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LOCAL FINITE ELEMENT APPROXIMATION

OF SOBOLEV DIFFERENTIAL FORMS

EVAN S. GAWLIK, MICHAEL J. HOLST, AND MARTIN W. LICHT

Abstract. We address fundamental aspects in the approximation theory of vector-valued finite
element methods, using finite element exterior calculus as a unifying framework. We generalize
the Clément interpolant and the Scott-Zhang interpolant to finite element differential forms, and
we derive a broken Bramble-Hilbert Lemma. Our interpolants require only minimal smoothness
assumptions and respect partial boundary conditions. This permits us to state local error
estimates in terms of the mesh size. Our theoretical results apply to curl-conforming and
divergence-conforming finite element methods over simplicial triangulations.

1. Introduction

With this article we contribute to an aspect of vector-valued finite element methods which
has seen increasing interest throughout recent years, namely the detailed study of quantitative
approximation estimates. More specifically, we construct and analyze analogues of the Clément in-
terpolant and the Scott-Zhang interpolant for vector-valued finite element methods over simplicial
meshes. We present our results in the framework of finite element exterior calculus (FEEC).

One of the classical results in finite element theory is the quasi-optimality of the finite element
solution: the Galerkin approximation is just as good as the best approximation, up to a generic
constant. This is well-known for the vector-valued finite element spaces that have enjoyed popular-
ity in numerical electromagnetism long since. However, not much is known about the quantitative
approximation estimates in terms of the mesh size, in sharp contrast to the scalar-valued setting.
Only recently have publications started to address this topic in the vector-valued setting; see the
literature review further down this introduction. The most classical convergence theorem in the
finite element analysis for the Poisson problem asserts that the Galerkin error vanishes in the
L2 norm by the order O(hs), where s > 1 denotes the Sobolev smoothness of the true solution.
Generally speaking, s can be arbitrarily close to 1. This classical estimate can be proven with the
Clément interpolant.

As the Clément interpolant (see [12]) is arguably one of the most classical tools in numerical
analysis, the first goal of this article is extending the Clément interpolant to vector-valued finite
element spaces. For that purpose we introduce a biorthogonal system of bases and degrees of
freedom. This is a technical tool of interest on its own. If the finite element space is not subject
to boundary conditions, then the generalization from the scalar-valued case may be regarded as a
mere technical note. This might partially explain why previous publications have not given much
attention to this topic.

However, the generalization to finite element differential forms (and thus vector-valued finite
elements) is not quite as trivial as one might think when homogeneous boundary values are
imposed. As in the scalar-valued case of Clément’s original publication, the Clément interpolant
is modified by leaving out the corresponding degrees of freedom along the boundary. But while
there are numerous tricks in the literature to derive Bramble-Hilbert-type error estimates for
Lagrange elements with boundary conditions, this is more than a mere technicality in finite
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element vector calculus. Our solution is to reformulate the degrees of freedom as momenta over
facets of the triangulation. Thus we extend the degrees of freedom to differential forms with only
minimal regularity assumptions that allow a meaningful notion of trace: we assume that both the
differential form and its exterior derivative are integrable. This regularity assumption is natural
since it also sufficient to define homogeneous boundary traces in a generalized sense, namely via
an integration by parts formula.

Incidentally, extending the degrees of freedom to differential forms with rough coefficients
allows us to generalize another classical concept to finite element exterior calculus: we construct
a Scott-Zhang-type interpolant. The Scott-Zhang interpolant (see [38]) is a local interpolant
onto the finite element space which respects homogeneous boundary conditions. We replicate
that interpolant in finite element exterior calculus. Apart from momenta over full-dimensional
simplices, the Scott-Zhang-type interpolant also requires integrals along facets. Thus it is only
well-defined for differential forms that allow traces onto facets.

Additionally, the ideas of the Scott-Zhang interpolant have recently been instrumental in prov-
ing a broken Bramble-Hilbert lemma for Lagrange elements. Using Veeser’s exposition [40] as a
primary source, we show a broken Bramble-Hilbert lemma for finite element differential forms. Our
Scott-Zhang-type interpolant uses only momenta over full-dimensional cells and facets. Prospec-
tive applications of this broken Bramble-Hilbert lemma include the convergence theory of finite
element exterior calculus over surfaces and manifolds. We leave this for future research. The
remainder of this introduction provides further context for our research and a partial review of
the literature.

The Hodge-Laplace equation is the central equation in the calculus of differential forms; it allows
a reformulation as a saddle point problem which is central in finite element exterior calculus. The
latter formulation captures different formulations of the Maxwell system, and the Poisson problem
in primal and mixed formulation (see Hiptmair [25] and Arnold, Falk, and Winther [1]). It shows
that the analytical properties of these partial differential equations over a domain Ω are best
described by studying the Sobolev de Rham complexes

. . .
d

−−−−→ HΛk(Ω)
d

−−−−→ HΛk+1(Ω)
d

−−−−→ . . .(1)

Here, d is the exterior derivative, and a differential k-form is in HΛk(Ω) if its coefficients are square
integrable and its exterior derivative, initially defined in the sense of distributions, has square
integrable coefficients as well. Specifically, the above example of a Sobolev de Rham complex is
useful for analysing the Hodge-Laplace equation with natural boundary conditions. The theory
of the Hodge-Laplace equation with essential or mixed boundary conditions has seen substantial
progress only in recent years. For the Hodge-Laplace equation with mixed boundary conditions
we study Sobolev de Rham complexes with partial boundary conditions (see Gol’dshtein, Mitrea,
and Mitrea [22]):

. . .
d

−−−−→ HΛk(Ω,Γ)
d

−−−−→ HΛk+1(Ω,Γ)
d

−−−−→ . . .(2)

Here, partial boundary condition refers to imposing homogeneous boundary conditions along a
part Γ ⊆ ∂Ω of the domain boundary. The most important results for the de Rham complex with
either no boundary conditions (when Γ = ∅) or full boundary conditions (when Γ = ∂Ω), such
as Rellich embedding theorems, Poincaré-Friedrichs inequalities, and homology space theory are
still valid for general mixed boundary conditions (see also Jochmann [28, 29] and Jakab, Mitrea,
and Mitrea [27]).

In regards to the numerical analysis for the Hodge-Laplace equation, finite element de Rham
complexes mimic Sobolev de Rham complexes as a fundamental structure on a discrete level. We
adopt the framework of finite element exterior calculus (Arnold, Falk, and Winther [1, 3]) as
unifying language for the theoretical background and the formulation of finite element methods.
A very general Galerkin theory of Hilbert complexes, which asserts that Galerkin approximations
are quasi-optimal approximations of the solution of the Hodge-Laplace equation, is at our disposal
once we have smoothed projections from Sobolev de Rham complexes onto finite element de Rham
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complexes, that is, L2-bounded projections such that diagrams such as the following commute:

. . .
d

−−−−→ HΛk(Ω,Γ)
d

−−−−→ HΛk+1(Ω,Γ)
d

−−−−→ . . .

πk





y πk+1





y

. . .
d

−−−−→ P−
r Λ

k(T ,U)
d

−−−−→ P−
r Λk+1(T ,U)

d
−−−−→ . . .

