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Abstract

A method of triangular surface mesh smoothing is presented to improve an-
gle quality by extending the original optimal Delaunay triangulation (ODT)
to surface meshes. The mesh quality is improved by solving a quadratic
optimization problem that minimizes the approximated interpolation error
between a parabolic function and its piecewise linear interpolation defined on
the mesh. A suboptimal problem is derived to guarantee a unique, analytic
solution that is significantly faster with little loss in accuracy as compared
to the optimal one. In addition to the quality-improving capability, the pro-
posed method has been adapted to remove noise while faithfully preserving
sharp features such as edges and corners of a mesh. Numerous experiments
are included to demonstrate the performance of the method.

Keywords: surface mesh denoising, mesh quality improvement,
feature-preserving, optimal Delaunay triangulation

1. Introduction1

Triangular surface meshes are widely used in computer graphics, indus-2

trial design and scientific computing. In computer graphics and design, peo-3

ple are typically interested in the smoothness (low variation in curvature)4

and sharp features (edges, corners, etc.) of a mesh. In many applications of5

scientific computing, however, the quality of a mesh is a key factor that sig-6

nificantly affects the numerical result of finite or boundary element analysis.7
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One of the most common criteria for mesh quality is the uniformity of angles,8

although this may not be the best in some cases where anisotropic meshes9

are desired [1]. For its popularity, however, we shall adopt the angle-based10

criterion in the present work. In many real applications, the input meshes of-11

ten have low quality, containing angles close or even equal to 0◦ or 180◦. The12

main interest and contribution of the present work is to improve the quality13

of triangular surface meshes. Additionally our method will be extended to14

be able to remove noise and preserve sharp features on surface meshes. For15

simplicity, we refer to both mesh quality improvement and mesh denoising16

as mesh smoothing unless otherwise specified.17

Mesh denoising has a long history in computer graphics and the related18

methods include three main categories: (1) geometric flows [2, 3, 4, 5, 6],19

(2) spectral analysis [7, 8], and (3) optimization methods [9, 10]. Due to its20

simplicity and low computational cost, Laplacian smoothing has established21

itself as one of the most common methods among all the geometric flow-based22

methods. In this method, every node is updated towards the barycenter23

of the neighborhood of the node. However, volume shrinkage often occurs24

during this process. The shrinkage problem may be tackled by methods25

utilizing spectral analysis of the mesh signal, which is the main idea of the26

second category. Optimization-based methods guarantee the smoothness of27

the mesh by minimizing different types of energy functions. But the iterative28

process searching for optimal solutions can be time-consuming.29

A variety of techniques on mesh quality improvement have been devel-30

oped [11, 12]. Some of the existing techniques include: (1) inserting/deleting31

vertices [13], (2) swapping edges/faces [14], (3) remeshing [15, 16, 17, 18],32

and (4) moving vertices without changing mesh topology [19, 20, 21, 22].33

Two or more of the above techniques are sometimes combined to achieve34

better performance. For instance, Dyer et al. [23] integrate edge flipping,35

remeshing and decimation into one framework for generating high-quality36

Delaunay meshes. In the current work, however, we shall restrict ourselves37

to the methods in the last category that only adjust the nodes’ coordinates.38

Among these methods, Laplacian smoothing in its simplest form that moves39

a vertex to the center or barycenter of the surrounding vertices [19] is one40

of the fastest methods but it may fail in improving mesh quality and is of-41

ten equipped with other techniques such as optimizations [24, 25]. Ohtake et42

al. [26] presented a method of simultaneously improving and denoising a mesh43

based on a combination of mean curvature flow and Laplacian smoothing.44

Nealen et al. [27] introduced a framework for mesh improving and denoising45
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using Laplacian-based least-squares techniques. Both methods, as shown in46

[28], cannot warrant mesh quality or feature-preservation. Wang et al. [28]47

presented a method for mesh denoising and quality improvement by local48

surface fitting and maximum inscribed circles but it was heuristic and lacked49

mathematical foundations.50

Among all the repositioning-based methods for mesh quality improve-51

ment, the optimal Delaunay triangulation (ODT) [29, 1, 30] has been proved52

to be effective on 2D triangular meshes. However, the extension from 2D53

meshes to 3D surface meshes is nontrivial in both mathematical analysis and54

algorithm design. For 3D surface meshes we need to consider not only angle55

quality but also mesh noise that causes bumpiness on surfaces, which was56

not taken into account in the original ODT method or its variants in tetra-57

hedral mesh smoothing [31, 32]. In addition, sharp surface features must be58

well preserved during the processes of mesh denoising and quality improve-59

ment. There have been extensive studies on feature-preserving surface mesh60

processing [33, 34, 35, 36, 37, 38]. However, most of the previous work was61

focused on the mesh denoising problem but only a few dealt with both mesh62

denoising and quality improvement with feature preservation [28].63

The main goal of the present paper is to generalize the 2D ODT idea64

to 2-manifold surface meshes by formulating the mesh quality improvement65

as an optimization problem that minimizes the interpolation error between66

a parabolic function and its piecewise linear interpolation at each vertex of67

the surface mesh. Unfortunately there is no analytical solution to this op-68

timization problem. To solve the minimization problem faster, we consider69

a suboptimal problem by simplifying the objective function into a quadratic70

formula such that an analytical solution can be derived. The proposed sub-71

optimal Delaunay triangulation (or S-ODT) is then extended to include two72

other capabilities: removing mesh noise as well as preserving sharp features73

on the original meshes. These two goals are achieved by using two standard74

techniques: curve/surface fitting [39] and local structure tensors [33].75

The remainder of this paper is organized as follows. In Section 2, we76

extend the original ODT method [29, 1] to improve the angle quality of a77

surface mesh. Several variants of the new algorithm are also introduced to78

warrant additional desirable properties such as noise removal and feature79

preservation. Numerous mesh examples are included and comparisons are80

given in Section 3 to demonstrate the performance of the proposed algo-81

rithms, followed by our conclusions in Section 4. Some mathematical details82

of the algorithms are provided in the Appendices.83
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2. Method84

