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ABSTRACT. The Tokamak device is the most promising candidate for producing sus-
tainable electric power by nuclear fusion. It is a torus-shaped device that confines plasma
by a strong magnetic field. The development, design and control of the design has been
an important area of research, and a significant target is to effectively confine the ex-
tremely hot plasma inside its hollow torus-shaped body without touching its boundary
for a prolonged period of time. In an attempt to control a Tokamak device, this paper
investigates an optimal control problem for an incompressible, viscous, electrically con-
ducting MHD fluid confined in a closed toroidal region in the presence of an applied
current. The objective functional for the optimal control problem are subject to set of
constraint equations, Navier-Stokes and Maxwell equations. We target the transient con-
trol of guiding the plasma to a desired flow at a particular short time instant, where it is
expected that the flow had been designed offline to be the desired one from the point of
view of steady state operation.
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1. INTRODUCTION

1.1. Tokamak Modeling and Simulation. The Tokamak device is the most promising
candidate for producing sustainable electric power by nuclear fusion. It is a torus-shaped
device that confines plasma by a strong magnetic field. The development, design and
control of the design has been an important area of research, and a significant target
is to effectively confine the extremely hot plasma inside its hollow torus-shaped body
without touching its boundary for a prolonged period of time. In order to attain a steady
state equilibrium flow, magnetic fields are needed in two directions to balance the plasma
pressure [1]. There are three kinds of coils: Central Solenoid (CS), D-shaped Toroidal
Field Coils (TFCs) and Poloidal Field Coils (PFCs) that are used to generate magnetic
fields inside the Tokamak. The alternating current density through central solenoid coil
(which works as a primary transformer) along with several D-shaped coils create an
alternating magnetic field in plasma inside the Tokamak, thus producing a high electric
current in the plasma. To maintain the stability of the plasma, robust feedback control
is necessary to manipulate the magnetic field to target a desired steady state position,
shape and current of the plasma. This applied current density parameter is one of such
important feedback control parameter which can regulate magnetic field, shape, various
uncertainties and disturbances arising in plasma flow.

In an attempt to control a Tokamak device, this paper investigates an optimal control
problem for an incompressible, viscous, electrically conducting MHD fluid confined in
a closed toroidal region in the presence of an applied current. The objective functional
for the optimal control problem are subject to set of constraint equations, Navier-Stokes
[2] and Maxwell equations [3]. We target the transient control of guiding the plasma to a
desired flow at a particular short time instant, where it is expected that the flow had been
designed offline to be the desired one from the point of view of steady state operation.

In addition, we will study the effect of physical uncertainty in the control model in the
form of stochastic partial differential equation (PDE) systems with parameters defined to
be noisy and unknown. In this paper, electrical resistivity in plasma is considered as a
stochastic uncertain parameter. In most of the previous work, the electrical conductivity
parameter in plasma was assumed a fixed parameter; however, according to Marco and
Pironti [1], the assumption of known electrical conductivity σp in plasma is not rigorously
correct, thereby demanding to its more general treatment in a Tokamak model. In this
context, we would like to add that, an optimization problem with such stochastic PDE
constraints are also related to the inverse problems as addressed by several researchers
in the literature [4, 5]. Additionally, we have also considered kinematic viscosity of
plasma as an uncertain parameter, as described in the work of [6]. For a methodical
pedagogy, the use of stochastic finite element methods to solve such stochastic PDE
systems have been found to be very useful, and research papers with such a methodology
are extensively available in the literature [7]; however, the study of stochastic control
problems constrained by stochastic PDE systems are less common [8, 9, 10], hence its
application in magnetic Tokamak control problem is a novelty of this work.

1.2. Related Work. The Tokamak device has been modeled by exploiting its axis sym-
metry along the toroidal angular direction, as can be found in [6, 11, 12]. This works
introduced a new set of coordinate axis-symmetric transformations that turned out to be
very useful to describe the cross-sectional part of a Tokamak. However, their study was
limited to analyze the steady state behavior of plasma inside a Tokamak. A similar ana-
lytical approach was also mentioned in the book [1]. Apart from the analytical studies,
experimentally motivated papers on Tokamak and Stellarator that are very important for
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Modelling a Tokamak are well existed in the literature [13, 14, 15, 16, 17, 18, 19, 20, 21].
The existence of turbulence on the outer part of Tokamak plasma brings hindrance against
achieving the steady stable plasma state, thereby attracting a significant number of re-
searchers to address this issue in their relevant papers [21, 17, 14]. As the Tokamak
plasma is kept at an extremely high temperature, several uncertainty regarding intrinsic
plasma properties such as its thermal conductivity, electrical conductivity starts to change
in an unpredictable manner, thereby generating scope for analyzing such a phenomena
borrowing the tools and techniques from uncertainty quantification and reinforcement
learning as can be found in [22, 23, 24, 25]. The techniques of uncertainty quantification
is prevalent in exploring the underlying irregularities and hidden nature of its intrinsic
physical dynamical features, thereby employing such tools in optimally control a very
complex engineering device such as a Tokamak is also a very engaging field of research
as can be found in the literature [26, 27, 28, 29, 30, 31, 32].

Suitable normed linear spaces are formulated to accommodate the solutions of the
optimal control minimizing problem. We use a non-recursive one-shot approach to the
formulated control problem and utilize the stochastic collocation method to solve the
resulting set of equations. The remaining part of the paper is organized in the following
manner. Section 1.3 describes and defines the required normed linear space where the
weak solutions of the control problem lies. The mathematical modeling of a Tokamak is
carried out in Section 2. Moreover, we demonstrate the existence of weak solutions for
the chosen set of equations describing the Tokamak model, applying classical results in
the literature. In Section 4, we delve into the formulation of the stochastic version of the
problem by introducing the electrical conductivity of plasma as a stochastic parameter.

1.3. Mathematical Notation and Definitions. We will use standard mathematical no-
tation for the Navier-Stokes, Maxwell, and MHD equations, as well as for the relevant
spaces of functions and vector fields involved, as used for example in [33, 34, 35, 36].

To begin, for any coordinate basis such as (a, b, c) of R3 we denote the unit basis
vectors by îa, îb, îc, respectively. A scalar time-dependent function u : R→ R3 is denoted
using normal font as u(t), with bold font u(t) indicating a generically time dependent
vector field u(t) = ua(t)̂ia + ub(t)̂ib + uc(t)̂ic. The Poisson bracket will be denoted as
{u, v} = ∂u

∂a
∂v
∂b
− ∂u

∂b
∂v
∂a

. Let Ω ⊂ Rn be an open subset of Rn. The Lebesgue integrable
spaces of scalar functions over Ω are defined as

Lp(Ω) =
{
u : Ω→ R

∣∣ ‖u‖p,Ω <∞ }
,

where the Lp norms are defined as:

‖u‖p,Ω =

(∫
Ω

|u|p dx
)1/p

, 1 6 p <∞, ‖u‖∞,Ω = sup
x∈Ω
|u|

The case p = 2 allows also for an inner-product:

(φ, ψ)2 = (φ, ψ)L2(Ω) =

∫
Ω

φψ dx. (1.1)