(3)

The widely studied special cases Γ = ∅ and Γ = ∂Ω correspond to either imposing no essential
boundary conditions at all or essential boundary conditions along the entire boundary. We remark
that the cohomology spaces of finite element de Rham complexes with partial boundary conditions
were addressed first by Licht [32] via purely algebraic means, and Poincaré-Friedrichs constants
have been addressed by Christiansen and Licht [9] within an algebraic framework.

Notably, the concept of commuting bounded projection from Sobolev de Rham complexes onto
finite element de Rham complexes has been the dominating focus of published theoretical research
on vector-valued finite element methods. Numerous techniques and variations are found in the lit-
erature. The basic idea, and its relevance to mixed finite element methods, can at least be traced
back to the work of Fortin [21] on mixed methods for the Poisson problem. Christiansen [8] intro-
duced a bounded projection that commutes with the exterior derivative up to a controllable error.
Arnold, Falk, and Winther [1] developed a commuting L2-bounded projection from the de Rham
complex without boundary conditions onto a finite element differential complex assuming quasi-
uniform families of triangulations. Christiansen and Winther [11] extended those ideas to the L2

de Rham complex with boundary conditions and merely shape-regular families of triangulations.
Licht described smoothed projections for Lp de Rham complexes over weakly Lipschitz domains,
first without boundary conditions [31] and subsequently with partial boundary conditions [30]; the
existence of such a projection had been stipulated previously by Bonizzoni, Buffa, and Nobile [5].
A commuting bounded local projection was described by Schöberl [36] in vector-analytic language,
which was later generalized to partial boundary conditions by Gopalakrishnan and Qiu [24], and
to the setting of differential forms by Demlow and Hirani [13]. Christiansen, Munthe-Kaas and
Owren [10] discussed a bounded commuting quasi-projection that locally preserves polynomials
up to specified degree. Falk and Winther [19] developed a commuting local projection from the
L2 de Rham complex without boundary conditions that is bounded in HΛ-norms. Ern and Guer-
mond [17] described an Lp-bounded commuting projection in the language of vector analysis.
One major commonality of these operators is that they provide quasi-optimal approximations
within finite element spaces while featuring additional properties, such as uniform bounds, com-
mutativity with differential operators, or locality. One of the most important applications of these
operators has been in proving quasi-optimality of Galerkin approximations in mixed finite element
methods [1].

However, this does not quantify the error of the (quasi)-optimal approximation within the finite
element space. For example, such would provide error estimates for the finite element solution in
terms of powers of the mesh size. Hence an additional interpolation error estimate is necessary for
that last step. Numerous results have been published, with most of the work addressing scalar-
valued finite element methods only. The most widely known interpolation is due to Clément [12].
The Clément interpolant is local, Lp-bounded and can be modified to respect homogeneous bound-
ary conditions. Another milestone in the literature on quantitative interpolation estimates is the
Scott-Zhang interpolant [38]. This operator interpolates also values over the faces (and thus
boundary conditions) and is idempotent, however, it generally requires higher smoothness on the
function than the Clément interpolant. Surprisingly, only a few publications study quantitative
error estimates for vector-valued finite element methods. We mention the quasi-optimal inter-
polant of Ern and Guermond [18] as the apparently first such construction in the literature. Their
projection operator, which generalizes ideas of Oswald [35] to curl- and divergence-conforming
finite element spaces, satisfies similar local error estimates as the Clément interpolant and can
be modified to satisfy homogeneous boundary conditions. It seems their publication was the first
to give quantitative error estimates for curl-conforming and divergence-conforming finite element
spaces.
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Apart from quasi-interpolation error estimates for vector-valued finite element methods, for
which we study the Clément interpolant and the Scott-Zhang interpolant in finite element exte-
rior calculus, we are interested in what has been in circulation as broken Bramble-Hilbert Lemma
in recent years. In the context of finite element methods, the broken Bramble-Hilbert Lemma for
scalar-valued functions states that approximation by continuous piecewise polynomial functions
is essentially as good as approximation by discontinuous piecewise polynomial functions (that
is, approximation within a broken finite element space) under the condition that the function to
be approximated satisfies some moderate continuity conditions. This has been investigated by
Veeser [40] using techniques for the Scott-Zhang interpolant, see also Camacho and Demlow [6]
for applications to surface finite element methods and also Bank and Yserentant [4] for relations
to a posteriori error estimation. Whereas the original proof by Veeser discusses the approximation
of H1 functions with piecewise higher smoothness, we discuss the approximation of differential
forms with HΛ regularity with piecewise higher smoothness. We remark that the projection
of Christiansen, Munthe-Kaas and Owren [10] satisfies a similar result under abstract assump-
tions. The case of divergence-conforming finite element spaces has been addressed by Ern, Gudi,
Smears, and Vohralík [16] with a particular focus on the stability in the polynomial degree. A
similar result for curl-conforming spaces has been shown by Chaumont-Frelet and Vohralík [7].
The aforementioned two contributions, which come closest to the research efforts in this work,
focus on the Hilbert space situation and the perspective on Veeser’s result as the equivalence of
global and local approximations in the L2 norm. We assume the perspective on Veeser’s result as a
broken Bramble-Hilbert Lemma as in Camacho and Demlow’s aforementioned contribution. Like
in their case, our result is motivated the error analysis of finite element methods over surfaces
and manifolds.

The remainder of this article is structured as follows. In Section 2 we review notions of trian-
gulations. In Section 3 we recapitulate basic results about Sobolev differential forms. In Section 4
we review finite element spaces of differential forms. Section 5 discusses biorthogonal bases and
degrees of freedom. Section 6 introduces and analyzes the Clément interpolant for differential
forms. Section 7 discusses another representation of the degrees of freedom. This is used subse-
quently in Section 8, where we discuss the Clément interpolant with boundary conditions, and
in Section 9, where discuss the Scott-Zhang interpolant and the broken Bramble-Hilbert Lemma.
Finally, Section 10 discusses a few applications in the language of vector analysis.

2. Triangulations

We commence with gathering a few definitions concerning simplices and triangulations.
Recall that a simplex of dimension d is the convex closure of d+1 affinely independent points,

which are called the vertices of that simplex. A simplex F is a subsimplex of a simplex T if all
vertices of F are vertices of T . For any d-dimensional simplex T we write F(T ) for the set of its
facets, which are the d + 1 subsimplices of T sharing all but one vertex with T . More generally,
∆d(T ) is the set of d-dimensional simplices of T , and we write ∆(T ) for the set of subsimplices of
T .

A simplicial complex is a collection T of simplices that is closed under taking subsimplices
and for which the intersection of any two subsimplices T, T ′ ∈ T is either empty or a common
subsimplex of T and T ′. We say that T is n-dimensional if every simplex T ∈ T is a subsimplex
of an n-dimensional simplex of T . A simplicial subcomplex of T is any simplicial complex U ⊆ T .
We write ∆d(T ) for the set of d-dimensional simplices of T .

All simplices are assumed to have a fixed orientation. Whenever T is a simplex and F ∈ F(T ),
then we set o(F, T ) = 1 if the orientation of F is induced from T and we set o(F, T ) = −1
otherwise.

We introduce another combinatorial condition on the simplicial complex, discussed in [40]. We
call a finite simplicial complex T face-connected whenever for all n-dimensional simplices T0, T ∈
T with non-empty intersection, there exists a sequence T1, . . . , TN of n-dimensional simplices
of T with TN = T , and such that for all 1 ≤ i ≤ N we have that Fi = Ti ∩ Ti−1 satisfies
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Fi ∈ F(Ti) ∩ F(Ti−1) and T0 ∩ T ⊆ Fi. For example, any simplicial complex that triangulates a
domain is face-connected.

