givenθ ∈ (0, 1), mark sets for each of the primal and dual problems:

• Mark a setMp ⊂ Tk such that,
∑

T∈Mp

η2k(uk, T ) ≥ θ2η2k(uk, Tk) (3.16)
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• Mark a setMd ⊂ Tk such that,
∑

T∈Md

ζ2k,k(ẑ
k
k , T ) ≥ θ2ζ2k,k(ẑ

k
k , Tk) (3.17)

2) Let M = Mp ∪ Md the union of sets found for the primal and dual problems
respectively.

As in [14] the setM differs from that in [19], where the set of lesser cardinality
betweenMp andMd is used. As seen in (3.17) the mesh is marked with respect to
the dual indicators of the approximate-sequence solutionsẑkk as these are computable
quantities. In the case of the semilinear problem the error reduced at each iteration is
the combined quasi-error, a linear combination of energy error and estimators of the
primal and limiting dual problems. This combined error is seen to contract based on
the refinement satisfying the Dörfler property in terms of the primal and corresponding
approximate dual problems. As such, the mesh is refined to satisfy the Dörfler property
in each. SetsMp andMd with optimal cardinality (up to a factor of 2) can be chosen in
linear time by binning the elements rather than performing afull sort [19].

In the present paper we assume the primal and approximate dual solutions are solved
on the same mesh at each iteration. The determination of strong convergence results for
a method which solves the primal (nonlinear) problem on a coarse mesh and the dual on
a fine mesh is the subject of future investigation.

Procedure REFINE. The refinement (including the completion) is performed accord-
ing to newest vertex bisection [4]. The complexity and otherproperties of this procedure
are now well-understood, and will simply be exploited here.

4. CONTRACTION FOR THE PRIMAL PROBLEM

Here we discuss the contraction of the primal problem (1.2),recalling results from [16],
[15] and [2]. The contraction argument relies on three main convergence results, namely
quasi-orthogonality, error-estimator as upper bound on error and estimator reduction. We
include the analogous results here for the limiting dual problem when they are identical
or nearly identical .

4.1. Quasi-orthogonality. Orthogonality in the energy-norm|||u− u2|||2 = |||u− u1|||2−
|||u2 − u1|||2 does not generally hold in the semilinear problem. We rely onthe weaker
quasi-orthogonality result to establish contraction of AFEM (GOAFEM). The following
is a variation on the quasi-orthogonality discussion in [16] and is related to the version
for nonsymmetric linear problems as in [18] and [14]. The quasi-orthogonality proof re-
lies onL2-lifting, a fairly standard result included here for completeness. Here we show
for v̄ ∈ V2 ≥ V1

|||u− u2|||2 ≤ Λ|||u− v̄|||2 − |||u2 − v̄|||2,
and in particular foru1 ∈ V1 ⊂ V2

|||u− u2|||2 ≤ ΛG|||u− u1|||2 − |||u2 − u1|||2.
Lemma 4.1 (L2-lifting) . Let the problem data satisfy Assumption 2.1 and Assumption 2.3
and the mesh satisfy Assumption 2.2. Letu the variational solution to(1.2), andu1 ∈ V1

the Galerkin solution to(2.19). Let B the constant given in Proposition 2.4. Assume
for anyg ∈ L2(Ω) the solutionw to the linearized dual problem(2.3) with B1 as given
by (4.3)belongs toH1+s(Ω) ∩H1

0 (Ω) for some0 < s < 1 and

|w|H1+s(Ω) ≤ KR‖g‖L2(Ω) (4.1)



10 M. HOLST, S. POLLOCK, AND Y. ZHU

then

‖u− u1‖L2
≤ C∗h

s
0|||u− u1|||. (4.2)

As discussed in [7] and [11] and [1] the regularity assumptions are reasonable based
on the continuity of the diffusion coefficientsaij andB1 ∈ L∞(Ω) where as in (2.1) the
linearized dual operator with respect tou1

B1 =

∫ 1

0

b′(ξu+ (1− ξ)u1) dξ =

∫ 1

0

b′(u1 + (u− u1)ξ) dξ. (4.3)

Proof. The proof follows the duality arguments in [1], [14] and [5],adapted for the semi-
linear problem.

Letw ∈ H1
0(Ω) the solution to the dual problem

a(w, v) + 〈B1w, v〉 = 〈u− u1, v〉, v ∈ H1
0 (Ω). (4.4)

Let Ih a global interpolator based on refinementT1. AssumeIhw is C0 and the
corresponding shape functions have approximation orderm. For m = 2 we have the
bounds

‖w − Ihw‖H1 ≤ CIh
s
T1
|w|H1+s (4.5)

‖w − Ihw‖L2
≤ ĈIh

1+s
T1

|w|H1+s. (4.6)

as discussed in [1], [21] and [14].
Consider the linearized dual problem (4.4) withv = u − u1 ∈ H1

0(Ω) expressed in
primal form

a(u− u1, w) + 〈B1(u− u1), w〉 = ‖u− u1‖2L2
. (4.7)

By Galerkin orthogonality, forIhw ∈ V1

a(u− u1, Ihw) + 〈B1(u− u1), Ihw〉 = 0. (4.8)

Subtracting (4.8) from (4.7)

a(u− u1, w − Ihw) + 〈B1(u− u1), w − Ihw〉 = ‖u− u1‖2L2
. (4.9)

Then by (2.10) continuity ofa( · , · ), the relation (2.2), the Hölder inequality and Lips-
chitz continuity ofb

‖u− u1‖2L2
≤ ME‖u− u1‖H1‖w − Ihw‖H1 +B‖u− u1‖L2

‖w − Ihw‖L2
. (4.10)

By coercivity (2.12), interpolation estimate (4.5), and regularity (4.1) on the first term on
the RHS of (4.10)

ME‖u− u1‖H1‖w − Ihw‖H1 ≤ ME

mE

CIh
s
0|||u− u1||||w|H1+s

≤ ME

mE

KRCIh
s
0|||u− u1|||‖u− u1‖L2

. (4.11)