The Sobolev spaces W k,p(Ω) are a family of Banach spaces characterized by

W k,p(Ω) =
{
u ∈ L2(Ω) : ‖u‖k,p,Ω <∞

}
, (1.2)

where the Sobolev norms are defined as

‖u‖k,p,Ω = ‖u‖Wk,p(Ω) =
( ∑

06|α|6k

‖Dαu‖pp
)1/p

, (1.3)
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with

Dαu =
∂|α|u

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

, |α| =
n∑
j=1

αj, (1.4)

where α = (α1, α2, . . . , αn) is a multi-index with each αk ∈W (non-negative integers).
Note that the case of k = 0 reduces to Lp(Ω) = W 0,p(Ω). The case of p = 2 are a
family of Hilbert spaces with appropriately defined inner-products that induce the norms
above. The singular case of p = 2 and k = 1 is particularly important for second order
PDE systems, and is often denoted more simply as H1(Ω) = W 1,2(Ω). The important
subspace of W 1,p(Ω) that vanishes on the boundary is denoted

W 1,p
0 (Ω) = { u ∈ W 1,p(Ω) : u = 0 on ∂Ω (in trace sense) }, (1.5)

with again the special case of p = 2 denoted H1
0 (Ω) = W 1,2

0 (Ω). Extensions of these
normed and inner-product spaces of scalar functions to vector (and more generally,
tensor) fields come naturally through composition with the discrete p-norms of finite-
dimensional vectors. A common notation is the use of bold font to denote the spaces
of vector and tensor fields, e.g., Lp(Ω) and Wk,p(Ω). Note that f = (f1, f2, · · · , fk) ∈
Lp(Ω) if and only if each of the component functions satisfy fi ∈ Lp(Ω).

The set of all infinitely differentiable scalar, vector, and tensor functions with compact
support in Ω is denoted by D(Ω). The divergence-free smooth functions are denoted as,

τ∞(Ω) = { v ∈ D(Ω) : ∇ · v = 0 } , (1.6)

The following sub-spaces are introduced for weakly divergence-free functions in the
distributional sense,

τ(Ω) =
{
v ∈ L2(Ω) : ∇ · v = 0

}
, (1.7)

where∇· v = 0 in the weak sense, meaning that
∫

Ω
v ·∇φ = 0,∀φ ∈ D(Ω). The closure

of τ∞(Ω) in L2(Ω) is denoted by τ(Ω). We have τ(Ω) ⊂ τ(Ω) ⊂ L2(Ω). Similarly, for
the Sobolev spaces, we define, τ kp (Ω) = W k,p(Ω)

⋂
τ(Ω) and τ 1

p denotes the closure of
τ∞(Ω) in the W 1,p(Ω). As we will see below, solutions of the optimization problem will
be sought in the spaces

τ̃ 2
2 (Ω) =

{
v ∈ τ 2

2 (Ω) : (v · n)|∂Ω = 0, (∇× v)|TS |∂Ω = 0
}
, (1.8)

where TS denotes the tangent plane at Tokamak surface (see below). The closure of
τ̃ 2

2 (Ω) inside W 1,2(Ω) is denoted by τ 1
2 .

2. SYSTEM FORMULATION

The mathematical description of the optimal control problem for a Tokamak is pre-
sented in this section. The Tokamak is denoted by a torus shaped bounded region
Ω ⊂ R3, which contains plasma. The boundary wall of Tokamak is denoted by ∂Ω,
which is the outer surface of a torus. A physical sketch of Tokamak is presented in Fig-
ure 1. The plasma is modeled as a magnetohydrodynamic (MHD) fluid [6, 11, 12]. Let
v denotes the velocity field of plasma and B the induced magnetic field. The magnetic
field B is induced due to the high current density in external Tokamak coils. The current
density in plasma is denoted by Jp. Plasma experiences a strong Lorentz force due to
migration of electric charges in the presence of a strong magnetic field, which acts on the
current as E + v ×B where E is the electric field in plasma. We now present the ideal
MHD equations governing the plasma flow inside the Tokamak.
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FIGURE 1. Physical sketch of an inner cross-section of TOKAMAK. Here,
−z0r0, z0r0 denote its height. rlr0 denotes its left most part and rmr0 denotes
its right most part. The empty middle space contains a central solenoid magnet
which is responsible for Ohmic heat generation in plasma.

2.1. Classical Formulation. To begin, we divide the electric E and magnetic B fields
inside the plasma into endogenous and induced components:

E = E0 + Eind
κ(t)

B = B0 + Bind
κ(t)

The induced component is taken to be controlled with precision by the engineer operat-
ing the current in the coils surrounding the Tokamak; we denote as Eind

κ(t) the externally
controlled induced electric field and Bind

κ(t) the induced magnetic field, with E0 and B0

the endogenous electric and magnetic fields, respectively.
We assume that the dynamical time scale of the energy and current diffusion is much

smaller than the duration of a discharge, so it is reasonable to discard the time derivative
of the electric field Et in Maxwell’s equations as trivially small. We write the electrohy-
dromagnetic field laws to describe plasma inside the Tokamak on Ω× [0, T ] as follows:

vt + (v · ∇)v − ν∇2v − Jp ×B +∇p = 0, (Force Balance) (2.1)
∇ · v = 0, (Incompressibility) (2.2)
∇ ·B = 0, (Transversality) (2.3)
∇×B = Jp, (Ampere’s Law) (2.4)

∇× E + Bt = 0, (Faraday’s Law) (2.5)
E + v ×B = ηJp, (Ohm’s Law) (2.6)

for some finite time T > 0, where Jp denotes the current density, p denotes plasma pres-
sure, ν denotes kinematic viscosity, and η denotes the electrical resistivity. In more gen-
eral formulations of MHD, there are two additional physical parameters: the magnetic
permeability (typically denoted µ) and the electronic conductivity (typically denoted σ).
In this work, as is done in much of the Tokamak literature, we simplify the presentation
by considering them to be both one.
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The set of initial and boundary conditions completing the system is given below:

v(0) = v1, on Ω

B(0) = B1, on Ω

v(t) = 0, on ∂Ω× [0, T ] (2.7)

B(t) · n = 0, on ∂Ω× [0, T ]

∇×B = 0, on ∂Ω× [0, T ]

indicating initial conditions and, for safe operation, no active fields transverse to the
Tokamak boundary.

2.2. Weak Formulation. We note that Ampere’s Law and Ohm’s Law together imply

η∇×B = E + v ×B. (2.8)

Taking the curl of both sides gives

η∇×∇×B = ∇× E +∇× (v ×B). (2.9)

Using the simple product formula

∇× (v ×B) = B · ∇v − v · ∇B, (2.10)

we then have

η∇×∇×B = ∇× E + B · ∇v − v · ∇B. (2.11)

Using now Faraday’s law we have produced the reduced Maxwell equation

Bt + η∇×∇×B + v · ∇B−B · ∇v = 0. (2.12)

This leads to the following reformulation of (2.1)–(2.6) as the MHD system: Find v ∈ V
and B ∈ B, such that

vt + (v · ∇)v − ν∇2v + B× (∇×B) +∇p = 0, (2.13)
∇ · v = 0, (2.14)

Bt + η∇× (∇×B) + v · ∇B−B · ∇v = 0, (2.15)
∇ ·B = 0, (2.16)

subject to the initial and boundary conditions (2.7), where the solution spaces V and B
containing v and B are the (possibly different) divergence-free subspaces of the suitably
chose time-parameterized (Bochner) Sobolev spaces:

V =
{
v : Ω× [0, T ]→ R3 | ∇ · v = 0

}
⊂ Lr([0, T ],W k,p(Ω)), (2.17)

B =
{
B : Ω× [0, T ]→ R3 | ∇ ·B = 0

}
⊂ Ls([0, T ],Wm,q(Ω)). (2.18)

A weak formulation of (2.13) arises through requiring orthogonality of the residual
with respect to a test function w ∈ W in the sense of the extended L2-inner-product, for
suitable test spaceW . I.e., we seek v ∈ V , such that

