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Abstract In this paper we present a finite element discretization of the Joule-heating
problem. We prove existence of solution to the discrete formulation and strong con-
vergence of the finite element solution to the weak solution, up to a sub-sequence.
We also present numerical examples in three spatial dimensions. The first example
demonstrates the convergence of the method in the second example we consider an
engineering application.
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1 Introduction

In this paper we study the stationary Joule heating problem,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (σ (u)∇φ) = f in �,

φ = 0 on ∂�,

−�u = σ(u)|∇φ|2 in �,

u = 0 on ∂�,

(1.1)

where � ⊂ R3 and σ is a bounded positive function. The system models interaction
between temperature u and electric potential φ in a device. The minimal assumption
to get a finite energy solution in the potential equation, i.e. φ ∈ H 1

0 (�), given a fixed
σ(u), is f ∈ H−1(�). However, if we only have finite energy in the potential equa-
tion, which is the most common in the literature see e.g. [4, 8], then the right hand
side of the heat equation will reside L1(�). In three spatial dimensions this does not
lead to finite energy solutions i.e. u /∈ H 1

0 (�).
In the recent work [3] it is shown, under the additional assumption that φ is

bounded, that in fact the temperature has finite energy. The proof is based on the
following identity

σ(u)|∇φ|2 = f φ + ∇ · (φσ(u)∇φ), (1.2)

which holds in the sense of distribution, and the assumptions f ∈ L∞(�), σ(u) ∈
L∞(�), and that the domain is Lipschitz, see Lemma 2.3 below. We will use the
alternative right hand side (1.2) together with standard continuous piecewise lin-
ear finite elements to construct the finite element approximation. The main result
of this paper is a proof of strong convergence of the finite element approximation
in H 1

0 (�) × H 1
0 (�), up to a sub-sequence, under the additional assumption that the

discretization preserves the max norm bound in the approximation of φ. We also
construct and implement a family of meshes in three spatial dimension for which the
discrete maximum principle for the potential equation holds. This has not been done
before for the Joule heating problem. Note that under these assumptions on the con-
tinuous problem an exact solution (φ,u) is only in H 1

0 (�) ∩ L∞(�) × H 1
0 (�) and

thus the result presented here is significantly different from standard a priori error
analysis of finite element methods which typically relies on stronger regularity of the
exact solution. For results of similar type we refer to [4, 5] where numerical methods
for problems with L1(�) data are presented. Here less regularity is assumed in the
trail space but instead the test functions are assumed to be continuous. We present two
numerical examples in three spatial dimensions. First we consider a model problem
and study convergence and then we apply the method to a more realistic engineering
application, Joule heating in a MEMS (Micro Electro Mechanical System) device.
For more information on the Joule heating problem and in particular the time depen-
dent version of the problem see [2, 7].

The reminder of the paper is organized as follows. In Sect. 2 we present the con-
tinuous problem and prove existence of solution. In Sect. 3 we present the discrete
problem and prove existence of solution. In Sect. 4 we prove convergence of the
discrete approximation to the weak solution and, finally, in Sect. 5 we present the
numerical examples.
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2 The continuous problem

Before we give a more precise definition of the continuous problems we need to
introduce some notation.

2.1 Preliminaries

We let � ⊂ R3 be a domain with Lipschitz boundary ∂�. We denote by Lp(�),
for 1 ≤ p < ∞ the set of functions satisfying

∫

�
|f |p dx < ∞ and we let L∞(�)

denote the set of functions that are bounded almost everywhere in �. Further we
let H 1(�) denote the space of functions that are in L2(�) and that has gradients
in L2(�)3. We note that L2(�) and H 1(�) are Hilbert spaces and we introduce
the following notation for the inner product in L2(�), (v,w) = ∫

�
vw dx. Since we

consider Dirichlet boundary conditions in this work it is natural to introduce the space
H 1

0 (�) = {v ∈ H 1(�) : tr(v) = 0}, where tr(v) denotes the trace of the function v on
the boundary ∂�. We let H−1(�) denote the dual space of H 1

0 (�) and extend the
definition of (v,w) to also cover the dual pairing between H 1

0 (�) and H−1(�). For
an extensive overview of these spaces we refer to [1]. Throughout this paper constants
independent of the mesh size will be denoted C. Sometimes Ci will be used to denote
a specific constant that is used several times in the paper.