For any simplex T of positive dimension d we let hT and vold(T ) be its diameter and its d-

dimensional Hausdorff volume, respectively. We call µ(T ) = hdT / vol
d(T ) the shape measure of

T . The shape measure µ(T ) of any simplicial complex T is the supremum of the shape measures
of all its non-vertex simplices. Generally speaking, a high shape measure indicates degeneracy
of simplices. To simplify some technical arguments, we write hV for the minimum length of any
edge adjacent to some vertex V ∈ T .

For any T ∈ T we introduce the two sets

U∗
T,T =

⋃

T ′∈∆n(T )
T ′∩T 6=∅

T ′, UT,T =
⋃

T ′∈∆n(T )
T⊆T ′

T ′.(4)

Note that UT,T ⊆ U∗
T,T . We remark that the ratio of diameters of adjacent simplices as well as

the number of simplices entering the unions in (4) can be bounded in terms of the shape measure.

Remark 2.1. In the analysis of finite element methods, one is commonly interested in results that
are valid for families of algorithmically constructed triangulations. These triangulations typically
satisfy uniform bounds on the mesh constants introduced above.

3. Background in Analysis

In this section we recapitulate notions and results from the analysis of Sobolev spaces and
exterior calculus. Our focus here are the Sobolev-Slobodeckij spaces, sometimes also referred to
as fractional Sobolev spaces [39, 14], and the calculus of differential forms with coefficients in said
Sobolev-Slobodeckij spaces [37, 26, 34, 22]. Although we are initially only working over domains,
most notions in this section also apply to the analysis on simplices.

For the remainder of this section, let Ω ⊆ Rn be a domain.

We use standard notations for function spaces in this article. C∞(Ω) is the space of smooth
functions over Ω and C∞(Ω) is the space of restrictions of smooth functions over the Euclidean
space onto Ω. We write C∞

c (Ω) for the space of smooth functions with support contained com-
pactly in Ω. Next, Lp(Ω) is the Lebesgue space over Ω to the integrability exponent p ∈ [1,∞],
equipped with the norm ‖ · ‖Lp(Ω).

Here and in the sequel, A(n) is the set of all multiindices over {1, . . . , n}. For any m ∈ N0, let
Wm,p(Ω) be the Sobolev space of measurable functions over Ω for which all distributional α-th
derivatives with α ∈ A(n) and |α| ≤ m are functions in Lp(Ω). We recall the norm ‖ · ‖Wm,p(Ω)

and the seminorm | · |Wm,p(Ω), whose definitions for every ω ∈ Wm,p(Ω) are

‖ω‖Wm,p(Ω) :=
∑

α∈A(n)
|α|≤m

‖∂αω‖Lp(Ω), |ω|Wm,p(Ω) :=
∑

α∈A(n)
|α|=m

‖∂αω‖Lp(Ω).(5)

In order to define Sobolev-Slobodeckij spaces, with which one generalizes the idea of the Sobolev
space to positive non-integer order, we let θ ∈ (0, 1) and define the seminorms

|ω|Wm+θ,p(Ω) :=
∑

α∈A(n)
|α|=m

(
∫

Ω

∫

Ω

|∂αω(x)− ∂αω(y)|p

|x− y|n+pθ
dxdy

)
1
p

, ω ∈ Wm,p(Ω), p <∞,

|ω|Wm+θ,∞(Ω) :=
∑

α∈A(n)
|α|=m

esssup
(x,y)∈Ω×Ω

|∂αω(x)− ∂αω(y)|

|x− y|θ
, ω ∈Wm,p(Ω).

Accordingly, we define the Sobolev-Slobodeckij norm

‖ω‖Wm+θ,p(Ω) := ‖ω‖Wm,p(Ω) + |ω|Wm+θ,p(Ω)(6)
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and let Wm+θ,p(Ω) denote the Banach space of measurable functions for which ‖ · ‖Wm+θ,p(Ω) is

bounded. This space is called the Sobolev-Slobodeckij space.

We let C∞Λk(Ω) and C∞Λk(Ω) be the spaces of differential k-forms with coefficients in C∞(Ω)
and C∞(Ω), respectively. The space of smooth compactly supported differential forms C∞

c Λk(Ω)
is defined analogously. The spaces LpΛk(Ω) and W s,pΛk(Ω) are defined accordingly for any
p ∈ [1,∞] and s ∈ [0,∞) and one writes ‖ · ‖LpΛk(Ω), ‖ · ‖W s,pΛk(Ω), and | · |W s,pΛk(Ω) for the

corresponding norms and seminorms.
The exterior product ω ∧ η of a k-form ω and an l-form η is bilinear in each argument and

satisfies the identity ω∧η = (−1)klη∧ω. The exterior derivative is a differential operator between
differential forms. One defines

dω =
n
∑

i=1

dxi ∧ ∂iω, ω ∈ C∞Λk(Ω).(7)

An important identity is the Leibniz rule

d (ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, ω ∈ C∞Λk(Ω), η ∈ C∞Λl(Ω).(8)

The exterior derivative of differential forms with coefficients in Lebesgue spaces is defined a priori
in the sense of distributions. A particular class of differential k-forms which is of interest in this
article is

Wp,qΛk(Ω) :=
{

ω ∈ LpΛk(Ω)
∣

∣ dω ∈ LqΛk+1(Ω)
}

, p, q ∈ [1,∞].(9)

Our interest in Wp,qΛk(Ω) is based on that these differential forms, although they have a very
low regularity, allow a meaningful trace theory. It should be noted that W2,2Λk(Ω) is exactly
the Hilbert space HΛk(Ω), which is the centre of interest of many publications on finite element
exterior calculus.

We remark that, if S is any simplex in Rn of any dimension d, one can set up the calculus of
differential forms as well, using the coordinate system of the affine subspace corresponding to S.
We will only need the space C∞Λk(S) and subspaces of it, and leave out the technical details,
which are straight-forward. We remark that the integral

∫

S
ω of any integrable k-form over a k-

dimensional simplex S is well-defined. The trace from any simplex S onto any of its subsimplices
F ∈ ∆(S) is written trS,F in this article. We also write trS for the trace onto any simplex S
whenever this well-defined; there will be no ambiguity in this article regarding this.

We are interested in spaces of differential forms that satisfy homogeneous boundary conditions,
in a sufficiently generalized sense, along some subset Γ ⊆ ∂Ω of the domain boundary. We refer to
such boundary conditions as partial boundary conditions. Our definition of such partial boundary
conditions follows Gol’dshtein, Mitrea, and Mitrea (see Definition 3.3 of [22]) and Fernandes and
Gilardi [20], building upon an integration by parts identity.

Formally, when Γ ⊆ ∂Ω is a relatively open subset of ∂Ω, then the space Wp,qΛk(Ω,Γ) is
defined as the subspace of Wp,qΛk(Ω) whose members adhere to the following condition: we have
ω ∈ Wp,qΛk(Ω,Γ) if and only if for all x ∈ Γ there exists ρ > 0 such that over the open ball
Bρ(x) ⊆ Rn of radius ρ > 0 around x we have the identity

∫

Ω∩Bρ(x)

ω ∧ dη = (−1)k+1

∫

Ω∩Bρ(x)

dω ∧ η, η ∈ C∞
c Λn−k−1 (Bρ(x)) .(10)

One sees immediately that every ω ∈ C∞(Ω) that vanishes along Γ satisfies this identity. Formally,
this definition of homogeneous boundary values requires no assumptions on the regularity of ∂Ω,
and thus we circumvent the discussion of traces, but of course one has to be careful in which
circumstances the general above definition is mathematically helpful.