For the second term of (4.10), apply (4.6) followed by (4.1) and coercivity to the inter-
polation error yielding

B‖u− u1‖L2
‖w − Ihw‖L2

≤ BĈIh
1+s
0 ‖u− u1‖L2

|w|H1+s

≤ KRĈI(Bh0)h
s
0‖u− u1‖L2

‖u− u1‖L2

≤ m−1
E KRĈI(Bh0)h

s
0‖u− u1‖L2

|||u− u1|||. (4.12)

Applying (4.11) and (4.12) to (4.10)

‖u− u1‖L2
≤ m−1

E KR

(

MECI + ĈI(Bh0)
)

hs
0|||u− u1|||. (4.13)
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�

Remark 4.2. As the dual problem as given by(4.3)and (4.4)changes at each iteration,
so may the regularity constant as given by(4.1)as well as the interpolation constants as
given by(4.5)and (4.6). As such, the previous lemma shows aC∗,k for k = 1, 2, . . .. As
the algorithm is run finitely many times, we consolidate theseC∗,k into a single constant
C∗ for simplicity of presentation.

Remark 4.3 (Membership inH1+s). Depending on the regularity of the boundary∂Ω
the solutionw to (4.4)may have less thanH2 regularity: w ∈ H2

loc(Ω) butw /∈ H2(Ω). In
particular, we may havew ∈ H1+s for somes ∈ (0, 1). In particular, ifΩ is a nonconvex
polyhedral domain, then the value ofs is found by considering all corners of boundary
∂Ω. Writing the interior angle at each corner byω = π/α it holds for α > 0 and
arbitrary ε > 0

ω = π/α =⇒ w ∈ H1+α−ε

and ifπ/(pj + 1) ≤ ω ≤ π/pj for a set of integerspj characterizing the corners of∂Ω

‖w − Ihw‖H1 ≤ Chs|w|1+s

wheres = min{pj , 1} ands = 1 in the case of a smooth boundary or a convex polyhedral
domain. Details may be found in[1] and[21].

Lemma 4.4 (Quasi-orthogonality). Let the problem data satisfy Assumption 2.1 and As-
sumption 2.3 and the mesh satisfy Assumption 2.2. LetT1, T2 ∈ T with T2 ≥ T1. Let
u ∈ H1

0 (Ω) the solution to(1.2), uk ∈ Vk the solution to(2.19), k = 1, 2 and v̄ ∈ V2 ar-
bitrary. Let B the constant given in Proposition 2.4. There exists a constant C∗ > 0
depending on the problem dataD and initial meshT0, and a number0 < s ≤ 1
related to the angles of∂Ω, such that if the meshsizeh0 of the initial mesh satisfies
Λ̄ := Bm−1

E C∗h
s
0 < 1, then

|||u− u2|||2 ≤ Λ|||u− v̄|||2 − |||u2 − v̄|||2, (4.14)

and in particular forv̄ = u1

|||u− u2|||2 ≤ ΛG|||u− u1|||2 − |||u2 − u1|||2, (4.15)

where
Λ := (1− Bm−1

E C∗h
s
0)

−1 and ΛG := (1− BC2
∗h

2s
0 )−1

andC∗ is the constant from Lemma 4.1.

Proof. Recombining terms

|||u− u2|||2 = a(u− v̄ + (v̄ − u2), u− v̄ + (v̄ − u2))

= |||u− v̄|||2 + |||v̄ − u2|||2 + 2a(u− v̄, v̄ − u2)

= |||u− v̄|||2 − |||v̄ − u2|||2 + 2a(u− u2, v̄ − u2). (4.16)

By Galerkin orthogonality

a(u− u2, v) + 〈b(u)− b(u2), v〉 = 0 for all v ∈ V2. (4.17)

Takingv = v̄ − u2 in (4.17), by Hölder inequality and the Lipschitz assumption onb

2a(u− u2, v̄ − u2) ≤ 2|〈b(u)− b(u2), v̄ − u2〉|
≤ 2B‖u− u2‖L2

‖v̄ − u2‖L2
. (4.18)
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In the case of (4.14) applyingL2-lifting 4.1 to the first factor on the RHS and (2.12)
coercivity to the second followed by Young’s inequality

2B‖u− u2‖L2
‖v̄ − u2‖L2

≤ 2Bm−1
E C∗h

s
0|||u− u2||||||v̄ − u2|||

≤ Bm−1
E C∗h

s
0|||u− u2|||2 +Bm−1

E C∗h
s
0|||v̄ − u2|||2. (4.19)

Applying (4.19) via (4.18) to (4.16)

(1−Bm−1
E C∗h

s
0)|||u− u2|||2 ≤ |||u− v̄|||2 − (1−Bm−1

E C∗h
s
0)|||v̄ − u2|||2.

Assuming
Λ̄ := Bm−1

E C∗h
s
0 < 1 (4.20)

we have
|||u− u2|||2 ≤ Λ|||u− v̄|||2 − |||v̄ − u2|||2 (4.21)

with Λ = (1−Bm−1
E C∗h

s
0)

−1.
In the case of (4.15) applyingL2-lifting 4.1 to each norm on the RHS of (4.18) then

applying Young’s inequality

2B‖u− u2‖L2
‖u1 − u2‖L2

≤ 2Bh2s
0 C2

∗ |||u− u2||||||u1 − u2|||
≤ Bh2s

0 C2
∗ |||u− u2|||2 +BC2

∗h
2s
0 |||u1 − u2|||2. (4.22)

Following the same procedure as above yields

|||u− u2|||2 ≤ ΛG|||u− u1|||2 − |||u1 − u2|||2 (4.23)

with ΛG = (1− BC2
∗h

2s
0 )−1 with the weaker mesh assumptionΛ̄G := BC2

∗h
2s
0 < 1. �

4.2. Error Estimator as Global Upper-bound. The second key result for the contrac-
tion of the primal problem is the error estimator as a global upper bound on the energy
error, up to a global constant. The result for the semilinearproblem is established in
[16] and [2] with a clear generalization to the approximate dual sequence. Also see [6]
and [18].