Like many other mesh smoothing approaches, our method is iterative and85

vertex-based, meaning that all mesh vertices are repositioned in each itera-86

tion and the process is repeated until the mesh quality meets some predefined87

criteria or a maximum number of iterations is reached. In this section we88

shall describe three algorithms with the basic one addressing the mesh quality89

improvement using the proposed sub-optimization formulation and two ex-90

tended algorithms dealing additionally with the issues of feature preservation91

and noise removal. For completeness, we shall begin with a brief introduction92

to Delaunay triangulation and the original ODT method [29]. More details93

on ODT-based 2D/3D and local/global mesh smoothing algorithms can be94

found in [1, 30].95

2.1. Brief introduction to ODT96

In computational geometry, Delaunay triangulation (DT) is a well known97

scheme to triangulate a finite set of fixed points P , satisfying the so-called98

empty sphere condition. That is, no point in P can be inside the circumsphere99

of any simplex (e.g., triangle) in DT (P ). Consider, for example, the four100

points p0, p1, p2 and p3 in Figure 1(a-b). There are obviously two ways101

to triangulate this point set, but only the one in Figure 1(b) is a Delaunay102

triangulation that produces a larger minimum angle than that in Figure 1(a)103

and thus is preferable according to the angle-based criterion. Figure 1(a-b)104

also tells us another interpretation of Delaunay triangulation. If we lift the105

point set onto a parabolic function ||x||2, any triangulation on the lifting106

points q0, q1, q2 and q3 will result in a unique piecewise linear interpolation107

of the parabolic function. The one that minimizes the interpolation error108

can be projected back to the original point set and makes the Delaunay109

triangulation. From this example, we can see that Delaunay triangulation of110

a fixed point set is equivalent to minimizing the following interpolation error,111

which can be achieved by swapping edges:112

Q(DT, ||x||2, q) = min
T ∈Tp

Q(T , ||x||2, q), ∀1 ≤ q ≤ ∞, (1)

where Q(T , ||x||2, q) is the Lq distance between the parabolic function ||x||2113

and its piecewise linear interpolation ||x||2I based on a particular triangulation114

T of a fixed point set P . Tp is the set of all possible triangulations of P .115

Although Delaunay triangulation is optimal for a fixed set of points, it116

does not necessarily produce a high quality mesh if the given points are not117
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nicely distributed. In addition to edge-swapping, there is actually another118

way, called vertex-repositioning, to minimize the error between a parabolic119

function and its piecewise linear interpolation. Consider for example the120

point set in Figure 1(c). The triangulation is already optimal in terms of121

the DT criterion. However, the interpolation error can be further reduced122

by moving the vertex p0 to a better position as shown in Figure 1(d) and123

hence the mesh quality is improved. This strategy constitutes the core of the124

optimal Delaunay triangulation (ODT) method as detailed in [1, 29, 30].125

It is worth noting that the vertex-repositioning alone does not produce126

a Delaunay-like triangulation. For better mesh quality improvement, it is127

always wise to combine edge-swapping into vertex-repositioning, as in the128

original ODT method [29]. In the rest of the current paper, we shall extend129

the ODT method to surface meshes to improve the angle quality. However,130

we will not consider the edge-swapping technique in the descriptions of our131

algorithms as well as results, simply because our main focus in the current132

paper is how vertices are repositioned to achieve quality improvement and133

two other goals (noise removal and feature preservation).134

(a) (b) (c) (d)

Figure 1: Illustration of minimizing interpolation error in two ways: edge
swapping (a-b) and vertex-repositioning (c-d). The mesh quality in (b) is
improved by swapping the edges but keeping the vertices fixed. The interpo-
lation error can also be reduced (hence mesh quality is improved) by moving
the vertex p0 in (c) to a new position in (d), where the edge connections are
kept unchanged.
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2.2. Optimal Delaunay triangulation on surfaces135

Suppose M is a triangular surface mesh in R
3 and the sets of vertices (or136

nodes) and faces are V and K respectively. Let x∗ be the optimal position137

of a vertex x0 ∈ V in the sense that the following interpolation error is138

minimized:139

E(x′)=

∫

x∈N ′

|fI(x− x′)− f(x− x′)| dx

=

N
∑

k=1

∫

x∈τ ′
k

fI(x− x′)− f(x− x′) dx, (2)

where x′ is the varying (new) position of x0, N ′ ⊂ K is the set of N140

neighboring triangles around x′, f(x) = ||x||2 is a parabolic function in R
3,141

fI(x) is the piecewise linear interpolation of f(x) based on N ′, and τ ′k is the142

k-th triangle in N ′. Note that fI(x) is always no less than f(x) so that we143

can remove the absolute-value operation in the first equation of (2).144

The key of minimizing (2) is to compute the sum of the surface integrals145

in all the neighboring triangles around x′. Suppose τ ′k is formed by < x′,146

xk, xk+1 > (let xN+1 = x1), the integral
∫

x∈τ ′
k

fI(x − x′) − f(x − x′)dx can147

be computed by replacing x with x′ + λ1(xk − x′) + λ2(xk+1 − x′), where148

λ1, λ2 ≥ 0 and λ1 + λ2 ≤ 1. Thus (2) becomes the following equation (see149

Appendix A for details):150

E(x′)=

N
∑

k=1

[(xk − x′)2 + (xk+1 − x′)2 + (xk+1 − xk)
2]S′

k, (3)

where S′
k is the area of τ ′k. Note that S

′
k depends on x′ introducing additional151

non-linearity to the error function.152

The minimizer of (3) in general does not admit a closed-form expression.153

Although numerical methods may be used for solving (3), it can be compu-154

tationally inefficient, as will be demonstrated in Section 3. For this reason,155

we shall take another strategy by replacing S′
k with other types of weights,156

yielding a suboptimal problem that can be analytically and more efficiently157

solved. The simplest case is that, if we set S′
k ≡ 1 for k = 1, 2, · · · , N , the so-158

lution of (3) is equivalent to the Laplacian smoothing that moves x′ towards159

the barycenter of its neighborhood in K. Therefore, Laplacian smoothing is160

just a special case of (3).161
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2.3. Suboptimal Delaunay triangulation on surfaces162