(vt + (v · ∇)v,w)2 − ν(∇2v,w)2 + (B× (∇×B),w)2 + (∇p,w)2 = 0, (2.19)

∀w ∈ W . A weak formulation of (2.15) arises similarly, for a test function z ∈ Z for
suitable test space Z . I.e., we seek B ∈ B, such that

(Bt, z)2 + (η∇× (∇×B), z)2 + (v · ∇B, z)2 − (B · ∇v, z)2 = 0, (2.20)

∀z ∈ Z . The function spacesW ⊂ L2(Ω) and Z ⊂ L2(Ω) are Banach spaces that must
be chosen so that each term in (2.19)–(2.20) is finite for all possible arguments fromW
and Z . Sufficient conditions on W and Z that will guarantee this behavior are easily
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determined through use of Hölder inequalities in Lp spaces and other standard norm
inequalities in Sobolev spaces (cf. [36, 37]). This choice for W and Z then produces
a well-defined weak formulation: Find (v,B) ∈ V × B such that (2.19)–(2.20) hold
for all (w, z) ∈ W × Z . After a well-defined weak formulation is produced through
the careful choice of the four Banach spaces V ,B,W ,Z , it remains to prove that there
actually exists a weak solution (v,B) ∈ V×B, and hopefully that this solution is unique
in V × B. In other words, one hopes that the four spaces have been chosen together so
that the solution spaces V and B are large enough to contain a (weak) solution (v,B),
but not so large that there is more than one solution.

2.3. A Priori Estimates and Well-Posedness. The system (2.13)–(2.16) is a special
case of a more general MHD system studied in [33] (see also [2, 34, 35]). The analysis
in [33] is centered on a generalization of the weak formulation (2.19)–(2.20) above,
allowing for general magnetic permeability and electric conductivity, and working with
variables E (the electric field) and H (the magnetizing field) rather than E and B (the
magnetic field), with H and B related through the (possibly non-constant) magnetic
permeability:

B = µH.

The analysis in [33] proceeds by first establishing some standard energy estimates for
the L2-norms of the plasma velocity v and the magnetizing field H, based on a com-
bination of norm estimates and use of a Grownwall lemma for differential inequalities.
Subsequently, L2-estimates for vt, of some spatial derivatives of v, and of the pressure
gradient∇p are obtained using similar arguments. This then leads to a uniqueness result
(Theorem 3.1 in [33]) for a generalization of (2.13)–(2.16), under initial and boundary
conditions that include (2.7).

Finally, an existence result (Theorem 4.1 in [33]) for a generalization of (2.13)–(2.16)
are established in [33], under initial and boundary conditions that include (2.7). The
proof is based on the use of the Galerkin method, whereby a sequence of Galerkin ap-
proximations to solutions of (2.19)–(2.20) (or rather, to a more general version of our
system) is generated, and the a priori estimates established earlier are shown to hold for
each Galerkin approximation. The sequence is then shown to converge in the limit, and
this limit is subsequently shown to satisfy (the generalization of) (2.19)–(2.20). There-
fore, thanks to the analysis in [33] of a generalization of our weak formulation (2.19)–
(2.20), there exists a unique weak solution to (2.19)–(2.20), and under suitable regularity
assumptions, to the strong formulation (2.13)–(2.16) as well as to the original classical
formulation (2.1)–(2.6).

3. OPTIMAL CONTROL PROBLEM

3.1. Cylindrical Coordinate Formulation. The complex structure of Tokamak is often
modeled in the axis symmetric cylindrical coordinates system (r, φ, z), where r denotes
the radial direction, z the Tokamak height and φ the toroidal angle direction. With respect
to the standard coordinate basis, we can write a substitution as by,

x = r cosφ, y = r sinφ, z = z.

The velocity v = (vr, vφ, vz) and magnetic fields B = (Br, Bφ, Bz) inside the Tokamak

are assumed to be symmetric with respect to the angle φ, i.e.
∂B+Bind

κ(t)

∂φ
= ∂v

∂φ
= 0. It is

standard to exploit this symmetry appearing in the form and dynamics of the Tokamak by
performing a coordinate transformation of the system of equations above into cylindrical
coordinates.



8 M. HOLST, V. KUNGURTSEV, AND S. MUKHERJEE

To present the transformation we first define two flux quantities as follows:

ψ(r, z) =
1

2π

∫
S(r)

v · dS, χ̄(r, z) =
1

2π

∫
S(r)

(
B + Bind

κ(t)

)
· dS,

χ̄ = χ+ κ(t), κ : R→ R χ(r, z) =
1

2π

∫
S(r)

B · dS. (3.1)

Here, S(r) denotes the surface of a sphere with radius r, with the center at the origin
in the torus interior of the Tokamak, and radius typically confined to correspond to the
inside of the toroidal device. These quantities captures the amount of velocity flux in the
z-direction through this cross-section.

We denote the electric field inside a Tokamak by E + Eind
κ(t) = (Er, Eφ, Ez). Now, it

follows from (2.5) that, rEφ = −
∫
r ∂B

χ̄
z

∂t
dr, where B+Bind

κ(t) = Bχ̄
r îr+Bχ̄

φ îφ+Bχ̄
z îz. Let

κ be regulated by the time-dependent current strength in the outer Tokamak coils, thus,
we call it an internal control parameter. It is assumed that the magnetic flux

∫
S(r)

B·dS in
the height z direction is increasing with time t. This assumption suggests the presence of
a strong time-dependent electric field along the toroidal direction φ inside the Tokamak.
Similarly, by increasing the current flow rate through the toroidal coils, we will get a
strong time-dependent electric field along the φ direction. We denote this electric field
as E + Eind

κ(t), following the discussion in [6], where the authors explained the existence
of an induced electric field Eext = E0r0

r
îφ, with r0 being a reference point. In [6],

however, given that steady state operation was the topic of consideration, it was also
assumed that a strong curl-free DC magnetic field exists in the toroidal direction due
to the current flow through external poloidal coils. This magnetic field was denoted
by Bext = B0r0

r
îφ. In the present paper, we have assumed that χ̄ depends on time,

thereby allowing the operating engineer broad flexibility in selecting a more general
consideration of the induced fields, where the z-directional magnetic flux is not linearly
proportional to time, thereby allowing a time-dependent electric field along the toroidal
angular direction îφ with non-zero curl. Moreover, we have kept B0(t) to be a strong DC
magnetic field, but also dependent on time. This induced control parameter also controls
the velocity of plasma, thereby influencing its shape.

An important consideration for controlling the Tokamak is that Eφ increases with in-
creasing time in the φ-direction with the charging of current through external coils in
Tokamak. We have incorporated the generality regarding the time dependent magnetic
field inside the Tokamak with the control of time dependent current flow through ex-
ternal Tokamak coils by incorporating a new control parameter κ(t). In the cylindrical
coordinates, we can express the external magnetic field as,

B + Bind
κ(t) = ∇χ̄×∇φ+

(
Bφ +B0(t)

r0

r

)
îφ, χ̄ = χ+ κ(t), (3.2)

where χ, χ̄ are two scalar functions (ref. (3.1) for the details of these expressions). The
above definition illustrates the fact that, κ(t), called internal control parameter, is added
in the magnetic flux term χ = 1

2π

∫
B · ds to incorporate the enhancement in magnetic

field due to a rise in external time dependent current intensity, considered as an external
control parameter. By doing further calculations, we can derive that the φ component of
the electric field

[E + Eind
κ(t)]φ =

1

r

(
∂χ

∂t
+ κ

′
(t)

)
. (3.3)

As evident from these equations, the reason for calling the term κ an “intrinsic control
parameter” lies with the fact the effects of κ are visible in the electric field E + Eind

κ(t)



A NOTE ON OPTIMAL TOKAMAK CONTROL 9

without altering the behavior of B + Bind
κ(t) in the sense that ∇χ̄ = ∇χ (ref. (3.1)). The

equations (2.1), (2.2) represent the plasma flow equations in the presence of an external
body force, namely the Lorentz force. The equations (2.5)-(2.4) represent the Faraday’s
law, Ohm’ law and Ampère’s law respectively.