One notices that Wp,qΛk(Ω,Γ) is a closed subspace of Wp,qΛk(Ω). We also say that ω ∈
Wp,qΛk(Ω,Γ) satisfies partial boundary conditions along Γ. The definition implies that

dWp,qΛk(Ω,Γ) ⊆ Wq,rΛk+1(Ω,Γ), p, q, r ∈ [1,∞].(11)



LOCAL FINITE ELEMENT APPROXIMATION OF SOBOLEV DIFFERENTIAL FORMS 7

In other words, if a differential form satisfies partial boundary conditions along Γ, then its exterior
derivative satisfies partial boundary conditions along Γ, too.

Remark 3.1. Spaces of differential forms constitute differential complexes which are known as
de Rham complexes in the literature. For example, writing HΛk(Ω,Γ) = W2,2Λk(Ω,Γ), consider
the differential complex

. . .
d

−−−−→ HΛk(Ω,Γ)
d

−−−−→ HΛk+1(Ω,Γ)
d

−−−−→ . . .(12)

The case Γ = ∅ corresponds to imposing no boundary conditions at all while the case Γ = ∂Ω cor-
responds to imposing boundary conditions along the whole of the boundary. The space HΛk(Ω,Γ)
is then more commonly written either HΛk(Ω) or H0Λ

k(Ω), respectively. Both cases have been
subject to extensive study in the literature of theoretical and numerical analysis, while results for
partial boundary conditions are more recent. For the case that Ω is a weakly Lipschitz domain
and Γ is a boundary part with sufficient regularity, the images of the exterior derivatives of the
de Rham complex (12) have closed range and they realize the Betti numbers of Ω relative to Γ on
cohomology. We refer to [22] for the details.

The study of differential complexes such as (12) provides the theoretical background of partial
differential equations associated with the exterior derivative. The most widely known one is the
Hodge-Laplace equation. The de Rham complex with partial boundary conditions is the theoretical
underpinning for the Hodge-Laplace equation with mixed boundary conditions (see [30]).

4. Finite Element Spaces over Triangulations

We now turn our attention to the theory of finite element differential forms. We consider the
classes of polynomial differential forms, and the corresponding finite element spaces, that have
been elaborated upon by Hiptmair [25] and Arnold, Falk, and Winther [1, 2],

We let PrΛk(Ω) be the space of differential k-forms whose coefficients are polynomials of degree
at most r ≥ 0 over the domain Ω. For r ≥ 1, we define P−

r Λ
k(Ω) by

P−
r Λ

k(Ω) := Pr−1Λ
k(Ω) + κPr−1Λ

k+1(Ω),(13)

where κ is the Koszul operator (see [1]). These spaces are also defined over simplices: we let
PrΛk(S) and P−

r Λk(S) be the pullbacks of the spaces PrΛk(Rn) and P−
r Λ

k(Rn) onto any simplex
S, respectively.

We also need to discuss spaces of polynomial differential forms over simplices with boundary
conditions. For any simplex S one sets

P̊rΛ
k(S) :=

{

ω ∈ PrΛ
k(S) | ∀F ∈ ∆(S), F 6= S : trS,F ω = 0

}

,(14)

P̊−
r Λ

k(S) :=
{

ω ∈ P−
r Λ

k(S)
∣

∣ ∀F ∈ ∆(S), F 6= S : trS,F ω = 0
}

.(15)

We define finite element spaces over triangulations by considering piecewise polynomial differential
forms satisfying the necessary continuity conditions so that the exterior derivative exists not just
in the sense of distributions. Formally, assume that T is a triangulation of the domain Ω. We set

PrΛ
k(T ) :=

{

ω ∈ W∞,∞Λk(Ω)
∣

∣ ∀T ∈ ∆n(T ) : ω|T ∈ PrΛ
k(T )

}

,(16)

P−
r Λ

k(T ) :=
{

ω ∈ W∞,∞Λk(Ω)
∣

∣ ∀T ∈ ∆n(T ) : ω|T ∈ P−
r Λk(T )

}

.(17)

The definition of finite element spaces with boundary conditions requires further concepts. For
any simplicial complex U ⊆ T we define formally

PrΛ
k(T ,U) :=

{

u ∈ PrΛ
k(T ) | ∀F ∈ U : trF u = 0

}

,(18)

P−
r Λk(T ,U) :=

{

u ∈ P−
r Λ

k(T )
∣

∣ ∀F ∈ U : trF u = 0
}

.(19)

In the case where U = ∅, we have PΛk(T ,U) = PΛk(T ). Of course, the most interesting case is
the setting where U triangulates a boundary of a domain along which we impose homogeneous
partial boundary conditions.



8 EVAN S. GAWLIK, MICHAEL J. HOLST, AND MARTIN W. LICHT

We recapitulate some simple relations between these finite element spaces, which are easily
verifiable from the literature on finite element differential forms:

PrΛ
k(T ,U) ⊆ P−

r+1Λ
k(T ,U) ⊆ Pr+1Λ

k(T ,U),

dPr+1Λ
k(T ,U) = dP−

r+1Λ
k(T ,U) ⊆ PrΛ

k+1(T ,U).

These hold for any k, r ∈ Z with r ≥ 0.

Remark 4.1. We highlight a few further facts in relation to boundary conditions. Suppose that
Ω ⊆ Rn is a domain and that Γ ⊆ ∂Ω is some part of its boundary with positive surface measure.
For the purpose of illustration, let us assume that ∂Ω can locally be written as the graph of a
function. Suppose that the simplicial complex T is a triangulation of Ω and that the subcomplex
U is a triangulation of Γ. One finds

PrΛ
k(T ,U) = PrΛ

k(T ) ∩W∞,∞(Ω,Γ),

P−
r Λk(T ,U) = P−

r Λk(T ) ∩W∞,∞(Ω,Γ).

The spaces PrΛk(T ,U) and P−
r Λk(T ,U) are, in that sense, finite element spaces appropriate for

discretizing Sobolev spaces of differential forms with boundary conditions along U .

We discuss the geometric decomposition of finite element spaces. This theoretical framework
may be more abstract than what is usually found in introductory finite element expositions but
it has been very useful in capturing an essential feature of various finite element spaces, namely
association of shape functions and degrees of freedom to cells of the triangulation.

We assume that for each F ∈ T we have the extension operators

Extr,kF,T : PrΛ
k(F ) → PrΛ

k(T ), Extr,k,−F,T : P−
r Λk(F ) → PrΛ

k(T ).(20)

which have been defined by Arnold, Falk and Winther [2]. The two critical properties of these
extension operators is that they are right-inverses of the traces,

trF Extr,kF,T = Id, trF Extr,k,−F,T = Id,

and that for all S ∈ T with F * S we have

trS Ext
r,k
F,T P̊rΛ

k(F ) = 0, trS Ext
r,k,−
F,T P̊−

r Λ
k(F ) = 0.