2.2 Problem formulation

We first collect all assumptions on the data and the domain,

(A1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f ∈ L∞(�),

0 < α ≤ σ(u) ≤ β, where α,β ∈ R+,

σ (u) is continuous in u,

� ⊂ R3, ∂� Lipschitz boundary.

(2.1)

From now on we refer to this collection of assumptions as assumption (A1). We
multiply both equations in (1.1) by test functions v,w ∈ H 1

0 (�), and use Green’s
formula to get the following weak form, find (φ,u) ∈ H 1

0 (�) × H 1
0 (�) such that

(σ (u)∇φ,∇v) = (f, v), for all v ∈ H 1
0 (�), (2.2)

(∇u,∇w) = (σ (u)|∇φ|2,w), for all w ∈ H 1
0 (�). (2.3)

Here the term (σ (u)|∇φ|2,w) only makes sense if σ(u)|∇φ|2w ∈ L1(�). This re-
sult is not obvious but it was proven in Lemma 6.1 in [4] using the fact that
σ(u)|∇φ|2 ≥ 0. This means that, using (1.2),

(σ (u)|∇φ|2,w) = (f φ,w) + (∇ · (φσ(u)∇φ),w), for all w ∈ H 1
0 (�). (2.4)

We will use this equality to reformulate (2.3) below. We will also show that given
u ∈ L2(�) it holds that φ ∈ H 1

0 (�) ∩ L∞(�), in (2.2), using the Lax-Milgram theo-
rem and a max norm estimate. The following Lemma guarantees that (2.3) rewritten
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using (2.4) is well posed if u ∈ L2(�) and φ ∈ H 1
0 (�) ∩ L∞(�) in the right hand

side are given.

Lemma 2.1 Given u ∈ L2(�), f ∈ L∞(�), and φ ∈ H 1
0 (�) ∩ L∞(�) consider,

{
−�ū = f φ + ∇ · (φσ(u)∇φ) in �,

ū = 0 on ∂�,
(2.5)

where ∂� is a Lipschitz domain. There exist a unique solution to (2.5) and the fol-
lowing bound holds,

‖ū‖H 1(�) ≤ C‖f ‖L∞(�)‖φ‖L∞(�) + C‖φ‖L∞(�)‖σ(u)‖L∞(�)‖∇φ‖L2(�) ≤ C1,

(2.6)

where C depends on the computational domain � but is independent of the solution
ū and the data f,φ,u, and σ .

Proof The first term in the right hand side of (2.5) does not lead to any problems.
Theorem 1.5 in [13] can be applied on the second term in the right hand side, since
φσ(u)∇φ ∈ L2(�). The Lemma finally follows by using the Poincare-Friedrich in-
equality. �

We use (2.4) to rewrite (2.2) and (2.3) to the equivalent form: find (φ,u) ∈
H 1

0 (�) ∩ L∞(�) × H 1
0 (�) such that,

(σ (u)∇φ,∇v) = (f, v), for all v ∈ H 1
0 (�), (2.7)

(∇u,∇w) = (f φ + ∇ · (φσ(u)∇φ),w), for all w ∈ H 1
0 (�). (2.8)

If φ ∈ H 1
0 (�) ∩ L∞(�) and u ∈ L2(�) are given in the right hand side of (2.8),

Lemma 2.1 guarantees that there exist a solution u ∈ H 1
0 (�). We are going to use this

result then constructing a fixed point iteration. We can rewrite the right hand side in
(2.8) once again by using Green’s formula and that tr(w) = 0 we get,

(σ (u)∇φ,∇v) = (f, v), for all v ∈ H 1
0 (�), (2.9)

(∇u,∇w) = (f φ,w) − (φσ(u)∇φ,∇w), for all w ∈ H 1
0 (�). (2.10)

We are now ready to prove existence results for the weak form, (2.9) and (2.10).

2.3 Preliminary result for the potential equation

We fix u ∈ L2(�) and consider the problem, find φ ∈ H 1
0 (�) such that,

(σ (u)∇φ,∇v) = (f, v), for all v ∈ H 1
0 (�). (2.11)
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The existence of a unique solution φ to this problem given u follows immediately by
using Lax-Milgram’s theorem. We also get the standard bound,

‖φ‖H 1(�) ≤ C‖f ‖H−1(�) ≤ C‖f ‖L∞(�), (2.12)

where C depends on α and �. Furthermore, it can be proven that the solution φ is
bounded.