In this work, we replace each S′
k in (3) with D′

k = det(xk−x′,xk+1−x′,n),163

where n is the unit normal vector of a plane Πt on which x′ is allowed to164

move. As an approximation to the tangent plane at x0, Πt is computed as165

follows:166

n =

∑N

k=1
Sknk

||
∑N

k=1 Sknk||
, (4)

where Sk and nk are the area and unit normal vector of the kth neighboring167

triangle of x0 in the original mesh. As shown in Appendix D, when x′ is168

restricted to the tangent plane defined this way, the volume of a closed mesh169

can be exactly preserved. Please note that at this moment, we assume that170

the original mesh is smooth enough and noise-free, such that the tangent171

plane is well defined as above. For meshes with sharp features or noise,172

special care must be taken to calculate tangent planes (or feature lines) as173

will be discussed in the subsequent subsections. In these cases, the volume174

preservation is not guaranteed.175

Note that D′
k is the area of the projection of τ ′k onto Πt, the ratio be-176

tween any two D′
k’s is a good approximation of the ratio between the two177

corresponding S′
k’s. With this in mind, we replace each S′

k in (3) with D′
k178

and have the following approximated, suboptimal Delaunay triangulation179

(S-ODT) problem:180

x∗ = argminE(x′) with

E(x′)=
N
∑

k=1

[(xk−x′)2+(xk+1−x′)2+(xk+1−xk)
2]D′

k. (5)

We shall see in Section 3, especially Figure 6, that the approximation of181

S′
k with D′

k makes sense (i.e., with significantly less computational time but182

little loss in mesh quality).183

As each D′
k also has linear dependence on x′, the error E seems to have184

cubic dependence on x′ and thus the minimizer of (5) does not seem to admit185

a closed form expression. Fortunately, the sum of all D′
k is a constant (i.e.,186

∑N

k=1D
′
k ≡ C; see Appendix B for the proof) if all the neighbors around187

x′ are fixed (i.e., we smooth the mesh locally). This property makes the188

sum of all cubic terms in (5) a constant and thus minimizing (5) becomes an189

unconstrained quadratic optimization problem such that an analytic solution190

can be obtained.191
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In order to preserve the local shape (and volume too) of the original mesh192

near x′ , we restrict x′ to moving only in the tangent plane Πt. Thus x′ in193

(5) can be written as a parametric representation as follows:194

x′ = x0 + us+ vt, (6)

where s and t are two orthogonal unit vectors on Πt, and u, v are the coor-195

dinates of x′ corresponding to s and t respectively.196

Algorithmically the optimal coordinates u∗, v∗ can be computed by solv-197

ing the following system of linear equations:198

(

2E G
G 2F

)(

u
v

)

=

(

H
I

)

, (7)

where E , F , G, H, I are determined in the following way:199



























































































E =C+
N
∑

k=1

[s(Xk+Xk+1)det(s,Xk+1−Xk,n)]

F =C+
N
∑

k=1

[t(Xk+Xk+1)det(t,Xk+1−Xk,n)]

G=
N
∑

k=1

[s(Xk+Xk+1)det(t,Xk+1−Xk,n)

+t(Xk+Xk+1)det(s,Xk+1−Xk,n)]

H=
N
∑

k=1

[s(Xk+Xk+1)det(Xk,Xk+1,n)

+(X2
k+X2

k+1−XkXk+1)det(s,Xk+1−Xk,n)]

I =
N
∑

k=1

[t(Xk+Xk+1)det(Xk,Xk+1,n)

+(X2
k+X2

k+1−XkXk+1)det(t,Xk+1−Xk,n)]

(8)

where Xi = xi − x0 for i = 1, 2, · · · , N . The details of calculating E , F , G,200

H, I are provided in Appendix C. The basic S-ODT algorithm for surface201

mesh quality improvement by minimizing (5) is summarized in Algorithm 1.202

2.4. Feature-preserving mesh quality improvement203

Algorithm 1 performs well for surface meshes without sharp features such204

as creases or corners. In reality, however, sharp features are commonly seen205

and crucial in precisely representing geometric features of a mesh. To this206

end, we classify the surface nodes into three categories: (1) smooth nodes207
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Algorithm 1: Suboptimal Delaunay triangulation (S-ODT)
Input: A surface mesh M with vertices V and faces K
for every x0 in V do

Find all the neighboring nodes {xk} around x0

Compute the unit normal vector n of Πt at x0

Choose two vectors s and t on Πt

Compute {D′
k} and C, and then E , F , G, H, I in (8)

Solve the matrix equation in (7)
Compute the optimal x∗ with x0 + u∗s+ v∗t

end for
Output: The smoothed mesh Ms

with low curvature in the neighborhood, (2) crease nodes with low curvature208

in one direction and high curvature in another (typically perpendicular to the209

first direction), and (3) corner nodes, where at least three creases intersect.210

We define crease and corner nodes as feature nodes and impose some special211

restrictions on them during the mesh smoothing process. Specifically, a crease212

node moves only along the direction of the crease and a corner node remains213

unchanged.214

Motivated by [33] and [22], we distinguish between smooth and feature215

nodes by using the local structure tensor T at x0 as defined below:216

T =
N
∑

k=1

ωknkn
T
k . (9)