Lemma 4.5 (Error estimator as global upper-bound). Let the problem data satisfy As-
sumption 2.1 and Assumption 2.3 and the mesh satisfy Assumption 2.2. LetT1, T2 ∈ T

with T2 ≥ T1. Letu1 ∈ V1 the solution to(2.19)andu the solution to(1.2). Let ẑ1 ∈ V1

the solution to(2.21), and ẑ the solution to(2.5). Then there is a global constantC1

depending on the problem dataD and initial meshT0 with

|||u− u1||| ≤ C1η1(u1, T1) (4.24)

and
|||ẑ − ẑ1||| ≤ C1ζ1(ẑ1, T1). (4.25)

4.3. Estimator Reduction. The local Lipschitz property as in [16], analogous to the
local perturbation property established in [6], is a key step in establishing estimator re-
duction leading to the contraction result.

Lemma 4.6 (Local Lipschitz property). Let the problem data satisfy Assumption 2.1 and
Assumption 2.3 and the mesh satisfy condition (1) of Assumption 2.2. LetB the constant
given in Proposition 2.4. LetT ∈ T. For all T ∈ T and for anyv, w ∈ VT

ηT (v, T ) ≤ ηT (w, T ) + Λ̄1ηT (D, T )‖v − w‖H1(ωT ) (4.26)

where recalling(2.18)ωT is the union ofT with elements inT sharing a true-hyperface
with T . The constant̄Λ1 > 0 depends on the dimensiond and the regularity of the initial
meshT0.
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The proof follows those in [6] and [14]. The main steps are shown here.

Proof of (4.26). From (3.7)

η2T (v, T ) := h2
T ‖R(v)‖2L2(T ) + hT‖JT (v)‖2L2(∂T ), v ∈ VT . (4.27)

DenoteηT (v, T ) by η(v, T ). Sete = v−w. Applying linearity and a generalized Taylor
expansion to the definition of the residual as given by (3.1) and (3.2)

R(v) = f +N (w + e)

= f +∇ · (A∇w)− b(w) +∇ · (A∇e)−
∫ 1

0

b′(w + ξe) dξe

= R(w) +∇ · (A∇e)−
∫ 1

0

b′(w + ξe) dξe

= R(w) +D(e),

whereD(e) := ∇· (A∇e)−
∫ 1

0
b′(w+ ξe) dξe. Using the generalized triangle-inequality

√

(a + b)2 + (c+ d)2 ≤
√
a2 + c2 + b+ d, for a, b, c, d > 0

and linearity of the jump residual we have

η(v, T ) =
(

h2
T‖R(w) +D(e)‖2L2(T ) + hT‖J(w) + J(e)‖2L2(∂T )

)1/2

≤ η(w, T ) + hT‖D(e)‖L2(T ) + h
1/2
T ‖J(e)‖L2(∂T ). (4.28)

Consider the second term on the RHS. By the triangle inequality

‖D(e)‖L2(T ) ≤ ‖∇ · (A∇e)‖L2(T ) +

∥

∥

∥

∥

∫ 1

0

b′(w + ξe) dξe

∥

∥

∥

∥

L2(T )

. (4.29)

As shown in [6] and [14] the diffusion term satisfies the bound

‖∇ · (A∇e)‖L2(T ) ≤ ‖divA · ∇e‖L2(T ) + ‖A : D2e‖L2(T )

≤
(

‖divA‖L∞(T ) + CIh
−1
T ‖A‖L∞(T )

)

‖∇e‖L2(T ), (4.30)

whereCI is the constant associated with an inverse inequality as in [5]. The second term
in (4.29) is bounded by

∥

∥

∥

∥

∫ 1

0

b′(w + ξe) dξe

∥

∥

∥

∥

L2(T )

≤ B‖e‖L2(T ). (4.31)

As shown in [6] and [14] the jump term in (4.28) satsifies

‖J(e)‖L2(∂T ) ≤ 2(d+ 1) CT (γ̄)
d−1γ

1/2
N h

−1/2
T ‖A‖L∞(ωT )‖∇e‖L2(ωT )

= CJh
−1/2
T ‖A‖L∞(ωT )‖∇e‖L2(ωT ), (4.32)

whereγ̄ andγN are constants of proportionality with respect to the initial mesh as given
by (2.14) and (2.15) and theCT is the constant associated with the trace theorem as
in [11].

Putting together (4.28), (4.30), (4.31) and (4.32) obtain

η(v, T ) ≤ η(w, T ) + hT

(

‖divA‖L∞(T ) + (CI + CJ)h
−1
T ‖A‖L∞(ωT ) +B

)

‖e‖H1(ωT )

≤ η(w, T ) + CTOT ηT (D, T )‖v − w‖H1(ωT ). (4.33)

�
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The local perturbation property as demonstrated in Lemmas 4.6 and 5.6 leads to esti-
mator reduction, one of the three key ingredients for contraction of the both the primal
and combined quasi-errors. This result for both the primal and limiting dual problems is
essentially that of [6] Corollary 2.4, [14] Theorem 3.4 and [16] Lemma 7.2. It is stated
here for completeness.

Theorem 4.7 (Estimator reduction). Let the problem data satisfy Assumption 2.1 and
Assumption 2.3 and the mesh satisfy conditions (1) and (2) ofAssumption 2.2. LetT1 ∈
T, M ⊂ T1 andT2 = REFINE(T1,M). Let

Λ1 := (d+ 2)Λ̄2
1m

−2
E and λ := 1− 2−1/d > 0

with Λ̄1 from Lemma 4.6 (local Lipschitz property). Then for anyv1 ∈ V1 andv2 ∈ V2

andδ > 0

η22(v2, T2) ≤(1 + δ)
{

η21(v1, T1)− λη21(v1,M)
}

+ (1 + δ−1)Λ1η
2
0|||v2 − v1|||2. (4.34)

Analogously for the limiting dual problem

ζ22(v2, T2) ≤(1 + δ)
{

ζ21(v1, T1)− λζ21(v1,M)
}

+ (1 + δ−1)Λ1η
2
0|||v2 − v1|||2. (4.35)

The contraction of the primal (semilinear) problem is established in [16] and [2] based
on satisfying Lemma 4.4, Lemma 4.5 and Theorem 4.7 as above. We state the result here
and use it to establish our main result, Theorem 5.11.