Lemma 2.2 The solution to (2.11) is bounded almost everywhere, i.e. φ ∈ L∞(�)

and furthermore ‖φ‖L∞(�) ≤ C‖f ‖L∞(�), where C is independent of u.

Proof See e.g. [12]. �

2.4 Preliminary results for the temperature equation

Given any φ ∈ H 1
0 (�) ∩ L∞(�) and u ∈ L2(�) we state the following weak form,

find ū ∈ H 1
0 (�) such that,

(∇ū,∇w) = (f φ,w) − (φσ(u)∇φ,∇w), for all w ∈ H 1
0 (�). (2.13)

In the light of equation Lemma 2.1 we immediately get existence of unique solution
to (2.13) such that ‖ū‖H 1(�) ≤ C1.

2.5 Existence of solution to the continuous problem

Together (2.11) and (2.13) defines a map T̃ : L2(�) → H 1
0 (�) i.e. ū = T̃ u. Since

H 1
0 (�) is compactly imbedded in L2(�) there is a compact imbedding operator E :

H 1
0 (�) → L2(�) that identifies an element in H 1

0 (�) with its corresponding element
in L2(�). We define the map T = E ◦ T̃ : L2(�) → L2(�). If we can prove that T

has a fix point there will at least exist one solution to (2.9) and (2.10) and therefore
at least one weak solution to (1.1).

Lemma 2.3 Under the assumption (A1) there exist a weak solution to (1.1) such that
φ ∈ H 1

0 (�) ∩ L∞(�) and u ∈ H 1
0 (�).

Proof This Lemma is proven in [3], see Lemma 2.1. Below we give a variation of the
proof for completeness.

Since we have a bound of ū = T̃ u in H 1
0 (�) independent of u and φ we have a

map T̃ which is bounded. Furthermore, we have that T maps a convex set S = {v ∈
L2(�) : ‖v‖L2(�) ≤ C1} into itself. If we can show that T is continuous and compact
we can apply Schauder’s fixed point theorem to guarantee existence of solution. We
have that T = E ◦ T̃ , T̃ is bounded and E is compact which means that E ◦ T̃ maps
bounded sets into pre-compact sets. It remains to prove that T is continuous.



786 M.J. Holst et al.

We assume that we have a sequence un → u strongly in S. This means that the
corresponding sequence φn → η weakly in H 1

0 (�), for some η ∈ H 1
0 (�), since it is

bounded by (2.12). Since σ is continuous in u, we get σ(un) → σ(u) a.e. in �. By
the Dominated Convergence Theorem σ(un)∇v → σ(u)∇v strongly in L2(�) i.e.

(f, v) = (σ (un)∇φn,∇v) → (σ (u)∇η,∇v), for all v ∈ H 1
0 (�). (2.14)

Since the solution to (2.11) is unique we conclude φn → φ weakly in H 1
0 (�)

which means that there is a sub-sequence still denoted φn which converges strongly
in L2(�) and almost everywhere. For this sub-sequence (σ (un)φn∇φn,∇w) →
(σ (u)φ∇φ,∇w) for all w ∈ H 1

0 (�). Since φn → φ in L2(�) we also have
(f φn,w) → (f φ,w) for all w ∈ H 1

0 (�). Together we have,

(f φn,w) − (φnσ (un)∇φn,∇w) → (f φ,w) − (φσ(u)∇φ,∇w),

for all w ∈ H 1
0 (�). (2.15)

On the other hand we know that the sequence ūn associated with un and φn is
bounded in H 1

0 (�) i.e. ūn → y weakly in H 1
0 (�) to some y ∈ H 1

0 (�) i.e.,

(∇ūn,∇w) → (∇y,∇w), for all w ∈ H 1
0 (�). (2.16)

Since ū is the unique solution to (2.13) we conclude, by combining (2.15) and
(2.16), that y = ū i.e., ūn → ū weakly in H 1

0 (�). Since for any sub-sequence un,
T̃ un = ūn has a convergent sub-sequence we conclude that T̃ un → T u for the entire
sequence un. Since T̃ maps into H 1