Here nk is the unit normal vector of τk, calculated by < x0,xk,xk+1 >.217

The weight ωk is determined by Sk
Smax

exp(−gk/σ), where Sk is the area of τk,218

Smax = max
i=1,··· ,N

Si, gk is the distance from x0 to the barycenter of τk, and σ is219

the average edge length of the surface mesh.220

Note that T is a semi-positive definite symmetric matrix and has three221

real eigenvalues. We decompose T using the eigen-analysis method and de-222

cide the type of x0 based on the distribution of the eigenvalues of T. Let223

ν1 ≥ ν2 ≥ ν3 be the eigenvalues of T and e1, e2 and e3 be the corresponding224

eigenvectors. Let Ss = ν1 − ν2, Se = ν2 − ν3 and Sc = ν3, the type of x0 is225

9



determined by the following scheme:226

max{Ss, ǫSe, ǫηSc}=















Ss :x0 is a smooth node
ǫSe :x0 lies on a crease curve

with direction e3
ǫηSc :x0 is a corner node

. (10)

Here, the sensitivity parameters ǫ and η are both set to be 2 according to227

[33].228

In the mesh smoothing process, Algorithm 1 is still applicable when x0 is229

a smooth node. When x0 is a corner node, we just keep it unchanged. When230

x0 is a crease node, however, we move x0 to the optimal position by solving231

(5) along the direction of the crease. Therefore, we assume x′ = x0+de3 and232

compute the optimal value d∗ by minimizing (5) along e3. The computation233

of d∗ is similar to that of u∗, v∗ in Algorithm 1. First, we compute the234

corresponding coefficients in the following way:235























A=C+
N
∑

k=1

[e3(Xk+Xk+1)det(e3,Xk+1−Xk,n)]

B=
N
∑

k=1

[e3(Xk+Xk+1)det(Xk,Xk+1,n)

+(X2
k−XkXk+1+X2

k+1)det(e3,Xk+1−Xk,n)]

(11)

Then the scalar d∗ is computed by d∗ = − B
2A
. The process is summarized in236

Algorithm 2.237

Algorithm 2: Feature-preserving S-ODT
Input: A surface mesh M with vertices V and faces K
for every x0 in V do

Find all the neighboring nodes {xk} around x0

Compute the unit normal vector n of Πt at x0

Compute the tensor matrix T using (9)
Compute the eigen-pairs of T: ν1, e1, ν2, e2, ν3, e3
Set Ss = ν1 − ν2, Se = ν2 − ν3, Sc = ν3
if max{Ss, ǫSe, ǫηSc} = Ss do

Set x0 as a smooth node
else if max{Ss, ǫSe, ǫηSc} = ǫSe, do

Set x0 as a crease node
else if max{Ss, ǫSe, ǫηSc} = ǫηSc do
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Set x0 as a corner node
end if
if x0 is a corner node do

continue
else if x0 is a smooth node do

Choose two vectors s and t on Πt

Compute E , F , G, H, I in (8) and solve (7)
Compute the optimal x∗ with x0 + u∗s + v∗t

else if x0 is a crease node do
Compute A, B in (11) and set d∗ = − B

2A

Compute the optimal x∗ with x0 + d∗e3
end if

end for
Output: The smoothed mesh Ms

2.5. Feature-preserving, noise-removing mesh quality improvement238

Our method can be readily adapted to remove mesh noise while improving239

mesh quality and still retaining the feature-preserving property. In the basic240

S-ODT algorithm (Algorithm 1), the optimal position is assumed to be on the241

tangent plane at x0 of the surface mesh. When there is noise on the surface242

mesh, a common strategy is to fit a plane (or higher order polynomials)243

to the neighboring nodes of each vertex and project the vertex onto the244

plane [28]. Sharp features may be preserved by considering anisotropic local245

neighborhoods [35]. In our current work, we utilize a weighted least squares246

fitting strategy as detailed below [39].247

As described in Section 2.4, each mesh node can be classified into either248

a smooth node, a crease node or a corner node. We always keep the corner249

nodes unchanged. Suppose x0 is a smooth node with neighboring nodes250

{xk}
N
k=1. The corresponding unit normal vectors at x0 and its neighbors are251

{nk}Nk=0. Then a plane can be fitted by solving the following weighted least252

squares problem:253

min
x̄,n̄

N
∑

k=0

wk((xk − x̄)n̄)2 (12)

where wk is the weight of xk, x̄ is a point on the fitting plane Πf and n̄ is254

the unit normal vector of Πf . The weights are set as follows:255

w0 = 1, wk = L(rk),where rk = n0 · nk, k = 1, 2, · · · , N.
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L(r) is a linear function on [cos(π/4), 1] with L(cos(π/4)) = 0 and L(1) = 1.256

The fitting plane Πf can be computed by first determining x̄ and then n̄.257

Specifically, x̄ is the weighted average of x0 and its neighbors:258

x̄ =

N
∑

k=0

wkxk/

N
∑

k=0

wk. (13)

n̄ is chosen to be the eigenvector corresponding to the smallest eigenvalue
of the following matrix M [39]:

M =

N
∑

k=0

wk(xk − x̄)(xk − x̄)T.