It is then possible to decompose finite element spaces into direct sums

PrΛ
k(T ,U) =

⊕

F∈T
F /∈U

Extr,kF,T P̊rΛ
k(F ), P−

r Λk(T ,U) =
⊕

F∈T
F /∈U

Extr,k,−F,T P̊−
r Λk(F ).(21)

This decomposition is an instance of Theorem 4.3 in [2] applied to the finite element spaces
PrΛ

k(T ) and P−
r Λk(T ), see also Theorems 7.3 and 8.3 in the aforementioned publication, in the

case without boundary conditions. For the case with boundary conditions, see [33].

Remark 4.2. Informally, (21) is a decomposition of the global finite element space into localized
“bubble spaces” associated with the degrees of freedom. For example, if k = 0, then we are dealing
with the classical Lagrange elements. The Lagrange space over T is spanned by localized bubble
spaces associated to simplices. This includes the standard hat function associated to the vertices,
and quadratic bubbles associated to edges, and the bubbles associated to full-dimensional simplices.
In case k = n, we are just dealing with piecewise discontinuous functions whose degrees of freedom
are all associated to full-dimensional cells. Another important example is the case k = n−1, where
we have divergence-conforming finite element spaces. These can be decomposed into “bubbles”
associated to either full-dimensional cells or faces of codimension one.

We finish this section with a discussion of the degrees of freedom for these finite element spaces.
We consider following spaces of functionals. When F ∈ T and m = dim(F ), then we define

CrΛ
k(F ) :=

{

ω 7→

∫

F

η ∧ trF ω ∈ W∞,∞Λk(Ω)∗
∣

∣

∣

∣

η ∈ P−
r+k−mΛm−k(F )

}

,(22a)

C−
r Λ

k(F ) :=

{

ω 7→

∫

F

η ∧ trF ω ∈ W∞,∞Λk(Ω)∗
∣

∣

∣

∣

η ∈ Pr+k−m−1Λ
m−k(F )

}

.(22b)
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These spaces are algebraically isomorphic to P−
r+k−mΛm−k(F ) and Pr+k−m−1Λ

m−k(F ), respec-

tively, see [1]. We define those functionals over W∞,∞Λk(Ω) since those differential forms have
well-defined traces (see [23]) but this is only of technical relevance. If we restrict the functionals

in these sets to P̊rΛk(F ) and P̊−
r Λk(F ), respectively, in the obvious sense, then we obtain the

full dual spaces of the local finite element spaces with boundary conditions. With little effort
(see [33]) it is possible to show that

PrΛ
k(T ,U)∗ =

⊕

F∈T
F /∈U

CrΛ
k(F ), P−

r Λk(T ,U)∗ =
⊕

F∈T
F /∈U

C−
r Λ

k(F ).(23)

Remark 4.3. The finite element spaces discussed in this article can be put together to form finite
element de Rham complexes, for example:

. . .
d

−−−−→ P−
r Λk(T ,U)

d
−−−−→ P−

r Λk+1(T ,U)
d

−−−−→ . . .(24)

One can construct projections πk : Wp,qΛk(Ω,Γ) → P−
r Λk(T ,U) from the Sobolev de Rham

complex onto the finite element de Rham complex which commute with the exterior derivative and
satisfy Lp bounds depending only on the polynomial degree and the mesh quality.

. . .
d

−−−−→ Wp,qΛk(Ω,Γ)
d

−−−−→ Wq,sΛk+1(Ω,Γ)
d

−−−−→ . . .

πk





y πk+1





y

. . .
d

−−−−→ P−
r Λk(T ,U)

d
−−−−→ P−

r Λk+1(T ,U)
d

−−−−→ . . .

(25)

This smoothed projection is the key to enable the abstract Galerkin theory of Hilbert complexes
(see [3]). The finite element solution of the Hodge-Laplace equation is a quasi-optimal approxima-
tion of the true solution within the finite element space. However, those results do not concretize
the approximation estimates. Concretely, we usually want to bound the error in terms of the
(local) mesh size and the solution regularity. The interpolant derived in this article accomplishes
that goal.

5. Biorthogonal Bases and Degrees of Freedom

In this section we discuss biorthogonal systems of bases and degrees of freedom for finite element
spaces. This will not only provide helpful tools in the discussion of the Clément interpolant in
subsequent sections but it is also an interesting result in its own right. As a particular feature,
the bases and degrees of freedom are localized. We inductively construct the biorthogonal system
in a top-down manner: the induction starts with cells associated to the highest dimension and
progressively works itself down the simplex dimensions.

Assumption 5.1. For the remainder of this article we let T be an n-dimensional simplicial
complex, and we let U ⊆ T be a simplicial subcomplex. We assume that Ω ⊆ Rn is a domain
triangulated by T and that Γ ⊆ ∂Ω is a part of the domain boundary triangulated by U . Moreover,
we fix p ∈ [1,∞], k ∈ N0, a polynomial degree r ∈ N, and a family of finite element spaces of
differential forms. Thus we write

PΛk(T ) = PrΛ
k(T ), PΛk(T ,U) = PrΛ

k(T ,U),

and for all S ∈ T : PΛk(S) = PrΛ
k(S), P̊Λk(S) = P̊rΛ

k(S), and CΛk(S) = CrΛ
k(S),

and for all domains U ⊆ Rn : PΛk(U) = PrΛ
k(U),

or

PΛk(T ) = P−
r Λ

k(T ), PΛk(T ,U) = P−
r Λk(T ,U),

and for all S ∈ T : PΛk(S) = P−
r Λ

k(S), P̊Λk(S) = P̊−
r Λk(S), and CΛk(S) = C−

r Λ
k(S),

and for all domains U ⊆ Rn : PΛk(U) = P−
r Λ

k(U).
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We assume1 that the first option holds if k = 0 and that the second option holds if k = n.
Furthermore, for the reason of exposition, we introduce for every S ∈ T a set of indices

I(S) := {1, . . . , dim P̊Λk(S)}.

We can now state the main result of this section.

Theorem 5.2 (Localised Biorthogonal System). There exist bases
{

φ∗S,i
}

i∈I(S)
of CΛk(S) for

each S, and a basis {φS,i}S∈T ,i∈I(S) of PΛk(T ) such that the following conditions are satisfied

for all S ∈ T :

∀S′ ∈ T , i ∈ I(S), j ∈ I(S′) : φ∗S,i(φS′,j) =

{

1 if S = S′, i = j,

0 otherwise.
(26)

∀S′ ∈ T : S * S′ =⇒ trS′ φS,i = 0(27)

In addition to that, for all S, T ∈ T with S ⊆ T and dim(T ) = n,

‖φS,i‖LpΛk(T ) ≤ CAh
n
p
−k

S ,(28)

‖φ∗S,i(ω)φS,i‖LpΛk(T ) ≤ CA‖ω‖LpΛk(T ), ω ∈ PrΛ
k(T ).(29)

Here, CA > 0 is a constant which only depends on p, n, the polynomial degree r, and µ(T ).

Remark 5.3. The degrees of freedom stated in the theorem are just the same as in (22a). We will
construct a new basis of the finite element space from the geometrically decomposed basis via local
modifications. Equation (26) just states what we understand as biorthogonality, and equation (27)
formalises that the basis forms are localized: any form associated to the simplex S vanishes on
simplices that do not contain S. The estimates (28) and (29) follow from scaling arguments.