0 (�) which is compactly imbedded in L2(�) we
have that T un → T u strongly in L2(�) and therefore in S because of the a priori
bound on T u. This means that T is a continuous map from S into itself. �

3 Discretization

We are now going to discretize the weak forms (2.9) and (2.10). We start by in-
troducing some notations. We let Kh = {K} be a set of disjoint elements such
that ∪K = �. We let hK denote the diameter of element K and we further let
h = maxK∈Kh

hK ∈ R+ be the mesh size. We let Vh ⊂ H 1
0 (�) be the set of piecewise

linear basis functions on the mesh Kh. We also introduce a nodal interpolation oper-
ator πh : C0(�) → Vh, where C0(�) is the set of continuous functions on � that ful-
fills homogeneous Dirichlet boundary conditions. Note that ‖πhv‖L∞(�) ≤ ‖v‖L∞(�)

for all v ∈ C0(�).
In order to establish L∞(�) bounds on the discrete approximation of φ that are

independent of the mesh size, we need to make further assumptions on the mesh Kh.
We use the definition presented in [6]. We let {ϕi}i∈N be the piecewise linear con-
tinuous basis functions which spans Vh. Furthermore we let A be the stiffness matrix
with entries ai,j = (σ (uh)∇ϕi,∇ϕj ). We say that two nodes i and j are adjacent
if there is an edge ei,j connecting them. We assume the off-diagonal terms in ai,j ,
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corresponding to adjacent nodes i and j , satisfies,

(A2) ai,j ≤ − ρ

h2

∑

ei,j ⊂K

|K|, with ρ > 0, (3.1)

where we sum over elements K which shares the adjacent edge ei,j . Such meshes can
be constructed in three dimensions. We give an example from [6] in the numerical
section below.

In the convergence proofs we are going to work with families of finite element
meshes that approximates H 1

0 (�). Each member of such a family {Vh} will be as-
sociated with a mesh Kh fulfilling assumption (A2). Each member will also have a
corresponding mesh size h. The elements in the family will be richer and richer in
the sense that h will decrease monotonically.

3.1 The finite element method

The finite element method now reads, find φh ∈ Vh and uh ∈ Vh such that,

(σ (uh)∇φh,∇v) = (f, v), for all v ∈ Vh, (3.2)

(∇uh,∇w) = (f φh,w) − (φhσ (uh)∇φh,∇w), for all w ∈ Vh. (3.3)

We are going to prove existence of solution to this system using Brouwder’s fixed
point theorem. First we need to show that φh is bounded independently of h under
the additional conditions on the meshes Kh, (A2).

3.2 Max norm estimate of the discrete potential

When solving non-linear problems numerically it is often crucial to have a max norm
estimate of the numerical solution. We state the following lemma.

Lemma 3.1 Under assumption (A2) the finite element approximation that solves
(3.2) for any given uh ∈ Vh is bounded independently of the mesh size h, i.e.
‖φh‖L∞(�) ≤ C, where C is independent of h.

Proof See Sect. 6.2 in [6]. �

3.3 Existence of discrete solution

As mentioned above the proof will be based on Brouwder’s fixed point theorem.

Theorem 3.1 Under the assumptions (A1) and (A2) there exists at least one solution
(φh,uh) ∈ Vh × Vh to (3.2) and (3.3).

Proof We construct a fixed point map ūh = Thuh, in analogy with the continuous
case, given uh ∈ Vh let, φh ∈ Vh solve,

(σ (uh)∇φh,∇v) = (f, v), for all v ∈ Vh. (3.4)



788 M.J. Holst et al.

Then we let ūh ∈ Vh solve,

(∇ūh,∇w) = (f φh,w) − (φhσ (uh)∇φh,∇w), for all w ∈ Vh. (3.5)

Both these problems have unique solutions due to the Lax-Milgram and furthermore
‖ūh‖H 1

0 (�) ≤ C, where C is depends on � but is independent of h and the right hand
side of (3.5), thanks to the max norm estimate in Lemma 3.1. This means that Th :
uh → ūh maps uh into a closed ball. We repeat the arguments in the last paragraph
of the proof of Lemma 2.3 and conclude that Th is continuous and therefore we can
apply Brouwder’s fixed point theorem which implies the existence of a solution to
the discrete system (3.2) and (3.3). �

We have thus proven the existence of a continuous solution pair [φ,u] to the sys-
tem (2.9)–(2.10) and discrete solutions [φh,uh] to the system (3.2)–(3.3). The next
step is to show that the discrete solutions converge to a continuous solution as the
mesh size h → 0.