Simply projecting x0 onto the fitting plane Πf can suppress the mesh259

noise around x0 but the mesh angle quality may not be improved and some-260

times may become even worse. To achieve both mesh denoising and quality261

improvement, we replace the tangent plane Πt in Algorithm 1 or Algorithm262

2 with the fitting plane Πf and accordingly replace x0 with x̄ in the mini-263

mization of (5).264

When x0 is a crease node, a similar procedure is applied. The difference265

is that we fit a line instead of a plane by using some 2-ring neighboring nodes266

of x0 and then project x0 onto the fitted line. The neighboring nodes selected267

include x0 itself, two neighbors along one direction of the crease line and two268

neighbors along the other direction of the crease line, where the crease line269

passing x0 is defined as the crease direction determined by the tensor analysis270

procedure. The two neighbors along each direction are selected so that they271

are the closest to the crease line. The overall algorithm for feature-preserving272

mesh denoising and quality improvement is given in Algorithm 3.273

Algorithm 3: Feature-preserving & noise-removing S-ODT
Input: A surface mesh M with vertices V and faces K
for every node x0 in V do

Find all the neighboring nodes {xk} around x0

Compute the normal tensor T using (9)
Compute the eigen-pairs of T: ν1, e1, ν2, e2, ν3, e3
Set Ss = ν1 − ν2, Se = ν2 − ν3, Sc = ν3
if max{Ss, ǫSe, ǫηSc} = Ss do

Set x0 as a smooth node
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else if max{Ss, ǫSe, ǫηSc} = ǫSe, do
Set x0 as a crease node

else if max{Ss, ǫSe, ǫηSc} = ǫηSc do
Set x0 as a corner node

end if
if x0 is a corner node do

continue
else if x0 is a smooth node do

Compute x̄ and n̄ for the fitting plane Πf

Set x0 = x̄ and n = n̄
Compute s and t which are perpendicular to n
Compute the E , F , G, H, I in (8) and solve (7)
Compute the optimal x∗ with x0 + u∗s+ v∗t

else if x0 is a crease node do
Find four more neighboring nodes along e3 near x0

Fit a line based on these five nodes
Set x0 to be any point on the fitting line
Compute A, B in (11) and set d∗ = − B

2A

Compute the optimal x∗ with x0 + d∗e3
end if

end for
Output: The smoothed mesh Ms

3. Results and Discussions274

The presented algorithms have been tested on numerous surface meshes275

and we shall show some of the results below. We first apply the basic S-ODT276

algorithm (Algorithm 1) to several surface meshes without noise or sharp277

features. The bimba and elephant models are shown in Figure 2(a) and278

Figure 3(a) respectively. A closer look at the original bimba mesh and the279

angle histograms of these meshes are given in Figure 2(b-c) and Figure 3(b-c).280

By applying Algorithm 1 to each mesh for 20 times, the mesh qualities are281

significantly improved, as can be seen from Figure 2(d-f) and Figure 3(d-f).282

In Figure 4 we show how the minimum and maximum angles of the bimba283

and elephant models change with respect to the number of iterations by ap-284

plying Algorithm 1. We can see that the mesh qualities are largely improved285

in the first five iterations, and further smoothing does not help much on286

mesh quality improvement. In order to measure the shape change between287
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(a) (b) (c)

(d) (e) (f)

Figure 2: The bimba mesh model. (a-c) show the original surface mesh, a
closer view and the angle histogram of the mesh. (d-f) show the smoothed
mesh and the corresponding histogram after applying the S-ODT (Algorithm
1) 20 times. The minimum and maximum angles in both meshes are indicated
in red in the histograms. The original model is provided courtesy of IMATI
and INRIA by the AIM@SHAPE Shape Repository.

the original and smoothed meshes, we compute the symmetric Hausdorff dis-288

tance between the meshes using the M.E.S.H. tool [40], and the results are289

illustrated in Figure 5. The histograms in Figure 5 show the absolute dif-290

ferences between the original and smoothed meshes. The maximal relative291

differences, defined as the ratio of the maximal absolute difference over the292

diagonal of the bounding box of a mesh, are 0.09% and 0.13% for the bimba293

and elephant models respectively.294

As mentioned in Section 2.2, the analytically-based S-ODT algorithm is295

a suboptimal solution to the ODT method on surfaces. Here we compare296

the S-ODT method with the numerical solution of the optimal problem (the297

ODT method on surfaces). The model we use is a triangular surface mesh298

of a biomedical molecule called RyR with 129K vertices. Algorithm 1 is299

applied to this mesh for 20 times and it takes about 36 seconds. By contrast,300

a numerical method by using L-BFGS [41] is adopted to solve the original301
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Figure 3: The elephant mesh model. (a-c) show the original surface mesh, a
closer view and the angle histogram of the mesh. (d-f) show the smoothed
mesh and the corresponding histogram after applying the S-ODT (Algorithm
1) 20 times. The minimum and maximum angles in both meshes are indicated
in red in the histograms. The model is provided courtesy of INRIA by the
AIM@SHAPE Shape Repository.

optimal problem in Equation (3) and it takes about 2 minutes for 5 iterations,302

after which no significant improvement was observed. The resulting meshes303

as well as their qualities, however, are similar by using the two methods, as we304

can see from Figure 6. A conclusion from this experiment is that the proposed305

S-ODT method can smooth a mesh as effectively as the numerically-based306

optimalization method but it takes much less time than the latter.307

The feature-preserving S-ODT method (Algorithm 2) is tested on the308

noise-free fandisk model containing crease edges and corners. The algorithm309

is applied on the mesh for 20 times and the results are shown in Figure310

7(a-f), where both angle histograms and curvature distributions before and311

after mesh smoothing are provided. Besides the significantly improved mesh312
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Figure 4: The convergence of Algorithm 1. (a-b) show how the minimal and
maximal angles (in degrees) change with respect to the number of iterations
applied to the bimba model. (c-d) show how the minimal and maximal angles
(in degrees) change with respect to the number of iterations applied to the
elephant model.