Theorem 4.8 (Contraction of the primal problem). Let the problem data satisfy Assump-
tion 2.1 and Assumption 2.3 and the mesh satisfy Assumption 2.2. Letu the solution
to (1.2). Let θ ∈ (0, 1], and let{Tj ,Vj, uj}j≥0 be the sequence of meshes, finite ele-
ment spaces and discrete solutions produced by GOAFEM. Thenthere exist constants
γp > 0 and0 < α < 1, depending on the initial meshT0 and marking parameterθ such
that

|||u− uj+1|||2 + γpη
2
j+1 ≤ α2

(

|||u− uj|||2 + γpη
2
j

)

. (4.36)

5. CONTRACTION AND CONVERGENCE OF THE QUANTITY OF INTEREST

In addition to the contraction of the primal error as shown in§4, we require the
analogous convergence results for the limiting dual problem: quasi-orthogonality, error-
estimator as upper bound on error and estimator reduction. Here we discuss the relevant
results for the limiting dual problem with an emphasis on those that differ significantly
from the corresponding results for the primal problem.

Remark 5.1. The dual part of the combined quasi-error is written in termsof the limiting
dual problem in both energy error and estimator. As such, thethree convergence results
listed above need only be satisfied by the limiting dual problem. As the limiting, approx-
imate, and linearized dual problems differ only by the definition of reaction coefficient,
given respectively by

b′(u), b′(uj),

∫ 1

0

b′(uj + (u− uj)ξ) dξ,

it follows that the same types of estimates that hold for the limiting dual hold as well for
the approximate and linearized dual sequences. This is noted in Remarks 5.3 and 5.5 with
respect to the approximate dual sequence. The corresponding estimates for the linearized
dual sequence are not mentioned as this sequence of problemsdoes not naturally arise
in the present convergence analysis.
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To complete the analysis, we introduce the Lemma 5.9, converting between limiting
and approximate estimators in order to apply the Dörfler property to a computable quan-
tity; and Lemma 5.10, bounding the discrete error between approximate and limiting
dual solutions in terms of the primal error.

We put these results together in Theorem 5.11 to establish the contraction of the com-
bined quasi-error. Finally, the contraction of this form ofthe error is related to the error
in the quantity of interest in Corollary 5.12.

5.1. Limiting-dual quasi-orthogonality.

Lemma 5.2 (Limiting-dualL2-lifting) . Let the problem data satisfy Assumption 2.1 and
Assumption 2.3 and the mesh satisfy Assumption 2.2. LetT1 ∈ T. Let ẑ ∈ H1

0 (Ω)
the solution to(2.5) and ẑ1 ∈ V1 the solution to(2.21). Let B the constant given in
Proposition 2.4. Assume for anyg ∈ L2(Ω) the solutiony to the limiting problem: find
y ∈ H1

0 (Ω) such that

a(y, v) + 〈b′(u)y, v〉 = g(v) for all v ∈ H1
0 (Ω) (5.1)

belongs toH1+s(Ω) ∩H1
0 (Ω) for some0 < s < 1 and

|y|H1+s(Ω) ≤ K̄R‖g‖L2(Ω). (5.2)

Then

‖ẑ − ẑ1‖ ≤ Ĉ∗h
s
0|||ẑ − ẑ1|||. (5.3)

Proof. The proof follows that of Lemma 4.1. As in (4.13) obtain for the limiting dual
estimate (5.3)

‖ẑ − ẑ1‖L2
≤ m−1

E K̄R

(

ME C̄I + C̆I(Bh0)
)

hs
0|||ẑ − ẑ1|||. (5.4)

�

Remark 5.3. Under the analogous regularity assumption, Lemma 5.2 holdsfor the er-
ror ẑj − ẑj1 in the approximate dual sequence as defined by problems(2.4) and (2.20),
respectively.

Lemma 5.4 (Limiting-dual quasi-orthogonality). Let the problem data satisfy Assump-
tion 2.1 and the mesh satisfy Assumption 2.2. LetT1, T2 ∈ T with T2 ≥ T1. Let
ẑ ∈ H1

0 (Ω) the solution to(2.5) and ẑk ∈ Vk the solution to(2.21), k = 1, 2. Let
v̄ ∈ V2 arbitrary. LetB the constant given in Proposition 2.4. There exists a constant
Ĉ∗ > 0 depending on the problem dataD and initial meshT0, and a number0 < s ≤ 1
related to the angles of∂Ω, such that if the meshsizeh0 of the initial mesh satisfies
Λ̄∗ := Bm−1

E Ĉ∗ < 1, then

|||ẑ − ẑ2|||2 ≤ Λ̂|||ẑ − v̄|||2 − |||ẑ2 − v̄|||2 (5.5)

and in particular forv̄ = ẑj1 (respectivelŷz1)

|||ẑ − ẑ2|||2 ≤ Λ̂G|||ẑ − ẑ1|||2 − |||ẑ2 − ẑ1|||2 (5.6)

where

Λ̂ := (1− Bm−1
E Ĉ∗h

s
0)

−1 and Λ̂G := (1− BĈ2
∗h

2s
0 )−1

andĈ∗ is the constant from Lemma 5.2.
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Proof. The proof follows Lemma 4.4, quasi-orthogonality in the primal problem, except
in place of the inequality in (4.17) we have for the limiting dual problem

a(u− u2, v) + 〈b′(u)(ẑ − ẑ2), v〉 = 0 for all v ∈ V2, (5.7)

yielding

2a(ẑ − ẑ2, v̄ − ẑ2) ≤ 2B‖ẑ − ẑ2‖L2
‖v̄ − ẑ2‖L2

, (5.8)

as in (4.18). �

Remark 5.5. By the same reasoning quasi-orthogonality as given by

|||ẑj − ẑj2|||2 ≤ Λ̂|||ẑj − v̄|||2 − |||ẑj2 − v̄|||2

and
|||ẑj − ẑj2|||2 ≤ Λ̂G|||ẑj − ẑj1|||2 − |||ẑj2 − ẑj1|||2

holds in the approximate dual sequence as defined by problems(2.4)and(2.20), respec-
tively.