4 Convergence of finite element solution

In this section we prove that the numerical solution [φh,uh] converges to a weak
solution [φ,u] as h → 0.

Theorem 4.1 Assume assumptions (A1) holds. Let {Vh} be a sequence of finite ele-
ment spaces fulfilling assumption (A2) with corresponding mesh sizes {h}, that de-
crease monotonically, and discrete solutions {[φh,uh]}. There exists a sub-sequence
still denoted {[φh,uh]} that converges to the weak solution in the following sense,

φh → φ in H 1
0 (�) ∩ L∞(�) as h → 0, (4.1)

uh → u in H 1
0 (�) as h → 0. (4.2)

Proof The first part of the proof of this theorem follows ideas from the proof of The-
orem 4.2 in [4]. We let C∞

0 (�) denote all smooth functions that fulfill homogeneous
Dirichlet boundary conditions. For any function v ∈ C∞

0 (�) we have that πhv ∈ Vh.
This means that,

(σ (uh)∇φh,∇πhv) = (f,πhv), for all v ∈ C∞
0 (�), (4.3)

(∇uh,∇πhw) = (f φh,πhw) − (φhσ (uh)∇φh,∇πhw),

for all w ∈ C∞
0 (�). (4.4)

The finite element solution proved to exist satisfies (4.3) and (4.4) and moreover
‖φh‖H 1

0 (�) ≤ C, ‖φh‖L∞(�) ≤ C, and ‖uh‖H 1
0 (�) ≤ C. This means that a sub-

sequence, still denoted φh, converges φh → η weakly in H 1
0 (�), for some η ∈ H 1

0 (�)

and also that a sub-sequence, still denoted, uh → y weakly in H 1
0 (�), for some

y ∈ H 1
0 (�), as h → 0. We also have πhv → v and πhw → w in W 1,∞(�) as
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h → 0, for all v,w ∈ C∞
0 (�). The Dominated Convergence Theorem gives that

σ(uh)∇πhv → σ(y)∇v up to a sub-sequence in L2(�). We conclude,

(σ (y)∇η,∇v) = (f, v), for all v ∈ C∞
0 (�). (4.5)

Since C∞
0 (�) is dense in H 1

0 (�) we have,

(σ (y)∇η,∇v) = (f, v), for all v ∈ H 1
0 (�). (4.6)

We have thus showed that the limit to which a sub-sequence φh → η weakly in
H 1

0 (�) solves an equation of the same type as (2.9). Next we show that the sub-
sequence also converges strongly. For the weakly convergent sub-sequence φh we
have,

α‖∇(η − φh)‖2
L2(�)

≤ (σ (uh)∇(η − φh),∇(η − φh)) (4.7)

= (σ (uh)∇φh,∇φh) − 2(σ (uh)∇η,∇φh)

+ (σ (uh)∇η∇η) (4.8)

= I + II + III. (4.9)

Since [φh,uh] fulfills (3.2) we immediately have I = (f,φh) → (f, η) =
(σ (y)∇η,∇η) as h → 0. Since φh → η weakly in H 1

0 (�) and for a sub-sequence
σ(uh)∇φh → σ(η)∇y in L2(�) by the Dominated Convergence Theorem II →
−2(σ (u)∇η,∇η). Finally, III → (σ (y)∇η,∇η) i.e. ‖∇(φh − η)‖L2(�) → 0 as
h → 0. We apply the Poincare-Friedrich inequality to conclude that there is a sub-
sequence φh → η strongly in H 1

0 (�).
Next we turn to the second (4.4). Since a sub-sequence φh → η strongly in H 1

0 (�)

there is a sub-sequence of this sequence that converges almost everywhere. For this
sub-sequence still denoted φh the right hand side of (4.4) converges in the following
sense,

(f φh,πhw) − (φhσ (uh)∇φh,∇πhw) → (f η,w) − (ησ (y)∇η,∇w),

for all w ∈ H 1
0 (�). (4.10)