quality, the sharp features are well preserved too. Note that the sensitiv-313

ity parameters ǫ and η in Eq. (10) are both set to be 2 according to [33].314

However, we believe that this value should be controlled by the user as the315

user is the best person to define the “noise” and “feature” in his/her data.316

Different parameter values would give different results of the node classifica-317

tion, which would produce different smoothing results as the three types of318

nodes (smooth, crease, and corner) are subject to different smoothing pro-319

cedures in our algorithms. For example, larger sensitivity parameters would320

better preserve small “features” that may otherwise be treated as “noise”321

and smoothed out when small parameters are chosen. When both sensitivity322

parameter are small, almost all vertices are smooth nodes and no feature323

preservation can be achieved.324

The feature-preserving and noise-removing S-ODT method (Algorithm 3)325

is also applied for 20 times to three noisy meshes: the dragon head (Figure326

8), the Chinese lion (Figure 9), and the noisy fandisk (Figure 10). The mesh327

quality improvement is clearly demonstrated by the angle histograms in all328

these models and Figure 11. The curvature distribution maps in Figures 9329

and 10 show high-performance mesh denoising effects. In addition, the noisy330

fandisk model (Figure 10) confirms the feature-preserving property of our331

method. The bilateral filtering denoising technique is utilized and compared332

with our approach as shown in Figure 10. In the figure, the mesh quality333

by the bilateral filtering is poor, and the curvature distribution is also worse334

than our method. It is worth pointing out that our method performs better335
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(a) (b)

Figure 5: The symmetric Hausdorff distance between the original and
smoothed meshes. The distance is computed using the M.E.S.H. tool [40].

than the bilateral filter because we pre-classify every vertex using the tensor336

analysis technique.337

Tables 3 and 4 show quantitative comparisons between our S-ODT algo-338

rithms (with 20 iterations) and two other representative methods, Sun’s [35]339

and Ohtake’s [26], running on a Pentium IV PC of 2.0 GHz. Note that340

the dancer model (not shown due to space limit), also downloaded from the341

AIM@SHAPE Shape Repository, was included to fill the size gap of the other342

models shown in this paper. The mesh qualities after smoothing are provided343

in Tables 3, where Sun’s method is excluded because it performs worse than344

Ohtake’s method on all the models considered. From Table 4 we can see that345

Sun’s method is fast but, like Ohtake’s, it lacks the ability of mesh quality346

improvement. While the running time of our method can be much reduced347

if only 5 ∼ 10 iterations are applied, the biggest gain of our approach is the348

tremendously improved mesh quality. As shown in Figure 12, the running349

time of the three variants of our algorithm are approximately linear to the350

number of vertices in the meshes.351
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Table 3: Comparisons of min-angle improvement

models original ours Ohtake’s

dancer 0.8◦ 18.3◦ (Alg.1) 0.4◦

elephant 1.4◦ 17.9◦ (Alg.1) 0.2◦

bimba 1.4◦ 15.5◦ (Alg.1) 0.2◦

RyR 4.9◦ 17.3◦ (Alg.1) 0.2◦

noise-free fandisk 0.0◦ 17.7◦ (Alg.2) 0.1◦

noisy fandisk 16.0◦ 18.4◦ (Alg.3) 0.4◦

Chinese lion 0.2◦ 16.8◦ (Alg.3) 0.0◦

dragon head 0.3◦ 17.5◦ (Alg.3) 0.1◦

venus 1.0◦ 16.8◦ (Alg.3) 0.0◦

angel 0.1◦ 16.3◦ (Alg.3) 0.0◦

Table 4: Comparisons of running time (in seconds)

models vertex number ours Ohtake’s Sun’s

dancer 24,998 12.0 (Alg.1) 3.3 0.8

elephant 52,099 16.6 (Alg.1) 7.6 1.0

bimba 83,887 24.5 (Alg.1) 11.8 1.7

RyR 129,346 35.8 (Alg.1) 16.8 2.6

noise-free fandisk 6,475 4.5 (Alg.2) 2.0 0.1

noisy fandisk 6,475 6.3 (Alg.3) 3.0 0.1

Chinese lion 99,289 49.8 (Alg.3) 13.0 2.1

dragon head 99,777 50.5 (Alg.3) 14.8 3.1

venus 100,759 53.3 (Alg.3) 15.7 8.8

angel 236,979 120.4 (Alg.3) 35.1 15.7
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Figure 6: Performance comparison between the analytical solution to the
suboptimal problem (the proposed S-ODT method: Algorithm 1) and the
numerical solution to the optimal problem (Equation (3)). (a) The original
RyR mesh. (b-d) show respectively the angle histograms of the original
mesh, the mesh smoothed by the S-ODT method, and the mesh smoothed
by the numerically-based ODT method. (e-g) show a closer look at the
three meshes respectively. While little difference is observed between the
two smoothed meshes, the computational time is only about 36 seconds by
using the analytical method for 20 iterations, in contrast to 1 minute and 56
seconds by using the L-BFGS method for 5 iterations.

Finally we would like to compare our S-ODT method with the surface352

remeshing technique [15, 16, 17, 18], as both aim to generate meshes with353

high quality. There are two main differences between the two methods: (1)354

the S-ODT always keeps the connectivity between vertices in a mesh while355

the remeshing method does not because of the re-sampling on the mesh;356

(2) for a smooth, closed surface mesh, the S-ODT algorithm preserves ex-357

actly the volume of the original mesh while the remeshing method typically358

does not. In addition, we demonstrate in Table 5 some quantitative compar-359

isons between our S-ODT method and several recent remeshing algorithms360

(Valette [16], Wang [17] and Fuhrmann [18]). From the table we can see that361
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Table 5: Comparisons of min-angle improvement between our method and
remeshing techniques

model ours Valette’sWang’sFuhrmann’s

dancer 18.3◦ (Alg.1) 6.0◦ 20.9◦ 30.7◦

elephant 17.9◦ (Alg.1) 0.0◦ 14.9◦ 30.5◦

bimba 15.5◦ (Alg.1) 0.0◦ 21.55◦ 32.8◦

RyR 17.3◦ (Alg.1) 0.2◦ N/A 31.0◦

noise-free fandisk17.7◦ (Alg.2) 0.0◦ 28.8◦ 0.0◦

noisy fandisk 18.4◦ (Alg.3) 0.0◦ 35.6◦ 34.0◦

Chinese lion 16.8◦ (Alg.3) 0.0◦ 15.12◦ 4.23◦

dragon head 17.5◦ (Alg.3) 0.0◦ 33.11◦ 0.55◦

venus 16.8◦ (Alg.3) 0.0◦ N/A 2.77◦

angel 16.3◦ (Alg.3) 0.0◦ N/A 0.92◦

the methods in [16] does not guarantee improvement of min angles. The362

method in [17] fails when the size of the input mesh is too large (e.g., RyR).363