In the initial discharge phase, the current density through toroidal coils are gradu-
ally increased to achieve a steady-state magnetic field that would contain plasma inside
a Tokamak without touching its boundary. Subsequently, the applied current density
through external coils can act as a feedback control parameter that would send a signal
to control the intensity of applied current density in plasma and the magnetic field inside
the Tokamak, thereby maintaining a steady and stable plasma inside the device. Thus,
we have introduced two control parameters κ(t) and B0(t) to incorporate the effects of
both toroidal and poloidal currents through external coils on the magnetic field inside the
Tokamak. Another way of controlling the current is by neutral beam injection [38, 39];
however, the symmetric cylindrical conditions for modeling a Tokamak would have to
be dropped to consider such a process. However, one approach towards mathematically
modeling this operation is presented in [33], where the modified Navier-Stokes equa-
tions, due to Olga Ladyzhenskaya [40, 41], are used.

We denote the canonical definition of a vector field in the cylindrical coordinate system
as well as a differential operator we shall use in the sequel:

∇f(r, φ, z) =
∂f

∂r
îr +

1

r

∂f

∂φ
îφ +

∂f

∂z
îz,

∆∗A = ∇2A− 2

r

∂A

∂r
=
∂2A

∂r2
− 1

r

∂A

∂r
+
∂2A

∂z2
,

In addition, we introduce two intermediate quantities, the plasma current and the vorticity
as,

Jp := ∇×
(
B + Bind

κ(t)

)
, ω := ∇× v.

We use the following substitutions (appearing in [6, 11, 12, 1]) to express the model of
the unsteady electromagnetic plasma inside the Tokamak in cylindrical coordinates,

v(r, z) = ∇ψ ×∇φ+ vφîφ, ∇φ = r−1îφ, (3.4)

B(r, z) + Bind
κ(t) = ∇χ̄×∇φ+

(
Bφ +B0(t)

r0

r

)
îφ, (3.5)

Jp(r, z) = ∇(rBφ)×∇φ− 1

r
(∆∗χ̄)̂iφ, (3.6)

ω(r, z) = ∇(rvφ)×∇φ− 1

r
(∆∗ψ)̂iφ, (3.7)

The calculations deriving these expressions are given in Appendix A.
While these equations represent a geometrically transparent picture of the MHD dy-

namics, we shall introduce a set of new coordinates and variable components to facilitate
amenable computation. This appears in the literature and incorporates Tokamak specific
symmetries and presents the system in a manner suitable for engineering considerations.

a :=
r

r0

, b :=
z

r0

, u1 :=
ψ

r0

, u2 := r0rωφ, u3 := rBφ,

u4 := rvφ, u5 :=
χ

r0

, u6 := r0rJpφ, A :=
χ0

r0

, (3.8)

where χ0 is a constant scalar function and η := 1
σp

, where σp denotes the electrical
conductivity of plasma. Here, the maximum height of the Tokamak is denoted by z0r0
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and maximum radial length is denoted by rmr0. By assuming r0 to be the middle point in
the radial direction, rlr0 the left most point of Tokamak in the radial direction, for the rest
of this paper, we denote the cross-sectional region [rlr0, rmr0] × [0, 2π] × [−z0r0, z0r0]
by the symbol K. See Figure 1 for an illustration. In the sequel we shall denote the set
of spatial coordinates as x = (a, b, φ)

With these new set of variables, we write the set of PDEs governing the plasma flow
as follows,

∆∗u1 = −u2, (3.9)

ν∆∗u2 = r2
0

∂u2

∂t
+

1

a
{u1, u2}+

2

a2
u2
∂u1

∂b
+

1

a
{u6, u5} −

2

a2
u6
∂u5

∂b
(3.10)

+
2

a2

[
(u3 + r0B0(t))

∂u3

∂b
− u4

∂u4

∂b

]
, (3.11)

η∆∗u3 = r2
0

∂u3

∂t
+ r3

0B
′

0(t) +
1

a

(
{u4, u5}+ {u1, u3}

)
+

2

a2

(
(u3 + r0B0(t))

∂u1

∂b
− u4

∂u5

∂b

)
, (3.12)

ν∆∗u4 = r2
0

∂u4

∂t
+

1

a

(
{u3, u5}+ {u1, u4}

)
, (3.13)

∆∗u5 = −u6, (3.14)

ηu6 = r2
0

∂u5

∂t
+ r0κ

′
(t) +

1

a
{u5, u1}, (3.15)

where ∆∗ in terms of a, b takes the form ∆∗ = ∂2

∂a2 + ∂2

∂b2
− 1

a
∂
∂a

all of the equations
are defined to be on the domain K × [0, T ]. See Appendix A.4 for the derivation of this
system.

These equations are completed with the set of boundary conditions which are taken
from (2.7), transformed into cylindrical coordinates (see Appendix Section A.3) and fi-
nally expressed below in the new set of coordinates {u1, u2, u3, u4, u5, u6} in equations
(3.16)-(3.24), the calculations for which are derived in Section A.5,

∂u5

∂b
= 0, On ∂K × [0, T ] (3.16)

∂u3

∂a
= 0, On ∂K × [0, T ] (3.17)[∂2u5

∂a2
− 1

a

∂u5

∂a

]
= 0, On ∂K × [0, T ] (3.18)

u1 = 0, On ∂K × [0, T ] (3.19)

u4 = 0, On ∂K × [0, T ] (3.20)

u1(0) = 0, on K (3.21)

u4(0) = 0, on K (3.22)

u5(0) = A, on K (3.23)

u3(0) = ar0B1 − r0B0(0), on K (3.24)

where B1 ∈ R is a real number. The boundary conditions indicate that there is no
current at the outer surface of the Tokamak, which is necessary for its safe operation and
durability. The initial conditions indicate the operation is at an initial static start up.
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3.2. Objective Function. In this paper, we are interested in controlling the shape of
plasma and induced magnetic field lines inside the Tokamak as expressed by its velocity
field and induced magnetic field, respectively. We have two target functions Bd(·, T )
and vd(·, T ) that correspond at time T to a desired, predetermined steady state velocity
and magnetic fields respectively. We assume these have been determined a priori as the
dynamic of a steady state optimal system. The control parameter for our problem is an
internal control parameter in plasma κ(t) and an external control parameter B0(t).