The first part is true since φh → η strongly in L2(�), πhw → w strongly in
L2(�), and f ∈ L∞(�). The second part is true since φh → η almost everywhere
and strongly in H 1

0 (�) and σ(uh)∇πhw → σ(y)∇w in L2(�). Since uh → y

weakly in H 1
0 (�) we immediately have that the left hand side of (4.4) converges,

(∇uh,∇πhw) → (∇y,∇w). This means that,

(∇y,∇w) = (f η,w) − (ησ (y)∇η,∇w), for all w ∈ H 1
0 (�), (4.11)

i.e. (η, y) solves the system (2.9) and (2.10) which means that a sub-sequence of
φh → φ strongly in H 1

0 (�) and uh → u weakly in H 1
0 (�), where (φ,u) is a solution

to (2.9) and (2.10).
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Finally, we prove that a sub-sequence uh → u strongly in H 1
0 (�). We start with

‖∇(u − uh)‖2
L2(�)

,

‖∇(u − uh)‖2
L2(�)

= ‖∇u‖2
L2(�)

− 2(∇u,∇uh) + (∇uh,∇uh) (4.12)

= ‖∇u‖2
L2(�)

− 2(∇u,∇uh) + (f φh,uh)

− (φhσ (uh)∇φh,∇uh) (4.13)

= I + II + III + IV. (4.14)

Since uh → u weakly in H 1
0 (�) we immediately have I + II → −‖∇u‖2

L2(�)
.

Since φh → φ strongly in L2(�), uh → u weakly in L2(�), and f ∈ L∞(�),
III → (f φ,u). Since uh → u weakly in H 1

0 (�) there is a sub-sequence still denote
uh such that uh → u almost everywhere. Since ∇φh → ∇φ in L2(�) and σ(uh)

is bounded and depends on uh continuously, the dominated convergence theorem
gives us σ(uh)∇φh → σ(u)∇φ in L2(�). We also have φh → φ almost everywhere
and uh → u weakly in H 1

0 (�) i.e. IV → −(φσ(u)∇φ∇u) and therefore III + IV →
(f φ,u) − (φσ(u)∇φ∇u) = (∇u,∇u) which means that I + II + III + IV → 0 as
h → 0. Again we use the Poincare-Friedrich inequality to conclude that uh → u

strongly in H 1
0 (�) up to a sub-sequence. �

Remark 4.1 Under the assumptions made in the paper the result presented in Theo-
rem 4.1 is optimal (up to a subsequence). We only assume H 1(�)∩L∞(�)×H 1

0 (�)

regularity and we prove convergence of the numerical method under reasonable as-
sumptions on the mesh and only Lipschitz boundary.

One could make stronger assumptions on the domain and data in order to derive an
error bound. If we assume that there exist a solution such that φ,u ∈ H 2(�)∩H 1

0 (�),
and that the linearization of the problem around the exact solution is Lipschitz con-
tinuous and has bounded inverse, we expect to get h convergence in H 1-norm if the
initial mesh is fine enough, see e.g. Theorem 2.6 in [10]. This can be seen in the first
numerical example in Sect. 5.2, Table 1.

5 Numerical examples

We present two numerical examples. The first one shows that the solution converges
linearly to a reference solution on a convex domain with smooth data. In the second
example we present a more realistic engineering application on a more complicated
geometry.

5.1 Numerical methods

The finite element approximation defined by (3.2) and (3.3) is computed iteratively
according to the following Gauss-Seidel like procedure, starting with u0

h = 0:
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1. Update σ , using recently computed un
h.

2. Solve (3.2) to obtain φn+1
h .

3. Solve (3.3) to obtain un+1
h by evaluation the right hand side in φn+1

h and un
h.

4. Repeat steps 1–3 until ‖un+1
h − un

h‖H 1
0 (�) + ‖φn+1

h − φn
h‖H 1

0 (�) < tol, where tol is
a given parameter specifying the error tolerance.

In the performed numerical examples we use tol = 10−6. Equations (3.2) and (3.3)
are solved individually on a tetrahedral mesh, Kh, using continuous piecewise linear
basis functions.