In addition, the remeshed results by this method are not as smooth as ours,364

as shown in Figure 8(g-i). Although high-quality meshes generally can be365

achieved by using the method in [18] when the original meshes are noise-free366

and error-free, the quality is not guaranteed for noisy meshes. When the367

original mesh contains self-intersecting triangles (e.g., the noise-free fandisk368

model in Table 5), the method in [18] cannot fix the errors and often results369

in low-quality meshes. The two problems of [18] are further demonstrated in370

Figure 7(g-i) and Figure 9(g-i) respectively. Although our algorithms seem371

to perform better in dealing with self-intersections, there is no guarantee of372

mesh quality either. This is because self-intersections introduce inverted nor-373

mal vectors to some triangles, which usually results in inaccurate estimation374

of tangent planes (see Eq. (4)). In some cases, our algorithms may fail in375

improving the minimal and maximal angles of some meshes (see Figure 13376

for example), where poorly-shaped triangles are formed by vertices mostly377

lying on sharp edges. In these cases, other methods such as remeshing [17]378

or vertex insertion/deletion may work better.379
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4. Conclusion380

In this paper, we present a novel, analytical approach that shows excel-381

lent performance in simultaneously denoising a surface mesh, improving the382

mesh quality, and preserving sharp features. Although the proposed S-ODT383

method is a suboptimal solution to the original ODT formulation, it can gen-384

erate comparable results to the latter one but with much less computational385

time. Our method has fast convergence: typically 5 iterations are sufficient386

to observe good mesh quality and smoothness. In addition, the symmet-387

ric Hausdorff distances show that the smoothed mesh undergoes little shape388

deformation from the original mesh.389
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Appendix A. From (2) to (3)398

For any given x′, note that τ ′k is the triangle formed by < x′,xk,xk+1 >.399

We compute400
∫

x∈τ ′
k

fI(x− x′)− f(x− x′)dx (A.1)

by replacing x with x′ + λ1(xk − x′) + λ2(xk+1 − x′), where λ1, λ2 ≥ 0 and401

λ1+λ2 ≤ 1. Let Yk = xk−x′ and Yk+1 = xk+1−x′, we can rewrite f(x−x′)402

into the following form:403

f(x− x′) = λ2
1Y

2
k + 2λ1λ2YkYk+1 + λ2

2Y
2
k+1 (A.2)

Note that fI(x− x′) is the linear interpolation of f(x− x′) in τ ′k, f(x− x′)404

takes the following form:405

fI(x− x′) = f(0) + λ1f(Yk) + λ2f(Yk+1)
= λ1Y

2
k + λ2Y

2
k+1

(A.3)
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By substituting (A.2) and (A.3) for f(x−x′) and fI(x−x′) respectively406

in (A.1), we have407

∫

x∈τ ′
k

fI(x− x′)− f(x− x′)dx

=
∫ 1

0
dλ1

∫ 1−λ1

0
[(λ1−λ2

1)Y
2
k+(λ2−λ2

2)Y
2
k+1

−2λ1λ2YkYk+1dλ2]||Yk ×Yk+1||
= 1

12
(x2

k+x2
k+1+x′2−x′xk−x′xk+1−xkxk+1)S

′
k

= 1
24
[(xk−x′)2+(xk+1−x′)2+(xk+1−xk)

2]S′
k

(A.4)

where S′
k = ||Yk × Yk+1||/2 is the area of τ ′k and depends on the current408

vertex x′.409

By dropping the constant that does not affect the optimal solution, we
can rewrite the error function in (2) as follows:

E(x′)=

N
∑

k=1

[(xk − x′)2 + (xk+1 − x′)2 + (xk+1 − xk)
2]S′

k

Appendix B. Proof of
N
∑

k=1

D′

k
≡ C410

The determinant D′
k in (5) has another form:411

D′
k=det(xk−x′,xk+1−x′,n)=[(xk−x′)×(xk+1−x′)]n

Thus we have412

N
∑

k=1

D′
k =

N
∑

k=1

[(xk−x′)×(xk+1−x′)]n

=
N
∑

k=1

[(xk×xk+1)+(xk+1−xk)×x′]n

= n
N
∑

k=1

(xk× xk+1)+n

[

N
∑

k=1

(xk+1−xk)×x′

]

Note that
N
∑

k=1

(xk+1 − xk) = 0, thus the sum of all D′
k is a constant.413
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Appendix C. Computing the coefficients in (8)414

Note that x′ = x0+us+ vt, the objective function in (5) is equivalent to:415

E(x′)=
N
∑

k=1

[(xk−x′)2+(xk+1−x′)2+(xk+1−xk)
2]D′

k

=
N
∑

k=1

[(Xk−X′)2+(Xk+1−X′)2+(Xk+1−Xk)
2]D′

k

where Xi = xi − x0, X
′ = x′ − x0 = us + vt and D′

k = D′
k = det(Xk −416

X′,Xk+1−Xk,n) = det(Xk,Xk+1,n)−det(X′,Xk+1−Xk,n). Let Sk denote417

X2
k−XkXk+1+X2

k+1, we have:418

E(x′)

=2
N
∑

k=1

[X′2−(Xk+Xk+1)X
′+(X2

k−XkXk+1+X2
k+1)]D

′
k

= 2{CX′2−
N
∑

k=1

[(Xk+Xk+1)X
′D′

k + SkD′
k]}

= 2{C(u2+v2)− (us+vt)
N
∑

k=1

(Xk+Xk+1)det(Xk,Xk+1,n)