Now we are ready to present our optimal control problem in the cylindrical coordinate
system. For a fixed time parameter T > 0, we are interested to minimize the following
cost functional,

J(v,B, κ(t), B0(t)) =
α1

2
‖v(·, T )− vd(·, T )‖2

+
α2

2
‖B + Bind

κ(t)(·, T )−B0(T )−Bd(·, T )‖2

+

∫ T

0

(
β1

2
κ2(t) +

β2

2
B0

2(t)

)
dt,

=
α1

2a2

∥∥∥∥−∂u1

∂b
îr +

∂u1

∂a
îz + u4̂iφ(·, T )− ar0vd(·, T )

∥∥∥∥2

+
α2

2a2

∥∥∥∥−∂u5

∂b
îr +

∂u5

∂a
îz + u3̂iφ(·, T )− ar0Bd(·, T )

∥∥∥∥2

+

∫ T

0

(
β1

2
κ2(t) +

β2

2
B0

2(t)

)
r2

0dt,

=

∫ rm

rl

∫ z0

−z0

[
α1

2ā2

[(∂u1

∂b
+ ār0vdr

)2

+

(
∂u1

∂a
− ār0vdz

)2

+
(
u4 − ār0vdφ

)2
]

+
α2

2ā2

[(∂u5

∂b
+ ār0[Bd]r

)2

+

(
∂u5

∂a
− ār0[Bd]z

)2

+ (u3 − ār0[Bd]φ)2
]]
dā db̄

+

∫ T

0

(
β1

2
κ2(t) +

β2

2
B0

2(t)

)
r2

0dt (3.25)

where vd = v1
d îr + v2

d îz + v3
d îφ, Bd = B1

d îr + B2
d îz + B3

d îφ, B0(T ) = B0(T ) r0
r
îφ,

subject to (3.4), (3.5), (3.9) and (3.16)-(3.22), for target desired steady state flow vd and
magnetic field Bd and we regularize the controls to ensure a well defined solution. The
constants α1, α2, β1, β2 ≥ 0 denote the non negative weights on the quantities of our
interest. α1 > 0 indicates a desired velocity field, α2 > 0 a desired magnetic field, and
typically β1, β2 > 0 but small, serving as a regularization to encourage unique solutions.

4. ROBUST OPTIMAL CONTROL PROBLEM

It is found in the literature [13] that the electrical conductivity of plasma changes with
plasma temperature. As plasma is kept at a very high temperature inside a Tokamak,
which can then moderately vary in an unpredictable manner, it is naturally concerning
to assume the electrical conductivity of plasma σp to be a fixed and known quantity.
Moreover, the uncertainty of σp is an important determining factor in heat generation
inside the Tokamak by Ohmic heating, thereby disregarding its uncertainty could yield
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improper operation (see, e.g. [1]). In this paper, the electrical conductivity of plasma
σp and kinematic viscosity of plasma ν are considered to be two stochastic coefficients.
We amend the optimal control problem to be robust with respect to the uncertainty, by
targeting that the expected deviation from the target is minimized. For a background on
stochastic PDE constrained optimization, see [42]. We note that in lieu of the expectation,
we could use risk measures as a means of particularly penalizing, e.g., far from steady
state, or in some sense physically hazardous velocity and magnetic fields, however, we
stick to the expectation as a simpler first presentation in the literature of the consideration
of uncertainty in the operation of a Tokamak.

4.1. Stochastic PDE Systems. We assume σp, ν to be two second order random fields
such that σp, ν ∈ L2(K)⊗L2(Ξ), where (Ξ,F ,P) denotes a complete probability space
with Ξ representing a sample space, F a σ-algebra with a probability measure P . This
consideration of σp(ξ), ν(ξ) as two random fields automatically makes the state variables
v and B random quantities as well. These two second-order random fields v and B again
belong to a tensor product Hilbert space L2(K)⊗ L2(Ξ), which is defined below,

L2(K)⊗ L2(Ξ) = {ω(x, ξ) : K ⊗ Ξ→ R :

∫
Ξ

∫
K
|ω|2ds dP <∞},

with the norm,

‖ω‖L2(K)⊗L2(Ξ) =
(∫
K

∫
Ξ

|ω|2ds dP
) 1

2
.

With the above notations at our hand, we modify the PDE systems (3.9)-(3.15) along
with the constraint boundary conditions (3.16)-(3.24) into a minimization problem with
stochastic PDE constraint equations as described below,

min
v(·,ξ),B(·,ξ),B0(t),κ(t)

Eξ[J(v,B, κ(t), B0(t))] (4.1)

subject to:

∆∗u1(ξ) = −u2(ξ),

ν∆∗u2(ξ) = r2
0

∂u2(ξ)

∂t
+

1

a
{u1, u2}(ξ) +

2

a2
u2(ξ)

∂u1(ξ)

∂b
+

1

a
{u6, u5}(ξ)

− 2

a2
u6(ξ)

∂u5(ξ)

∂b
+

2

a2

[
(u3(ξ) + r0B0(t))

∂u3(ξ)

∂b
− u4(ξ)

∂u4(ξ)

∂b

]
,

η∆∗u3(ξ) = r2
0

∂u3(ξ)

∂t
+ r3

0B
′

0(t) +
1

a

(
{u4, u5}(ξ) + {u1, u3}(ξ)

)
+

2

a2

(
(u3(ξ) + r0B0(t))

∂u1(ξ)

∂b
− u4(ξ)

∂u5(ξ)

∂b

)
,

ν∆∗u4(ξ) = r2
0

∂u4(ξ)

∂t
+

1

a

(
{u3, u5}(ξ) + {u1, u4}(ξ)

)
,

∆∗u5(ξ) = −u6(ξ),

ηu6(ξ) = r2
0

∂u5(ξ)

∂t
+ r0κ

′
(t) +

1

a
{u5, u1}(ξ)
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and boundary conditions:

∂u5

∂b
(x, t, ξ) = 0, on ∂K × [0, T ]

∂u3

∂a
(x, t, ξ) = 0, on ∂K × [0, T ][∂2u5

∂a2
− 1

a

∂u5

∂a

]
(x, t, ξ) = 0, on ∂K × [0, T ]

u1(x, t, ξ) = 0, on ∂K × [0, T ]

u4(x, t, ξ) = 0, on ∂K × [0, T ]

u1(x, 0, ξ) = 0, on K
u4(x, 0, ξ) = 0, on K
u5(x, 0, ξ) = A, on K
u3(x, 0, ξ) = ar0B1 − r0B0(0), on K

and with cost functional:

J1 =
α1

2
‖v(·, T )− vd(·, T )‖2

L2(K)⊗L2(Ξ) +
α2

2
‖B(·, T )−B0(T )−Bd(·, T )‖2

L2(K)⊗L2(Ξ)

+

∫ T

0

[
β1

2
(B0(t))2 +

β2

2
(κ(t))2

]
dt, (4.2)

Here, the newly defined cost function J1 in equation (4.2) is the expectation value of the
stochastic functional J , thereby producing a deterministic outcome.

4.2. Finite dimensional representation of random fields. We will employ the finite-
dimensional noise assumption to describe σp which states that σp can be approximated
by a finite number of random variables ξ = {ξi}Lt=1, for a natural number L and ξi : Ξ→
Γi ⊂ R. Additionally, we assume that ξi are independent random variables having a
probability density function ρi : Γi → [0, 1]. The joint probability distribution of ξ is
expressed as ρ = ΠL

i=1ρi(yi) where (y1, · · · , yL) ∈ Γ = ΠL
i=1Γi ⊂ RL. The truncated

Karhunen-Loève expansion (see, e.g., [43]) of σp and ν is expressed as,

σp(x, y) =
L+1∑
i=1

σpi(x)ζi(y), On x ∈ K, y ∈ Γ,

ν(x, y) =
L+1∑
i=1

νi(x)ζi(y) On x ∈ K, y ∈ Γ,

where σpi, νi : K → R and ζi = yi−1 with y0 = 1. For the two separable functions
u1, u2 : K × Γ → R, we define an inner product between them using the individual
components v1, v2 ∈ H1(K) and w1, w2 ∈ L2

ρ(Γ) of their separable representations:

u1(x, y) = v1(x)w1(y), u2(x, y) = v2(x)w2(y),

through the following inner-product definition:

(u1, u2)H1(K)⊗H1
ρ(Γ) = (v1, v2)H1(K)(w1, w2)H1

ρ(Γ),

where

(v, w)L2
ρ(Γ) =

∫
Γ

vwρdy for v, w ∈ L2
ρ(Γ).
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Finally, using the Doob-Dynkin Lemma, the random vectors v,B, σp can be expressed
as a function of L random variables, thereby allowing us to reformulate the stochastic
optimal control problem, defined earlier in (4.2), in the following manner,

min
v,B,B0(t),κ(t)

J1

where:

J1 =
α1

2
||v − vd||2L2(K)⊗L2

ρ(Γ) +
α2

2
||B−B0(T )−Bd||2L2(K)⊗L2

ρ(Γ)

+

∫ T

0

[β1

2
(B0(t))2 +

β2

2
(κ(t))2

]
dt, (4.3)

4.3. Lagrangian. Introduce the set of adjoint multipliers,

λ1, λ2, λ3, λ4, λ5, µ1, µ2, µ3, µ4, µ5, µ6 ∈ H1
0 (K)⊗ L2

ρ(Γ)

to construct a Lagrangian L1 associated with the stochastic cost function as follows,

L1 =

∫
K

∫
Γ

[
α1

2a2

[(∂u1

∂b
+ ar0[vd]r

)2

+

(
∂u1

∂a
− ar0[vd]z

)2

+ (u4 − ar0[vd]φ)2
]

+
α2

2a2

[(∂u5

∂b
+ ar0[Bd]r

)2

+

(
∂u5

∂a
− ar0[Bd]z

)2

+ (u3 − ar0[Bd]φ)2
]]
ρdadbdy +

∫ T

0

(
β1

2
κ2(t) +

β2

2
B2

0(t)

)
r2

0dt

−
∫ T

0

∫
∂K

∫
Γ

λ1
∂u5

∂b
ρdadbdydt−

∫ T

0

∮
∂C

∫
Γ

λ2
∂u3

∂a
ρdadbdydt

−
∫ T

0

∫
∂K

∫
Γ

λ3

[∂2u5

∂a2
− 1

a

∂u5

∂a

]
ρdydadbdt

−
∫ T

0

∫
∂K

∫
Γ

(λ4u1 + λ5u4) ρdadbdydt−
∫ T

0

∫
K

∫
Γ

µ1(∆∗u1 + u2) ρdydadbdt

−
∫ T

0

∫
K

∫
Γ

µ2

[
− ν∆∗u2 + r2

0

∂u2

∂t
+

1

a
{u1, u2}+

2

a2
u2
∂u1

∂b
+

1

a
{u6, u5}

− 2

a2
u6
∂u5

∂b
+

2

a2

[
(u3 + r0B0(t))

∂u3

∂b
− u4

∂u4

∂b

]]
ρdadbdydt

−
∫ T

0

∫
K

∫
Γ

µ3

[
− η∆∗u3 + r2

0

∂u3

∂t
+ r3

0B
′

0(t) +
1

a

(
{u4, u5}+ {u1, u3}

)
+

2

a2

(
(u3 + r0B0(t))

∂u1

∂b
− u4

∂u5

∂b

)]
ρdadbdydt

−
∫ T

0

∫
K

∫
Γ

µ4

[
− ν∆∗u4 + r2

0

∂u4

∂t
+

1

a

(
{u3, u5}+ {u1, u4}

)]
ρdadbdydt

−
∫ T

0

∫
K

∫
Γ

µ5(∆∗u5 + u6) ρdadbdydt

−
∫ T

0

∫
K

∫
Γ

µ6(ηu6 − r2
0

∂u5

∂t
− r0κ

′
(t)− 1

a
{u5, u1}) ρdadbdydt, (4.4)
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where the boundary conditions u1,4(·, 0) = 0, u5(·, 0) = A, u3(·, 0) = ar0B1− r0B0(0)
must be imposed by construction via the definition of the function spaces wherein v,B
lie.

4.4. Necessary Optimality Conditions. We are interested in finding the stationary points
of the Lagrangian (4.4), with respect to the adjoint, state and control variables in the sense
of variations. By taking the directional derivatives of L1 with respect to λi, µj and set-
ting it equal to zero for all possible directions, we obtain the constraint conditions (3.9),
(3.16)-(3.24). The rest of the optimality conditions characterizing a stationary solution
to the optimal control problem are derived by taking variational derivatives with respect
to the states {ui} and controls κ(t) and B0(t).
It holds that Dκ(t)L1f̄ = 0 if and only if for all f ∈ L2([0, T ]),∫ T

0

β1r
2
0κ(t)f̄fdt−

∫ T

0

∫
K

∫
Γ

µ
′

6(t)r0ρdydadbf̄fdt = 0

⇐⇒

β1r0κ(t)− E
[∫
K
µ

′

6(·, t)ρdadb
]

= 0 on [0, T ]

Note that this implies that the reduced gradient is,

dĴ1

dκ(t)
= β1r0κ(t)− E

[∫
K
µ

′

6(·, t)ρdadb
]
. (4.5)

It holds that DB0(t)L1B̄ = 0 if and only if for all B ∈ L2([0, T ]),∫ T

0

β2r
2
0B0(t)B̄Bdt−

∫ T

0

∫
K

∫
Γ

2r0

a2
µ3
∂u3

∂b
ρdydadbB̄Bdt

−
∫ T

0

∫
K

∫
Γ

2r0µ3

a2

∂u1

∂b
ρdydadbB̄Bdt+

∫ T

0

∫
K

∫
Γ

r3
0µ

′

3(t)ρdydadbB̄Bdt

⇐⇒

β2r
2
0B0(t) + E

[∫
K
r3

0µ
′

3(·, t)ρdadb
]
− E

[∫
K

2r0

a2
µ3(·, t)∂u3

∂b
ρdadb

]
− E

[∫
K

2r0µ3

a2

∂u1

∂b
ρdadb

]
= 0 on [0, T ]

Note that this implies that the reduced gradient is,

dĴ1

dB0

=β2r
2
0B0(t) + E

[∫
K
r3

0µ
′

3(·, t)ρdadb
]
− E

[∫
K

2r0

a2
µ3(·, t)∂u3

∂b
ρdadb

]
− E

[∫
K

2r0µ3

a2

∂u1

∂b
ρdadb

]
.

The variational derivative of L1 with respect to the state variable u6 in the direction
ū ∈ L2([0, T ], L2(K))⊗ L2

ρ(Γ) reads:

Du6L1ū =

∫ T

0

∫
K

∫
Γ

[
2

a2
µ2
∂u5

∂b
− µ5 − ηµ6 +

1

a
{µ2, u5}

]
ūρdydadbdt

Now it holds that Du6L1ū = 0 if and only if for all w ∈ L2([0, T ], L2(K))⊗ L2
ρ(Γ),

2

a2
µ2
∂u5

∂b
− µ5 − ηµ6 +

1

a
{µ2, u5} = 0. (4.6)
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We now calculate the following,

Du2L1ū = −
∫ T

0

∫
C

∫
Γ

[
µ1 − r2

0

∂µ2

∂t
+ ν∆∗µ2 −

1

a
{u1, µ2}

]
ūρdydadbdt

Now it holds that Du2L1ū = 0 if and only if for all w ∈ H1([0, T ], H1(K))⊗ L2
ρ(Γ),

µ1 − r2
0

∂µ2

∂t
+ ν∆∗µ2 −

1

a
{u1, µ2} = 0. (4.7)

The next calculation is shown below,

Du1L1ū =−
∫ T

0

∮
∂K

∫
Γ

λ4ρūdadbdydt+

∫ T

0

∫
C

∫
Γ

∆∗µ1ūρdaūdbdydt

+

∫ T

0

∫
K

∫
Γ

(
1

a
{µ2, u2}+

2

a2
u2
∂µ2

∂b

)
ρūdadbdydt

+

∫ T

0

∫
K

∫
Γ

(
1

a
{µ3, u3}+

2

a2
(u3 + r0B0(t))

∂µ3

∂b

)
ρūdadbdydt

+

∫ T

0

∫
K

∫
Γ

1

a
{µ4, u4}ρūdadbdydt

−
∫ T

0

∫
K

∫
Γ

1

a
{u5, µ6}ρūdadbdydt

−
∫
K

∫
Γ

α1

a2

(
∂u1

∂b
+ ar0[vd]r

)
∂ū

∂b
ρdadbdy

−
∫
K

∫
Γ

α1

a2

(
∂u1

∂a
− ar0[vd]z

)
∂ū

∂a
ρdadbdy.