Proof of Theorem 5.2. First, for every simplex S ∈ T we fix a basis {φS,i,0}i∈I(S) of the local

space P̊Λk(S) and a basis
{

φ∗S,i
}

i∈I(S)
of the space CΛk(S) such that

φ∗S,i(φS,j,0) = δij , i, j ∈ I(S).

We can also assume that the differential forms φS,i,0 and the functionals φ∗S,i are defined via

pullback from a reference simplex. Going from there, we inductively build a basis of PΛk(T ) in
a top-down fashion.

Let S ∈ T be a simplex of dimension n. We define φS,i ∈ PΛk(T ) by setting φS,i|S := φS,i,0
over S and φS,i|T := 0 over all other n-dimensional simplices T ∈ T . It then follows that (27) and
(26) hold for all S ∈ ∆n(T ). Since we assume that φS,i and φ∗S,i are defined via pullback from

reference simplices, the two inequalities (28) and (29) are valid.
Next, suppose we have defined φS,i ∈ PΛk(T ) for all S ∈ T with dim(S) > m and i ∈ I(S)

such that (27) and (26) hold for all S ∈ T with dim(S) > m. For every S ∈ T with dim(S) = m
we then set

φS,i := ExtS,T φS,i,0 −
∑

T∈T
S(T

∑

l∈I(T )

φ∗T,l(ExtS,T φS,i,0)φT,l,

where ExtS,T = Extr,kS,T or ExtS,T = Extr,k,−S,T as defined in Section 4, depending on our choice of
finite element space.

To check that (27) holds, we let S′ ∈ T with S * S′. Then T * S′ for all T ∈ T with S ⊆ T .
Therefore the properties of the extension operators and our induction assumptions lead to

trS′ φS,i = trS′ ExtS,T φS,i,0 −
∑

T∈T
S(T

∑

l∈I(T )

φ∗T,l(ExtS,T φS,i,0) trS′ φT,l = 0.

1Recall that PrΛ0 = P
−

r Λ0 and Pr−1Λn = P
−

r Λn.
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Next we prove (26). We see that for all i, j ∈ I(S)

φ∗S,j (φS,i) = φ∗S,j (ExtS,T φS,i,0)−
∑

T∈T
S(T
l∈I(T )

φ∗T,l(ExtS,T φS,i,0)φ
∗
S,j (φT,l) = φ∗S,j (ExtS,T φS,i,0)

= φ∗S,j (φS,i,0) = δij .

Let i ∈ I(S). If S′ ∈ T with S 6= S′ and S * S′, then we already know that trS′ φS,i = 0, thus
φ∗S′,j(φS,i) = 0 for all j ∈ I(S′). If instead S ⊆ S′ then for all j ∈ I(S′) one sees

φ∗S′,j (φS,i) = φ∗S′,j (ExtS,T φS,i,0)−
∑

T∈T
S(T

∑

l∈I(T )

φ∗T,l(ExtS,T φS,i,0)φ
∗
S′,j (φT,l)

= φ∗S′,j (ExtS,T φS,i,0)− φ∗S′,j(ExtS,T φS,i,0)φ
∗
S′,j (φS′,j) = 0.

Lastly, we attend to the inequalities (29) and (28). In what follows, we write C for a generic
positive constant which depends on the same quantities as CA in the statement of the theorem
and which may change from line to line. By the induction assumption, they are true for simplices
T ∈ T with dim(T ) > dim(S). For any simplex D ∈ T of dimension n with S ⊆ D,

‖φS,i‖LpΛk(D) ≤ ‖ExtS,T φS,i,0‖LpΛk(D) +
∑

T∈T
S(T

∑

l∈I(T )

‖φ∗T,l(ExtS,T φS,i,0)φT,l‖LpΛk(D)

≤ ‖ExtS,T φS,i,0‖LpΛk(D) + C
∑

T∈T
S(T

∑

l∈I(T )

‖ExtS,T φS,i,0‖LpΛk(D).

Our choice of extension operators ExtS,T can be defined equivalently via transformation from a
reference simplex, and so a scaling argument gives

‖ExtS,T φS,i,0‖LpΛk(D) ≤ Ch
n
p
−k

S .

This shows (28). Finally, (29) follows from

‖φ∗S,i(ω)φS,i‖LpΛk(T ) ≤
∣

∣φ∗S,i(ω)
∣

∣ ‖φS,i‖LpΛk(T )

≤ Ch
n−1−(n−1−k)
S ‖ω‖L∞Λk(T ) CAh

n
p
−k

S

≤ ChkS ‖ω‖L∞Λk(T ) CAh
n
p
−k

S ≤ ChkSh
−n

p

S h
n
p
−k

S ‖ω‖LpΛk(T )

where we use another scaling argument and an inverse inequality. This completes the induction
step, and the theorem follows. �

It is easy to extend the preceding theorem to the case of finite element spaces with boundary
conditions. We simply use only those shape forms which are not associated with simplices of the
respective boundary part.

Theorem 5.4. Let {φS,i}S∈T ,i∈I(S) be the basis of PΛk(T ) as described in Theorem 5.2. Then

the set {φS,i}S∈T \U ,i∈I(S) is a basis of PΛk(T ,U).

Proof. Let ω ∈ PΛk(T ,U). There exist unique χS,i ∈ R for S ∈ T and i ∈ I(S) with

ω =
∑

S∈T

∑

i∈I(S)

χS,iφS,i.

It remains to show that χS,i = 0 for any S ∈ U . We use an induction argument. First, if S ∈ U
with dim(S) = 0, then trS ω =

∑

i∈I(S) χS,i trS φS,i. Hence trS ω = 0 shows that χS,i = 0 for

all i ∈ I(S). Next, suppose that for some m > 0 we already know that χS,i = 0 for S ∈ T and
i ∈ I(S) with dim(S) < m. If S ∈ U with dim(S) = m, then property (27) yields

0 = trS ω =
∑

F∈T
F⊆S

∑

i∈I(F )

χF,i trS φF,i =
∑

i∈I(S)

χS,i trS φS,i.

It follows again χS,i = 0 for all i ∈ I(S). An induction argument completes the proof. �
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6. Clément Interpolation and Local Approximation Theory

In this section we generalize the Clément interpolant without boundary conditions to the set-
ting of differential forms. Thus we construct a bounded operator from Lp spaces of differential
forms onto finite element spaces. Our construction follows the main ideas of what is known as
the Clément interpolant in the scalar-valued finite element setting. In his original work, Clément
defined the interpolant first taking projections onto local neighborhoods of the degrees of freedom
and then evaluating each degree of freedom at the associated projection. The resulting operator
is bounded with respect to Lebesgue norms, it is local, and allows for best approximations in the
local neighborhood around each cell.

First, we fix projections onto polynomial differential forms over simplices and neighborhoods
of simplices. For each each simplex S ∈ T we have an idempotent bounded linear mapping

PS : LpΛk(Ω) → PrΛ
k(US,T ) ⊂ LpΛk(Ω)

such that for all ω ∈Wm,pΛk(Ω) with m ∈ [0, r + 1] one has

‖ω − PSω‖LpΛk(US,T ) ≤ CBHh
m
S |ω|Wm,pΛk(US,T ),(30)

and whenever dω ∈W l,pΛk(Ω) with l ∈ [0, r],

‖dω − dPSω‖LpΛk+1(US,T ) ≤ CBHh
l
S |dω|W l,pΛk+1(US,T ).(31)

Here, CBH > 0 depends only on n, p, the polynomial degree r, and the triangulation regularity.
One possible choice for PS is the interpolant introduced by Dupont and Scott [15], which commutes
with partial derivatives. While they discuss that mapping only for scalar functions, it can easily
be extended to differential forms by componentwise application.