5.2 Convergence study

We study the convergence in energy norm using a structured tetrahedral mesh as de-
scribed in [6]. The mesh is constructed by dividing the domain into equally sized
cubes, with each cube consisting of five tetrahedrons. As our domain, �, we used the
unit cube in three dimensions. A picture of the mesh, consisting of four cubes in each
coordinate direction is shown in Fig. 1. In order for these meshes to be conforming,
the smaller cubes need to be partitioned into tetrahedrons in two different ways, see
Fig. 2. It can be shown that this construction fulfills assumption (A2) by studying
the local stiffness matrix, see [6] and further [11]. To study the energy norm conver-
gence, a reference solution on a mesh with 128 cubes in each coordinate direction
and compared with solutions computed on meshes with 4, 8, 16, 32, and 64 cubes in
each coordinate direction.

We let f = 10xyze−((x−0.5)2+(y−0.5)2+(z−0.5)2) and σ(u) = 0.05 + 0.15
π

(π
2 +

arctan(u+0.05
0.05 )) and plot the solution in Figs. 3–4 and the convergence in Fig. 5.

Fig. 1 Structured mesh with
4 × 4 cubes/face

Fig. 2 The two different
partitions needed in order to
make the mesh conforming
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Fig. 3 φ (a), u (b), and σ (c) with 8 × 8 cubes/face

Fig. 4 φ (a), u (b), and σ (c) with 64 × 64 cubes/face

Fig. 5 A logarithmic plot of the relative error in energy norm as a function of h

Studying Fig. 5 the convergence rate seems to approach approximately 1 which
is what would be expected on a convex domain with smooth data. The values of the
relative errors in the energy norm can also be found in Table 1.

The numerical values of the entries in the stiffness matrix ai,j = (σ (uh)∇ϕi∇ϕj )

fulfilled assumption (A2).
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Table 1 The relative error in
energy norm of uh and φh as a
function of h

h Relative error in φh Relative error in uh

0.25 0.460 0.413

0.125 0.276 0.350

0.0625 0.164 0.234

0.03125 0.094 0.146

0.015625 0.046 0.073

5.3 Engineering application

In this section we provide solutions obtained on a more complicated geometry. We
have chosen to solve the equations on a MEMS device (Micro Electro Mechanical
System) (see e.g. [9]). This will force us to diverge a little from the main theory of the
paper. We will not construct the mesh so that it fulfills (A2), since this becomes very
technical on a complicated geometry. We will also use more complicated boundary
conditions. We still use the method we have presented in the paper. The theoretical
analysis need to cover the worst case regularity. In real applications the situation is
usually more regular then that. This is why we still expect the method to give good
results.

A picture of the geometry is found in Fig. 6. This particular device is designed to
work as an electrical switch by applying a potential difference between the two pads.
This gives rise to an electrical current and due to the construction of the device, heat
development will be larger in the upper more “narrow” part of the geometry. This will
cause the device to bend, thus making it possible to close an electrical circuit. To fully
simulate this requires the incorporation of the equation for thermal expansion, which
we have not included. The domain has been meshed with a standard tetrahedral mesh
with linear basis functions. The natural boundary conditions to apply to this problem
are mixed boundary conditions. We have used:

φ = 1, y = 0 and z > 0 (5.1)

φ = −1, y = 0 and z < 0 (5.2)

n · ∇φ = 0, y = 0 (5.3)

u = 0, y = 0 (5.4)

n · ∇u = 0, y = 0 (5.5)

These boundary conditions corresponds to a potential difference between the two
pads at (y = 0, z > 0) and (y = 0, z < 0), as well as fixing the temperature at the pads.
The solutions obtained with these boundary conditions, using f = 0 and σ(u) =
0.5 + 1.5

π

(
π
2 + arctan(u−0.25

0.005 )
)

are shown in Fig. 7.

Remark 5.1 As mentioned above, the boundary condition used in the second example
are different from the ones used in the mathematical framework. The mixed bound-
ary condition for the electrical potential equation will not affect the conclusion that
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Fig. 6 Picture of the geometry.
The outer measurements are
11 × 192 × 29

Fig. 7 φ (a), u (b), and σ (c) on the MEMS-geometry

φ ∈ H 1(�) ∩ L∞(�). However, the trick in (1.2) can not immediately be applied in
the temperature equation unless Dirichlet boundary conditions are used since test the
functions are now in a larger space.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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