Now it holds that Du1L1ū = 0 if and only if for all w ∈ H1([0, T ], H1(K))⊗ L2
ρ(Γ),

0 = E [λ4] on ∂K × [0, T ]

0 = E
[
∆
∗
µ1

]
+ E

[
1

a
{µ2, u2}+

2

a2
u2
∂µ2

∂b

]
+ E

[
1

a
{µ3, u3}+

2

a2
(u3 + r0B0(t))

∂µ3

∂b

]
+ E

[
1

a
{µ4, u4}

]
− E

[
1

a
{u5, µ6}

]
on K × [0, T ]

0 = E
[
α1

a2

(
∂u1

∂b
+ ar0[vd]r

)
+
α1

a2

(
∂u1

∂a
− ar0[vd]z

)]
on K

The rest of the calculations are done in a similar manner and skipped for brevity.

APPENDIX A. CALCULATIONS FOR TRANSFORMATIONS INTO CYLINDRICAL
COORDINATES

A.1. Derivations of EM fields. In this part of the Appendix we derive the equations
describing the substitutions (3.4)-(3.7).

Construction of ψ: Recall that the PDE system includes (2.5), or ∇ · v = 0 . In the
cylindrical coordinates system, this condition becomes,

1

r

∂vr
∂r

+
1

r

∂vφ
∂φ

+
∂vz
∂z

= 0.
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But, due to φ invariance, ∂vφ
∂φ

= 0. So, the above equation becomes,

1

r

∂rvr
∂r

+
∂vz
∂z

= 0.

Recalling the form of ψ and writing the surface integration dS = r dr dφ , we get,

ψ(r) =
1

2π

∫ r

0

∫ 2π

0

vz(ρ, z)ρdρ dφ =

∫ r

0

vz(ρ, z)ρ dρ. (A.1)

The above expression holds as vz(r, z) is independent of φ, which is true because of φ
invariant assumption. Now, we get,

∂

∂r
ψ = rvz(r, z). =⇒ vz =

1

r

∂ψ

∂r
. (A.2)

Now, differentiating (A.1) with respect to z we obtain,
∂ψ

∂z
=

∫ r

0

∂vz
∂z

ρ dρ.

After substituting the expression of (A.2) in the above equation, we get,
∂ψ

∂z
= −

∫ r

0

1

ρ

∂ρvρ
∂ρ

ρ dρ = −rvr.

from which we obtain the expression

vr = −1

r

∂ψ

∂z
.

We observe that∇φ = 1
r
îφ. The poloidal part of the velocity component becomes,

vp = vr îr + vz îz = ∇ψ ×∇φ.
Now, let us compute the expression of the toroidal directional component of the velocity
vφ. With the help of the property ∇ · ∇ × v = 0 we can write the vorticity ω = ∇× v
as follows,

ωr = −1

r

∂f

∂z
, ωz =

1

r

∂f

∂r
,

for some scalar function f . Now, from the condition of∇× v = ω, we get,

−∂vφ
∂z

= ωr, (A.3)

1

r

∂rvφ
∂r

= ωz, (A.4)

∂vr
∂z
− ∂vz

∂r
= ωφ.

Equations (A.3) and (A.4) together imply
1

r

∂rvφ
∂r

=
1

r

∂f

∂r
.

suggesting vφ = f
r

to be a solution. The velocity field has the following expression,

v(r, z) = ∇ψ ×∇φ+ vφîφ. (A.5)

Similarly, we get the following expression for the magnetic field as,

B(r, z) = ∇χ×∇φ+Bφîφ, (A.6)

for some scalar function χ.
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A.2. Derivations for current and vorticity. Recall the following expressions for the
plasma current and vorticity,

∇×B = Jp,

∇× v = ω.

Incorporating (A.5) and (A.6) into these expressions yields

ω = ∇× (∇ψ ×∇φ+ vφîφ),

Jp = ∇× (∇χ×∇φ+Bφîφ).

Rearranging terms,

∇× (∇χ×∇φ+Bφîφ) = ∇× (Bφîφ) +∇× (∇χ×∇φ).

Now,∇× (Bφîφ) = −1
r

∂(rBφ)

∂z
îr + 1

r

∂(rBφ)

∂r
îz = ∇(rBφ)×∇φ. For the second term,

∇× (∇χ×∇φ) = ∇×

(
∇χ× îφ

r

)
.

Now,

∇χ× îφ
r

= −1

r

∂χ

∂z
îr +

1

r

∂χ

∂r
îz. (A.7)

which implies

∇×
(
−1

r

∂χ

∂z
îr +

1

r

∂χ

∂r
îz

)
= 0 · îr + 0 · îz

+
[
− 1

r

∂2χ

∂z2
− ∂χ

∂r

(1

r

∂χ

∂r

)]̂
iφ

=
[
− 1

r

∂2χ

∂z2
+

1

r2

∂χ

∂r
− 1

r

∂2χ

∂r2

]̂
iφ,

= −∆∗χ∇φ,

where, ∆∗f = ∂2f
∂z2 + ∂2f

∂r2 − 1
r
∂f
∂r

. Therefore, we get,

Jp =
[
∇(rBφ)×∇φ−∆∗χ∇φ

]
.

Pursuing the same line of argument for ω yields the analogous expression

ω =
[
∇(rvφ)×∇φ−∆∗ψ∇φ

]
.

A.3. Derivations for cylindrical boundary conditions. Now, (2.7) are transformed
into cylindrical coordinates to get the boundary conditions in cylindrical coordinates.
These sets of equations do not appear in the main text, as they are an intermediate step
between the rectangular and final coordinate bases.

v|t=0 = ∇ψ0 ×∇φ+ v0îφ → ∇ψ|t=0 ×∇φ+ vφ(0)̂iφ = ∇ψ0 ×∇φ+ v0îφ.

Take, vφ = v0 and ψ|t=0 = ψ0. Similarly, B|t=0 = ∇χ0 × ∇φ + B1îφ yields, Bφ(0) +
B0(0) r0

r
= B1 and χ|t=0 = χ0. The condition, v = 0 yields ψ = 0, vφ = 0. For the

last two conditions, we note that ∂Ω is spanned by îφ, îz and n is spanned by îr. Thus,
B · n = Br = −1

r
∂χ
∂z

and B · n = 0→ ∂χ
∂z

= 0. Now, (∇× B)|∂Ω = 0→ Jp|∂Ω = 0→
Jpφ = 0 & Jpz = 0. So, we get, ∂rBφ

∂r
= 0 and ∆∗χ = 0. Thus, we get, Bφ + r

∂Bφ
∂r

= 0

and ∂2χ
∂r2 − 1

r
∂χ
∂r

= 0.
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A.4. Derivations of the plasma equations transformed by (3.8). After equating the
toroidal components, i.e. the îφ directional parts of the (3.7) and applying (3.4), we get,

∆∗ψ = −rωφ. (A.8)

We have the following coordinate transformations,

a =
r

r0

, b =
z

r0

, u1 =
ψ

r0

, u2 = r0rωφ, ∆
∗
f =

∂2f

∂a2
− 1

a

∂f

∂a
+
∂2f

∂b2
,

The Laplacian operator becomes

∆
∗

= r2
0∆∗.