We introduce another family of projections. For each n-dimensional simplex T ∈ T there exists
a bounded projection

ΠT : LpΛk(T ) → PΛk(T )

which satisfies the inequalities

‖ω −ΠTω‖LpΛk(T ) ≤ CΠ inf
ψ∈PΛk(T )

‖ω − ψ‖LpΛk(T ), ω ∈ LpΛk(T ),(32)

‖dω − dΠTω‖LpΛk+1(T ) ≤ CΠ inf
ψ∈PΛk(T )

‖dω − dψ‖LpΛk+1(T ), ω ∈ Wp,pΛk(T ).(33)

Here, CΠ > 0 depends only on n, p, the polynomial degree r, and the triangulation regularity. To
see this, we first define the projection on a reference simplex and then transport them to other
simplices via pullback. On a reference simplex, we simply pick the well-known smoothed projec-
tion without boundary conditions (see [1, 11, 31, 30]). These operators are uniformly bounded,
commute with the exterior derivative, and satisfy (32) and (33) over a reference simplex. The
desired properties then follow.

We define our interpolant by

IT : LpΛk(Ω) → PΛk(T ), ω 7→
∑

S∈T

∑

i∈I(S)

φ∗S,i (PSω)φS,i.(34)

This generalizes the Clément interpolant to the setting of finite element exterior calculus. Next
we analyze the interpolation error.

Theorem 6.1. There exists CI > 0, depending only on n, p, the polynomial degree r, and the
shape measure of the triangulation, such that the following is true: for all T ∈ ∆n(T ) we have

‖IT ω‖LpΛk(T ) ≤ CI‖ω‖LpΛk(U∗
T,T ), ω ∈ LpΛk(U∗

T,T ),

and for all T ∈ ∆n(T ) we have

‖ω − IT ω‖LpΛk(T ) ≤ CI‖ω −ΠTω‖LpΛk(T ) + CI

∑

S⊆T
i∈I(S)

‖ω − PSω‖LpΛk(US,T ), ω ∈ LpΛk(Ω).
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Proof. Let ω ∈ LpΛk(Ω). Let T ∈ T be any n-dimensional simplex of the triangulation. We
estimate

‖IT ω‖LpΛk(T ) ≤
∑

S⊆T

∑

i∈I(S)

‖φ∗S,i (PTω)φS,i|T ‖LpΛk(T )

≤
∑

S⊆T

∑

i∈I(S)

CA‖PTω‖LpΛk(T ) ≤
∑

S⊆T

∑

i∈I(S)

CA(1 + CBH)‖ω‖LpΛk(US,T ).

The first inequality follows from this.
One notices that

ΠTω =
∑

S⊆T

∑

i∈I(S)

φ∗S,i (ΠTω)φS,i|T .

The difference ω − IT ω over the simplex T can now be rewritten:

(ω − IT ω)|T = (ω −ΠTω +ΠTω − IT ω)|T

= (ω −ΠTω)|T +
∑

S⊆T

∑

i∈I(S)

(

φ∗S,i (ΠTω)φS,i − φ∗S,i
(

PSω|T

)

φS,i
)

|T

= (ω −ΠTω)|T +
∑

S⊆T

∑

i∈I(S)

φ∗S,i
(

ΠTω − (PSω)|T
)

φS,i|T .

Therefore it follows that

‖ω − IT ω‖LpΛk(T ) ≤ ‖ω −ΠTω‖LpΛk(T ) +
∑

S⊆T

∑

i∈I(S)

‖φ∗S,i
(

ΠTω − (PSω)|T
)

φS,i|T ‖LpΛk(T ).

From inequality (29), we get for each subsimplex S ⊆ T and index i ∈ I(S) the estimate

‖φ∗S,i
(

ΠTω − (PSω)|T
)

φS,i|T ‖LpΛk(T ) ≤ CA‖ΠTω − (PSω)|T ‖LpΛk(T )

≤ CA‖ΠTω − ω‖LpΛk(T ) + CA‖ω − (PSω)|T ‖LpΛk(T )

≤ CA‖ΠTω − ω‖LpΛk(T ) + CA‖ω − PSω‖LpΛk(US,T ).

With some constant C0 which depends only on n and the polynomial degree r, one can summarize
our observations then with the local estimate

‖ω − IT ω‖LpΛk(T ) ≤ (1 + C0CA)‖ω −ΠTω‖LpΛk(T ) + CA

∑

S⊆T

∑

i∈I(S)

‖ω − PSω‖LpΛk(US,T ).

The desired theorem follows. �

Corollary 6.2. Let m ∈ [0, r + 1] if PΛk(T ) = PrΛ
k(T ) and let m ∈ [0, r] otherwise. Then for

all T ∈ ∆n(T ) we have

‖ω − IT ω‖LpΛk(T ) ≤ CI,0h
m
T |ω|Wm,pΛk(U∗

T,T
), ω ∈Wm,pΛk(Ω).

Here, CI,0 > 0 depends only on n, p, the polynomial degree r, and the shape measure of the
triangulation.

Proof. This follows from Theorem 6.1, Inequalities (30) and (32), together with standard approx-
imation estimates and the local finiteness of the triangulation. �

This generalizes the Clément interpolant to the setting of finite element exterior calculus. In
particular, we reproduce the order of approximation in the mesh size known from the scalar-valued
theory. However, the reader will notice that we have only covered the case when no boundary
conditions are imposed on the finite element space. The generalization to homogeneous boundary
conditions, either along the whole of the boundary or merely a part of it, is not yet covered by
this construction. Indeed, the interpolant of this section does not preserve homogeneous boundary
traces.

The most obvious modification of the interpolant is simply setting all degrees of freedom along
the boundary part to zero, which is also the approach followed in Clément’s original paper [12].
While that straight-forward modification will eventually provide the desired result, it is not
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straight-forward how the best approximation properties can be proven under that modification.
The next section will prepare technical tools to accomplish that target.

7. Extending the Degrees of Freedom

In order to advance our analysis of finite element interpolation, we need to rewrite degrees of
freedom in a manner that defines them over differential forms with minimal smoothness assump-
tions. The idea is that every degree of freedom associated to lower-dimensional simplices can be
expressed in terms of traces over facets.

Theorem 7.1. For every S, F ∈ T with dim(F ) = n − 1 and S ⊆ F and every i ∈ I(S) there

exists ξ̊F,S,i ∈ C∞
c Λn−k−1(F ) such that

∫

F

ξ̊F,S,i ∧ trF ω = φ∗S,i(ω), ω ∈ PrΛ
k(T ).(35)

Furthermore, for every T ∈ ∆n(T ) with F ⊆ T there exists ΞT,F,S,i ∈ C∞Λn−k−1(T ) such that

trF ΞT,F,S,i = ξ̊F,S,i and the support of ΞT,F,S,i has positive distance from all facets of T except
F .