+(us+vt)
N
∑

k=1

(Xk+Xk+1)det(us+vt,Xk+1 −Xk,n)

+
N
∑

k=1

Sk[det(Xk,Xk+1,n)−det(us+vt,Xk+1 −Xk,n)]}

= 2(Eu2 + Fv2 + Guv −Hu− Iv + J )

(C.1)

where E , F , G,H, I take the same forms as in (8) and J =
N
∑

k=1

Skdet(Xk,Xk+1,n).419

Note that (C.1) is a quadratic function, it has a unique minimum if the420

Hessian matrix is positive definite:421

E > 0

4EF > G2

In the implementation of our algorithms, these conditions were checked, but422

interestingly they were never violated on all the meshes we had tested.423

Thus the optimal solution of (5) can be computed by solving the following424

linear system:425
(

2E G
G 2F

)(

u
v

)

=

(

H
I

)
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Appendix D. Proof of the volume-preserving property426

We shall prove that the constraint of moving the vertex x0 on a specially-427

defined tangent plane can preserve the volume of a smooth, closed surface428

mesh. In our algorithms, the normal of the tangent plane at x0 is defined as:429

n =
N
∑

i=1

Sini, (D.1)

where Si and ni are the area and unit normal vector of the incident triangle430

τi formed by {x0,xi,xi+1}. Suppose all ni’s point to the outside of the closed431

mesh.432

In order to define a “local” volume around x0 for the surface mesh, we433

need to have an “anchor” point y, which can be any point. For simplicity,434

we can choose y as the centroid of all the neighboring vertices of x0. By435

connecting x0 and y with all the neighboring vertices of x0, we get a local,436

closed domain denoted by Ω. Using a similar idea, when x0 moves to any437

new position x′ in the tangent plane defined by (D.1), the points x′, y and438

all neighboring vertices of x0 form another local closed domain Ω′. We shall439

prove that |Ω| ≡ |Ω′| for any x′ in the tangent plane, where ||̇ denotes the440

volume of a closed domain. Note that both Ω and Ω′ can be divided into441

N tetrahedra. For example, the N tetrahedra forming Ω are {x0,x1,x2,y},442

{x0,x2,x3,y}, · · · , {x0,xN ,x1,y}. Therefore, the volumes of Ω and Ω′ are443

the total volumes of the tetrahedra forming Ω and Ω′ respectively.444

We now prove that the volume of Ω′ is independent of x′ (or equivalently445

|Ω′| ≡ |Ω|). For any tetrahedron σk in Ω′, the volume |σk| =
1
3
Sk < nk,x

′ −446

y >. Thus, we have the following formula for the volume of Ω′:447

|Ω′| =
N
∑

k=1

(

1

3
Sk < nk,x

′ − y >

)

(D.2)

= <
1

3
n,x′ − y > (D.3)

= <
1

3
n,x′ − x0 > + <

1

3
n,x0 − y > . (D.4)

Note that x′ is restricted in the tangent plane that passes through x0 and448

takes n as the normal vector. Hence we have < n,x′−x0 >≡ 0. The volume449

becomes |Ω′| =<
1

3
n,x0 − y >, which is independent of x′.450
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Please note that the above volume-preserving property does not apply to451

surface meshes with noise or sharp features. As described in Algorithm 2, we452

consider crease lines instead of tangent planes for sharp features. For surface453

meshes with noise (see Algorithm 3), tangent planes are approximated by454

using a fitting technique. The equation (D.1) does not apply to either case.455
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Figure 7: Illustration of the feature-preserving S-ODT method (Algorithm 2)
and comparison with remeshing method in [18]. (a-c) show the original noise-
free fandisk model containing sharp edges and corners, its angle histogram,
and the corresponding distribution map of mean curvatures. (d-f) show the
smoothed mesh with significantly improved angle quality and regularized
curvatures. (g-i) show the remeshing results using the method in [18]. The
model is provided by the AIM@SHAPE Shape Repository.
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Figure 8: Mesh smoothing of the dragon head model. (a-c) Original mesh
with noise and extremely low quality (mesh courtesy of Stanford University
- 3D scanning repository). (d-f) Smoothed mesh with significantly improved
quality. (g-i) Remeshed results using [17].
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Figure 9: Illustration of the feature-preserving and noise-removing S-ODT
method (Algorithm 3) and comparison with remeshing method in [18]. The
original and smoothed meshes of the Chinese lion are shown on the top and
middle respectively. The remeshed mesh is shown on the bottom. The model
is provided courtesy of INRIA by the AIM@SHAPE Shape Repository.32
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Figure 10: Illustration of the feature-preserving and noise-removing S-ODT
method (Algorithm 3). The original and smoothed meshes of the fandisk
and their corresponding histograms and curvature maps are shown on the
top and middle rows respectively. And the bilateral filtering [10] result is
shown in the bottom row.
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Figure 11: Illustration of the mesh quality improvement of S-ODT method
(Algorithm 3) on the Venus and Angel models.
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Figure 12: The running time of the three variants of our algorithm, measured
on the models with mesh sizes shown in Table II.
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Figure 13: An example for which our algorithm fails in improving the
quality. (a) The original crank model, where poorly-shaped triangles
are formed by vertices mostly lying on sharp edges. Note that all non-
manifold vertices in the mesh have been removed by using the MeshLab
tool (http://meshlab.sourceforge.net/) prior to applying our algorithm. (b-
c) A closer view of the selected region and the angle histogram of the original
mesh. (d-f) The processed mesh using our method (Algorithm 2) and the
angle histogram. Overall, the sharp features are preserved and the histogram
becomes more uniform after mesh smoothing. But the minimal and maximal
angles are not improved. The original mesh is provided courtesy of INRIA
by the AIM@SHAPE Shape Repository.
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