Thus, after multiplying (A.8) by r0, we finally get,

∆
∗ ψ

r0

= −rr0ωφ → ∆
∗
u1 = −u2.

Considering the φ component of (3.6), we obtain

∆∗χ = −rJpφ, (A.9)

where Jpφ is obtained from (2.6), substituting (3.2) and (3.3) to obtain

ηJpφ =
1

r

(
∂χ

∂t
+ κ

′
(t)

)
+ (∇ψ ×∇φ)× (∇χ×∇φ),

=
1

r

(
∂χ

∂t
+ κ

′
(t)

)
− ∇χ×∇ψ

r
· ∇φ. (A.10)

With the following coordinate transformations,

u6 = r0rJpφ, u5 =
χ

r0

,

we get the following transformed version of the equation (A.9) with ∆∗χ̄ = ∆∗χ,

∆∗u5 = −u6.

From expression (A.10) we get,

ηu6 = r2
0

∂u5

∂t
+ r0κ

′
(t) +

1

a
{u5, u1},

where recall that the Poisson bracket is denoted {f, g} = ∂f
∂a

∂g
∂b
− ∂f

∂b
∂g
∂a

. Taking curl of
(2.1) and applying the angular symmetry, we get,

ν∇2ω =
∂ω

∂t
+∇×

(
ω × v − Jp × (B +Bind

κ )
)
. (A.11)
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Now, taking the toroidal component of (A.11), we get,

(∂ω
∂t

)
φ

=
∂(rωφ)

∂t
∇φ,(

∇2ω
)
φ

=
(1

r

∂

∂r

[
r
∂ωφ
∂r

]
+
∂2ωφ
∂z2

− ωφ
r2

)
îφ,

∆∗(rωφ) =
∂2(rωφ)

∂r2
− 1

r

∂(rωφ)

∂r
+
∂2(rωφ)

∂z2
,

→ ∆∗(rωφ)∇φ =
(
∇2ω

)
φ
,(

∇× (ω × v)
)
φ

= ∇×
[
(∇(rvφ)×∇φ+ ωφîφ)× (∇ψ ×∇φ+ vφîφ)

]
φ
,

= ∇×
[
(∇(rvφ)×∇φ)× vφîφ + ωφîφ × (∇ψ ×∇φ)

]
φ
. (A.12)

We use the following derivations to get the final equality,

∇×
(

(∇(rvφ)×∇φ)× vφîφ
)

= −∇×
(vφ
r

[∂(rvφ)

∂r
îr +

∂(rvφ)

∂z
îz

])
,

=

(
− ∂

∂z

[
vφ
r

∂(rvφ)

∂r

]
+

∂

∂r

[
vφ
r

∂(rvφ)

∂z

])
îφ,

= ∇(rvφ)×∇
(vφ
r

)
. (A.13)

With (A.13) we get the following expression,

(
∇× (ω × v)

)
φ

= ∇(rvφ)×∇
(vφ
r

)
+∇

(ωφ
r

)
×∇ψ. (A.14)

And similarly, we get,

(
∇×

(
Jp × (B +Bint

κ )
) )

φ
= ∇(rBφ)×∇

(
Bφ

r
+
B0r0

r2

)
+∇

(
Jpφ
r

)
×∇χ. (A.15)

After arranging the equation (2.1), with the following identity,

1

2
∇v · v = (v · ∇)v + v × ω,

and taking the toroidal component of (2.1), we get,

ν
(
∇2v

)
φ

=
(∂v
∂t

)
φ

+∇
(
p+

1

2
v · v

)
φ

+
(
ω × v − Jp × (B +Bind

κ )
)
φ
. (A.16)
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Performing the appropriate coordinate transformations,(∂v
∂t

)
φ

=
∂(rvφ)

∂t
∇φ,(

∇2v
)
φ

=
(1

r

∂

∂r

[
r
∂vφ
∂r

]
+
∂2vφ
∂z2

− vφ
r2

)
îφ,

∆∗(rvφ) =
∂2(rvφ)

∂r2
− 1

r

∂(rvφ)

∂r
+
∂2(rvφ)

∂z2
,

→ ∆∗(rvφ)∇φ =
(
∇2v

)
φ
, (A.17)

∇
(
p+

1

2
v · v

)
φ

= 0,(
ω × v

)
φ

=
1

r2

[
∇(rvφ)×∇ψ

]̂
iφ, (see(A.7))(

Jp × (B +Bind
κ )
)
φ

=
1

r2

[
∇(rBφ)×∇χ

]̂
iφ. (see(A.7))

Finally, we take the curl on both sides of the equation (2.4) and then take its toroidal part
along with the identities (A.17), (A.14), (A.15) and∇× (∇f ×∇φ) = −∆∗f∇φ,

−∂(rBφ)

∂t
∇φ−

[
∇(χ)×∇

(vφ
r

)
+∇

(Bφ

r
+
B0r0

r2

)
×∇ψ

]
= −η∆∗(rBφ)∇φ.

(A.18)

We use the following coordinate transformations,

u3 = rBφ, u4 = rvφ

to transform the equations (A.16), (A.18) and (A.11), respectively, as follows,

ν∆∗u4 = r2
0

∂u4

∂t
+

1

a

(
{u3, u5}+ {u1, u4}

)
η∆∗u3 = r2

0

∂u3

∂t
+ r3

0B
′

0(t) +
1

a

(
{u4, u5}+ {u1, u3}

)
+

2

a2

(
(u3 + r0B0(t))

∂u1

∂b
− u4

∂u5

∂b

)
,

ν∆∗u2 = r2
0

∂u2

∂t
+

1

a
{u1, u2}+

2

a2
u2
∂u1

∂b
+

1

a
{u6, u5} −

2

a2
u6
∂u5

∂b

+
2

a2

[
(u3 + r0B0(t))

∂u3

∂b
− u4

∂u4

∂b

]
.

A.5. Boundary Conditions. Following Section A.3, the boundary conditions in the
cylindrical coordinates system are described as,

ψ|t=0 = ψ0, vφ|t=0 = v0, χ|t=0 = χ0, Bφ|t=0 +B0(0)
r0

r
= B1 on K, (A.19)

ψ|∂K = 0, vφ|∂K = 0 in ∂K × [0, T ], (A.20)

Bφ + r
∂Bφ

∂r
= 0,

∂2χ

∂r2
− 1

r

∂χ

∂r
= 0 on ∂K × [0, T ], (A.21)

∂χ

∂z
= 0 on ∂K × [0, T ]. (A.22)
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Under the assumption that initial plasma velocity is zero, the reduced form of the bound-
ary conditions (3.16)-(3.22) are described as,

∂u5

∂b
= 0, On ∂K × [0, T ]

∂u3

∂a
= 0,

[∂2u5

∂a2
− 1

a

∂u5

∂a

]
= 0, On ∂K × [0, T ]

u1, u4 = 0, On ∂K × [0, T ]

(ψ0 = 0, v0 = 0)→ u1(0), u4(0) = 0, On K

u5 = A :=
χ0

r0

, u3 = rB1 − r0B0(0). On K
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