5.2. Dual sequence estimator perturbations. The Local Lipschitz property, Lemma 4.6
(dually, 5.6) is the necessary tool to derive the estimator reduction property used to con-
vert between estimators on different refinement levels in both the primal and limiting dual
problems as in Theorem 4.7. Lemma 5.6 additionally leads to two corollaries used in the
main contraction argument, Theorem 5.11 where we convert aswell between estimators
of the approximate and limiting problems on the same refinement level. Corollary 5.7
addresses error induced by switching between dual indicators. Then Corollary 5.8 is
an immediate consequence squaring the result of Corollary 5.7 and summing over the
elements. It is stated here for convenience.

Lemma 5.6 (Dual sequence local Lipschitz property). Let the problem data satisfy As-
sumption 2.1 and Assumption 2.3 and the mesh satisfy condition (1) of Assumption 2.2.
LetT ∈ T. For all T ∈ T and for anyv, w ∈ VT

|ζT ,j(v, T )− ζT ,j(w, T )| ≤ Λ̄1ηT (D, T )‖v − w‖H1(ωT ). (5.9)

In particular, for the limiting estimator

|ζT (v, T )− ζT (w, T )| ≤ Λ̄1ηT (D, T )‖v − w‖H1(ωT ). (5.10)

The constant̄Λ1 > 0 depends on the dimensiond and the regularity of the initial mesh
T0.

The proof follows those in [6], [14] and is nearly identical to Lemma 4.6 and is
sketched here.

Proof of (5.9). From (3.8)

ζ2T ,j(v, T ) := h2
T‖R̂∗

j (v)‖2L2(T ) + hT‖JT (v)‖2L2(∂T ), v ∈ VT . (5.11)

Sete = v−w. Applying linearity to the definition of the dual residual asgiven by (3.3) -
(3.4)

R̂∗
j (v) = g + L̂∗

j(w + e) = R̂∗
j (w) + L̂∗

j(e).

By the same reasoning as (4.28)

ζT ,j(v, T ) ≤ ζT ,j(w, T ) + hT‖L̂∗
j(e)‖L2(T ) + h

1/2
T ‖J(e)‖L2(∂T ). (5.12)

The termL̂∗
j (respectivelyL̂∗ for the limiting dual) in (5.12) satisfies the same bound as

the analogous termD in (4.28) of Lemma 4.6. Hence the bounds (5.9) and (5.10) hold
with the same constants as in (4.26). �
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Corollary 5.7 (Perturbation over approximate dual problems). Let the problem data sat-
isfy Assumption 2.1 and Assumption 2.3 and the mesh satisfy conditions (1) and (2)
of Assumption 2.2. LetT ∈ T, uj the solution to(2.19) and u the solution to(1.2).
Let Θ andKZ the constants given in Proposition 2.4. For allT ∈ T and for v, w ∈
VT ∩ [z−, z+] the dual indicator onT satisfies

|ζT ,j(v, T )− ζT ,k(w, T )| ≤ Λ̄1ηT (D, T )‖v − w‖H1(ωT ) +ΘKZhT‖uj − uk‖L2(T ).
(5.13)

In particular, forT = T1, we have for the limiting estimator

|ζ1,1(v, T )− ζ1(w, T )| ≤ Λ̄1η1(D, T )‖v − w‖H1(ωT ) +ΘKZhT‖u− u1‖L2(T ) (5.14)

and

|ζ1(w, T )− ζ1,1(v, T )| ≤ Λ̄1η1(D, T )‖v − w‖H1(ωT ) +ΘKZhT‖u− u1‖L2(T ). (5.15)

Proof. Relating dual residuals

R̂∗
j (w) = g +∇ · (A∇w) + b′(uk)w + (b′(uj)− b′(uk))w

= R̂∗
k(w) + (b′(uj)− b′(uk))w. (5.16)

Using (5.16) in the definition of the dual indicator (3.8) andapplying a generalized tri-
angle inequality

ζT ,j(w, T ) =
(

h2
T‖R̂∗

k(w) + (b′(uj)− b′(uk))w‖2L2(T ) + hT‖JT (w)‖2L2(∂T )

)1/2

≤
(

h2
T ‖R̂∗

k(w)‖2L2(T ) + hT‖JT (w)‖2L2(∂T )

)1/2

+ hT ‖b′(uj)− b′(uk)w‖L2(T )

≤ ζT ,k(w, T ) + ΘKZhT ‖uj − uk‖L2(T ). (5.17)

Applying (5.9) the result of Lemma 5.6 to the estimate (5.17), obtain the result (5.13).
�

Corollary 5.8 (Dual perturbation over sets). Assume the hypotheses of Corollary 5.7.
Then for any subsetsM1,M2 ⊆ T1 and arbitraryδ1, δ2, δA, δB > 0

ζ21 (v,M1) ≥ (1 + δ1)
−1(1 + δA)

−1ζ21,1(w,M1)

− (1 + δ1)
−1δ−1

A Θ2K2
Zh

2
0‖u− u1‖2L2

− δ−1
1 Λ̄2

1(d+ 2)η20‖v − w‖2H1

(5.18)

and

ζ21,1(w,M2) ≥ (1 + δ2)
−1(1 + δB)

−1ζ21(v,M2)

− (1 + δ2)
−1δ−1

B Θ2K2
Zh

2
0‖u− u1‖2L2

− δ−1
2 Λ̄2

1(d+ 2)η20‖v − w‖2H1 .
(5.19)

Proof. Square equation (5.14) (respectively (5.15)) applying Young’s inequality twice,
then sum over elementT ∈ M ⊆ T1. TheH1 norm is summed over all elementsT ∈ T1

counting each elementd + 2 times, the maximum number of elements in each patch
ωT . �

5.3. Contraction of GOAFEM. The main contraction argument Theorem 5.11 follows
after two more lemmas. The first combines a sequence of estimates to convert the non-
computable limiting estimator for the dual problem to a computable quantity, apply the
Dörfler property and then convert back. The second relates the difference between the
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Galerkin solutions of the limiting dual and the approximatedual problems to the pri-
mal error. Motivated by estimator reduction for the limiting dual problem as in equa-
tion (4.35)

ζ22(ẑ2, T2) ≤(1 + δ)
{

ζ21(ẑ1, T1)− λζ21 (ẑ1,M)
}

+ (1 + δ−1)Λ1η
2
0|||ẑ2 − ẑ1|||2 (5.20)

the following lemma addresses the conversion betweenζ21 (ẑ1,M) and and the com-
putable sequential estimatorζ21,1(ẑ

1
1 ,M) necessary for marking the mesh for refinement.

Lemma 5.9 (Applying the Dörfler property to the limiting estimator). Let the problem
data satisfy Assumption 2.1 and Assumption 2.3 and the mesh satisfy Assumption 2.2.
LetΘ andKZ as given by Proposition 2.4,C∗ as given by Lemma 4.1 andΛ1 as given
in Lemma 4.7. Let

u the solution to(1.2), u1 the solution to(2.19),

ẑ the solution to(2.5), ẑ1 the solution to(2.21) ẑ11 the solution to(2.20).

Let ζ1,1(ẑ11 ,M) satisfy the D̈orfler property forM ⊂ T1, namely

ζ21,1(ẑ
1
1 ,M) ≥ θ2ζ21,1(ẑ

1
1 , T1).

Then for arbitraryδ1, δ2, δA, δB > 0 there isδ4 as given by(5.26)such that

−ζ21 (ẑ1,M) ≤ − βθ2

(1 + δ4)
ζ21 (ẑ1, T1)−

(1− β)θ2

(1 + δ4)
|||ẑ − ẑ1|||2

+

(

θ2

(1 + δA)(1 + δ2)δB
+

1

δA

)

Θ2K2
ZC

2
∗h

2(1+s)
0

(1 + δ1)
|||u− u1|||2

+

(

θ2

(1 + δ1)(1 + δA)δ2
+

1

δ 1

)

Λ1η
2
0(D, T0)|||ẑ1 − ẑ11 |||2. (5.21)

Proof. From Corollary 5.8,L2-lifting 4.1 and coercivity (2.12)

−ζ21 (ẑ1,M) ≤ −(1 + δ1)
−1(1 + δA)

−1ζ21,1(ẑ
1
1 ,M)

+ (1 + δ1)
−1δ−1

A Θ2K2
Zh

2
0‖u− u1‖2L2

+ δ−1
1 Λ̄2

1(d+ 2)η20‖ẑ1 − ẑ11‖2H1

≤ −(1 + δ1)
−1(1 + δA)

−1ζ21,1(ẑ
1
1 ,M)

+ (1 + δ1)
−1δ−1

A Θ2K2
ZC

2
∗h

2(1+s)
0 |||u− u1|||2 + δ−1

1 Λ1η
2
0|||ẑ1 − ẑ11 |||2

(5.22)

with Λ1 := Λ̄2
1(d + 2)m−2

E . The Dörfler property may be applied to the first term on the
RHS of (5.22)

− ζ21,1(ẑ
1
1 ,M) ≤ −θ2ζ21,1(ẑ

1
1). (5.23)

Converting back to he limiting estimator by (5.19) of Corollary 5.8

−ζ21,1(ẑ
1
1) ≤ −(1 + δ2)

−1(1 + δB)
−1ζ21 (ẑ1,M)

+ (1 + δ2)
−1δ−1

B Θ2K2
ZC

2
∗h

2(1+s)
0 |||u− u1|||2 + δ−1

2 Λ1η
2
0|||ẑ1 − ẑ11 |||2. (5.24)

Defineδ4 by
(1 + δ4) := (1 + δ1)(1 + δ2)(1 + δA)(1 + δB). (5.25)

Then by (5.22), (5.23) and (5.24)

−ζ21 (ẑ1,M) ≤ −θ2(1 + δ4)
−1ζ21(ẑ1)

+
(

θ2(1 + δA)
−1(1 + δ2)

−1δ−1
B + δ−1

A

)

(1 + δ1)
−1Θ2K2

ZC
2
∗h

2(1+s)
0 |||u− u1|||2

+
(

θ2(1 + δ1)
−1(1 + δA)

−1δ−1
2 + δ−1

1

)

Λ1η
2
0|||ẑ1 − ẑ11 |||2. (5.26)
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Finally, for β ∈ (0, 1) split the first term in (5.26) into two pieces, applying the upper-
bound estimate from Lemma 4.5 to the second piece yielding

−ζ21 (ẑ1,M) ≤ −βθ2(1 + δ4)
−1ζ21 (ẑ1)− (1− β)θ2(1 + δ4)

−1C−2
1 |||ẑ − ẑ1|||2

+
(

θ2(1 + δA)
−1(1 + δ2)

−1δ−1
B + δ−1

A

)

(1 + δ1)
−1Θ2K2

ZC
2
∗h

2(1+s)
0 |||u− u1|||2

+
(

θ2(1 + δ1)
−1(1 + δA)

−1δ−1
2 + δ−1

1

)

Λ1η
2
0|||ẑ1 − ẑ11 |||2. (5.27)

�

Lemma 5.10 (Bounding the error in the discrete problem). Let the problem data satisfy
Assumption 2.1 and Assumption 2.3 and the mesh satisfy Assumption 2.2. LetΘ andKZ

the constants given in Proposition 2.4 andC∗ andĈ∗ the constants given by Lemmas 4.1
and 5.2, respectively. Let

u the solution to(1.2), u1 the solution to(2.19),

ẑ1 the solution to(2.21), ẑ11 the solution to(2.20).

Then
|||ẑ1 − ẑ11 ||| ≤ ΘKZC∗Ĉ∗h

2s
0 |||u− u1|||. (5.28)

Proof. Recall that

ẑ1 solvesa(ẑ1, v) + 〈b′(u)ẑ1, v〉 = g(v), for all v ∈ V1 (5.29)

ẑ11 solvesa(ẑ11 , v) + 〈b′(u1)ẑ
1
1 , v〉 = g(v), for all v ∈ V1. (5.30)

Subtracting (5.30) from (5.29) and rearranging terms

a(ẑ1 − ẑ11 , v) + 〈(b′(u)− b′(u1))ẑ1, v〉 = 〈b′(u1)(ẑ
1
1 − ẑ1), v〉, v ∈ V1. (5.31)

In particular, forv = ẑ1 − ẑ11 ∈ V1 equation (5.31) yields

|||ẑ1 − ẑ11 |||2 = −〈(b′(u)− b′(u1))ẑ1, ẑ1 − ẑ11〉 − 〈b′(u1)(ẑ1 − ẑ11), ẑ1 − ẑ11〉
≤ −〈(b′(u)− b′(u1))ẑ1, ẑ1 − ẑ11〉 (5.32)

where the last line in (5.32) follows from the assumption that b is an increasing function
hence〈b′(u1)(ẑ1 − ẑ11), ẑ1 − ẑ11〉 ≥ 0. Then applying the Lipschitz property ofb′, the
a priori bound on the dual solution̂z1 and both primal and dualL2 lifting we have
from (5.32)

|||ẑ1 − ẑ11 |||2 ≤ ΘKZ‖u− u1‖L2
‖ẑ1 − ẑ11‖L2

≤ ΘKZC∗Ĉ∗h
2s
0 |||u− u1||||||ẑ1 − ẑ11 ||| (5.33)

from which the result follows. �

The contraction of the combined quasi-error is driven by thedual-sequence estimator
reduction and quasi-orthogonality estimates. As the former is coupled to the primal error,
the end result is a reduction in a linear combination of the energy errors in primal and
limiting dual problems and error estimators of the primal problem and approximate dual
sequence. As seen by the bound on the error in the goal function Theorem 5.12, the
contraction of the combined quasi-error determines the contraction in the error of the
quantity of interest.

Theorem 5.11 (Contraction of the combined quasi-error). Let the problem data satisfy
Assumption 2.1 and Assumption 2.3 and the mesh satisfy Assumption 2.2. Let

u the solution to(1.2), uj the solution to(2.19),

ẑ the solution to(2.5), ẑj the solution to(2.21).
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Let θ ∈ (0, 1], and let{Tj,Vj}j≥0 be the sequence of meshes and finite element spaces
produced by GOAFEM. Letγp > 0 as given by Theorem 4.8. Then there exist constants
γ > 0, π > 0 and0 < αD < 1, depending on the initial meshT0 and marking parameter
θ such that

|||ẑ − ẑ2|||2 + γζ22(ẑ2) + π|||u− u2|||2 + πγpη
2
2(u2)

≤ α2
D

(

|||ẑ − ẑ1|||2 + γζ21(ẑ1) + π|||u− u1|||2 + πγpη
2
1(u1)

)

. (5.34)

Proof. Let
η0 = η0(D, T0) andζk(ẑk) = ζk(ẑk, Tk), k = 1, 2.

Start with estimator reduction for the limiting dual problem as in equation (4.35). For
arbitraryδ > 0

ζ22(ẑ2) ≤(1 + δ)
{

ζ21 (ẑ1)− λζ21 (ẑ1,M)
}

+ (1 + δ−1)Λ1η
2
0|||ẑ2 − ẑ1|||2. (5.35)

Recall the quasi-orthogonality estimate in the limiting dual problem from Lemma 5.4

|||ẑ − ẑ2|||2 ≤ Λ̂G|||ẑ − ẑ1|||2 − |||ẑ2 − ẑ1|||2. (5.36)

Adding (5.36) to a positive multipleγ (to be determined) of (5.35) and applying the
results of Lemmas 5.9 and 5.10 obtain

|||ẑ − ẑ2|||2 + γζ22(ẑ2) ≤ A|||ẑ − ẑ1|||2 + γBζ21 (ẑ1) +D|||u− u1|||2

+
(

γ(1 + δ−1)Λ1η
2
0 − 1

)

|||ẑ2 − ẑ1|||2. (5.37)

Setγ to eliminate the last term in (5.37)

γ := (1 + δ−1)−1Λ−1
1 η−2

0 . (5.38)

Then the coefficientsA andB of (5.36) are given by

A = Λ̂G − (1− β)λθ2δ(1 + δ4)
−1C−2

1 Λ−1
1 η−2

0 (5.39)

B = (1 + δ)(1− βλθ2(1 + δ4)
−1) (5.40)

where as given in (5.25)

(1 + δ4) := (1 + δ1)(1 + δ2)(1 + δA)(1 + δB).

For the coefficients as defined by (5.39) and (5.40), requiringA < 1 andB < 1 yields
the inequality

δ

1 + δ

1 + δ4
λθ2

< β < 1− (Λ̂G − 1)ΛC

δ

1 + δ4
λθ2

. (5.41)

To demonstrate that parametersδ, δ4 > 0 may be chosen to satisfy (5.41) withβ ∈ (0, 1)
set

δ4 = δ = bλθ2 for someb < 1. (5.42)

Require the mesh condition

(Λ̂G − 1)ΛC = aλθ2 for somea < 1 with ΛC := C2
1Λ1η

2
0 (5.43)

for a givenθ ∈ (0, 1). Then using (5.42) and (5.43) in (5.41) yields

b < β < 1− a

(

1 +
1

bλθ2

)

(5.44)

which may be satisfied withβ ∈ (0, 1) for n sufficiently small. The condition (5.43) with
a as required by (5.44) is feasible as the the dual quasi-orthogonality constant̂ΛG may
be driven arbitrarily close to unity by a sufficiently fine initial mesh.
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Consider the coefficientD of (5.37). As we have conditions on the combined param-
eterδ4, assumeδ1 = δ2 = δA = δB =: δC . Then

D = δλΘ2K2
ZC

2
∗h

2s
0

(

θ2 + (1 + δC)
2

(1 + δC)2δC

)(

h2
0

Λ1η20
+ Ĉ2

∗h
2s
0

)

. (5.45)

To control the primal error term with the coefficientD as given by (5.45), add a posi-
tive multipleπ (to be determined) of the primal contraction result (4.36) of Theorem 4.8
to (5.39) yieding

|||ẑ − ẑ2|||2 + γζ22(ẑ2) + π|||u− u2|||2 + πγpη
2
2(u2)

≤ A|||ẑ − ẑ1|||2 + γBζ21 (ẑ1) + (D + α2π)|||u− u1|||2 + α2πγPη
2
1(u1). (5.46)

Chooseπ to ensureD + α2π < π

π >
D

1− α2
(5.47)

and set

αD := max

{

A,B,
D + α2π

π
, α2

}

< 1. (5.48)

Then the combined quasi-error satisfies the contraction property

|||ẑ − ẑ2|||2 + γζ22(ẑ2) + π|||u− u2|||2 + πγpη
2
2(u2)

≤ α2
D

(

|||ẑ − ẑ1|||2 + γζ21(ẑ1) + π|||u− u1|||2 + πγpη
2
1(u1)

)

. (5.49)

�

Corollary 5.12 (Bounding the error in the goal function). Let the problem data satisfy
Assumption 2.1 and Assumption 2.3 and the mesh satisfy Assumption 2.2. LetB,Θ andKZ

the constants given in Proposition 2.4 andC∗ andĈ∗ the constants given by Lemmas 4.1
and 5.2, respectively. LetαD ∈ (0, 1) as given by Theorem 5.11. Let

u the solution to(1.2), uj the solution to(2.19),

ẑ the solution to(2.5), ẑj the solution to(2.21).

Then the error in the goal function is controlled by a constant multiple of the square of
the combined quasi-error, and

|g(u)− g(uj)| ≤ CQ̄2
j(uj, ẑj) ≤ α2j

DCQ̄2
0(u0, ẑ0). (5.50)

Proof. Choosing the test functionv = u − uj in (2.5), and by linearity and Galerkin
orthogonality for the primal problem

g(u)− g(uj) = a(ẑ, u) + 〈b′(u)ẑ, u〉 − a(ẑ, uj)− 〈b′(u)ẑ, uj〉
= a(u− uj, ẑ) + 〈b′(u)(u− uj), ẑ〉
= a(u− uj, ẑ) + 〈Bj(u− uj), ẑ〉+ 〈(b′(u)− Bj)(u− uj), ẑ〉
= a(u− uj, ẑ − ẑj) + 〈b(u)− b(uj), ẑ − ẑj〉+ 〈(b′(u)− Bj)(u− uj), ẑ〉.

(5.51)

The third term in the last line of (5.51) represents the errorinduced by switching from
the limiting to the linearized dual problem as required to make use of property (2.2). This
term may be bounded in terms of the constants andL∞ estimates in Proposition 2.4 and

‖b′(u)− Bj‖ =

∥

∥

∥

∥

∫ 1

0

b′(u)− b′ (uj + ξ(u− uj)) dξ

∥

∥

∥

∥

≤ Θ

2
‖u− uj‖,
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yielding

〈(b′(u)− Bj)(u− uj), ẑ〉 ≤ KZ‖b′(u)− Bj‖L2
‖u− uj‖L2

≤ 1

2
ΘKZ‖u− uj‖2L2

. (5.52)

Then by (5.51), (5.52), the Cauchy-Schwarz inequality andL2-lifting as in Lemmas 4.1
and 5.2

|g(u)− g(uj)| ≤ |||u− uj||||||ẑ − ẑj |||+B‖u− uj‖L2
‖ẑ − ẑj‖L2

+
1

2
ΘKZ‖u− uj‖2L2

≤ (1 +BC∗Ĉ∗h
2s
0 )|||u− uj||||||ẑ − ẑj |||+

1

2
ΘKZC

2
∗h

2s
0 |||u− uj|||2

≤ 1

2

(

1 + (ΘKZC∗ +BĈ∗)C∗h
2s
0

)

|||u− uj |||2

+
1

2
(1 +BC∗Ĉ∗h

2s
0 )|||ẑ − ẑj |||2. (5.53)

Comparing (5.53) to the (5.49), the error in the goal function is bounded below a
constant multiple of the combined quasi-error

Q̄(uj, ẑj) = |||ẑ − ẑj |||2 + γζ2j (ẑj) + π|||u− uj|||2 + πγpη
2
j (uj)

which is shown to contract at each iteration of the algorithm, from which (5.50) follows.
�

6. CONCLUSION

In this article we developed convergence theory for a class of goal-oriented adaptive
finite element algorithms for second order semilinear elliptic equations. We first intro-
duced several approximate dual problems, and briefly discussed the target problem class.
We then reviewed some standard facts concerning conformingfinite element discretiza-
tion and error-estimate-driven adaptive finite element methods (AFEM). We included a
brief summary ofa priori estimates for semilinear problems, and then described goal-
oriented variations of the standard approach to AFEM (GOAFEM). Following the re-
cent work of Mommer-Stevenson and Holst-Pollock for linearproblems, we established
contraction of GOAFEM for the primal problem. We also developed some additional
estimates that make it possible to establish contraction ofthe combined quasi-error, and
showed convergence in the sense of the quantity of interest.Our analysis was based on
the recent contraction frameworks for the semilinear problem developed by Holst, Tsogt-
gerel, and Zhu and Bank, Holst, Szypowski and Zhu and those for linear problems as in
Cascon, Kreuzer, Nochetto and Siebert, and Nochetto, Siebert, and Veeser. In addressing
the goal-oriented problem we based our approach on that of Mommer and Stevenson for
symmetric linear problems and Holst and Pollock for nonsymmetric problems. How-
ever, unlike the linear case, we were faced with tracking linearized and approximate dual
sequences in order to establish contraction with respect tothe quantity of interest.
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