Moreover, there exists CΞ > 0, depending only on n, p ∈ [1,∞], the polynomial degree r, and
the shape measure of the triangulation, such that

‖ΞT,F,S,i‖LpΛn−k−1(T ) ≤ CΞh
n
p
−n+k+1

S , ‖dΞT,F,S,i‖LpΛn−k(T ) ≤ CΞh
n
p
−n+k

S .(36)

Proof. As to simplify the exposition, this proof is to be read as a continuation of the proof of
Theorem 5.2, and we tacitly assume all technical details made in that proof.

For every S ∈ ∆(F ) and i ∈ I(S) we let φFS,i := trF φS,i. So
{

φFS,i
}

S∈∆(F ),i∈I(S)
is a basis

of PΛk(F ). If PΛk(F ) 6= PrΛk(F ), we augment to a basis of PrΛk(F ) by including differential
forms that are first defined on a reference facet and then transported to F ; we write AΛk(F ) for
the resulting basis of PrΛk(F ). Note that AΛk(F ) can be defined uniformly via transport from a
reference facet.

One can find a set BΛn−k−1(F ) ⊂ C∞
c Λn−k−1(F ) whose members represent the dual basis of

AΛk(F ) by integration over F ; this construction can be done on a reference facet first and then be
transported to F . Since the degrees of freedom are defined via transport from a reference simplex

as well, one can build ξ̊F,S,i ∈ C∞
c Λn−k−1(F ) as desired by a linear combination of members of

BΛn−k−1(F ).

Having constructed ξ̊F,S,i ∈ C∞
c Λn−k−1(F ) satisfying (35), one easily constructs ΞT,F,S,i ∈

C∞Λn−k−1(T ) satisfying trF ΞT,F,S,i = ξ̊F,S,i and such that suppΞT,F,S,i has positive distance
from all facets of T except F . The existence of a constant CΞ > 0 satisfying (36) follows easily
from a scaling argument. �

Any simplex S ∈ T is generally contained in different faces and full-dimensional simplices of
the triangulation. For technical reasons, for any simplex S ∈ T of dimension at most n− 1 we fix
an arbitrary face FS ∈ T with S ⊆ F and a n-dimensional simplex TS ∈ T with FS ⊆ TS . We
also introduce the abbreviations

ξ̊S,i := ξ̊FS ,S,i, ΞS,i := ΞTS ,FS ,S,i.(37)

However, we make one modification if S ∈ U : in that case, we require additionally that FS ∈ U .
This enforces that degrees of freedom associated to the boundary part Γ depend on values over
facets within that boundary part.

Remark 7.2. We make generous use of the following identity. For any S, F, T ∈ T with T ∈
∆n(T ), F ∈ F(T ), S ⊆ F , and all i ∈ I(S), the differential forms ΞT,F,S,i and ξ̊F,S,i satisfy

o(F, T )

∫

F

ξ̊F,S,i ∧ trF ω =

∫

T

dΞT,F,S,i ∧ ω + (−1)n−k−1ΞT,F,S,i ∧ dω, ω ∈ C∞Λk(T ).

The significance of that formula is the right-hand side substitutes the left-hand side in lieu of a
notion of traces if ω’s coefficients are very rough functions. The right-hand side is well-defined
even if, say, ω ∈ HΛk(T ) or more generally ω ∈ Wp,qΛk(T ) for any p, q ∈ [1,∞].
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8. Local Approximation Theory with Partial Boundary Conditions

We define the modified Clément interpolant by

IT ,U : LpΛk(Ω) → PΛk(T ,U), ω 7→
∑

S∈T
S /∈U

∑

i∈I(S)

φ∗S,i (PSω)φS,i.(38)

It is evident that IT ,U takes values in the finite element space PΛk(T ,U) with homogeneous
boundary conditions along the boundary part Γ. With the tools from the preceding section, one
can prove error estimates.

Theorem 8.1. There exists CI,U > 0, depending only on n, p, the polynomial degree r, and the
shape measure of the triangulation, such that the following is true: for all T ∈ ∆n(T ),

‖IT ,Uω‖LpΛk(T ) ≤ CI,U‖ω‖LpΛk(U∗
T,T

), ω ∈ LpΛk(Ω),

and for all T ∈ ∆n(T ) one has

‖ω − IT ,Uω‖LpΛk(T ) ≤ ‖ω − IT ω‖LpΛk(T )

+ CI,U

∑

S⊆T
S∈U

∑

i∈I(S)

‖ω − PSω‖LpΛk(US,T ) + hS‖dω − dPSω‖LpΛk+1(US,T )

whenever ω ∈ Wp,pΛk(Ω,Γ).

Proof. Let T ∈ T be any n-dimensional simplex. If T has no subsimplex in U , then

(IT ,Uω)|T = (IT ω)|T , ω ∈ LpΛk(Ω),

and one can simply apply Theorem 6.1.
Let us assume instead that T ∈ T is an n-dimensional simplex which has a subsimplex contained

in U . Then the first inequality follows similarly as in the proof of Theorem 6.1, so we only need
to study the second inequality. Obviously,

ω|T − (IT ,Uω)|T = ω|T − (IT ω)|T +
∑

S⊆T
S∈U

∑

i∈I(S)

φ∗S,i
(

(PSω)|T
)

φS,i|T

Now recall the identity

φ∗S,i
(

(PSω)|T
)

=

∫

FS

ξ̊S,i ∧ trTS ,FS
(PSω)|TS

,

which is valid because (PSω)|T ∈ PrΛk(T ). Now,

∫

FS

ξ̊S,i ∧ trTS ,FS
(PSω)|TS

= o(FS , TS)

∫

TS

dΞS,i ∧ (PSω)|TS
+ (−1)n−k−1ΞS,i ∧ d(PSω)|TS

and since ω satisfies partial boundary conditions along the boundary part Γ and FS ⊆ Γ, we get
∫

TS

dΞS,i ∧ (PSω)|TS
+ (−1)n−k−1ΞS,i ∧ d(PSω)|TS

=

∫

TS

dΞS,i ∧
(

(PSω)|TS
− ω

)

+

∫

TS

(−1)n−k−1ΞS,i ∧ d
(

(PSω)|TS
− ω

)

.

Thus, letting q = p/(p − 1) ∈ [1,∞], we use the integration by parts formula and Hölder’s
inequality to find

∣

∣φ∗S,i
(

(PSω)|T
)∣

∣ ≤ ‖dΞS,i‖LqΛn−k(TS)‖PSω − ω‖LpΛk(TS)

+ ‖ΞS,i‖LqΛn−k−1(TS)‖dPSω − dω‖LpΛk+1(TS).
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Hence we find that

‖ω − IT ,Uω‖LpΛk(T )

≤ ‖ω − IT ω‖LpΛk(T ) +
∑

S⊆T
S∈U

∑

i∈I(S)

∣

∣φ∗S,i
(

(PSω)|T
)∣

∣ ‖φS,i‖LpΛk(T )

≤ ‖ω − IT ω‖LpΛk(T )

+
∑

S⊆T
S∈U

∑

i∈I(S)

‖dΞS,i‖LqΛn−k(TS)‖ω − PSω‖LpΛk(TS)‖φS,i‖LpΛk(T )

+
∑

S⊆T
S∈U

∑

i∈I(S)

‖ΞS,i‖LqΛn−k−1(TS)‖dω − dPSω‖LpΛk+1(TS)‖φS,i‖LpΛk(T )

We recall the bounds

‖φS,i‖LpΛk(T ) ≤ CAh
n
p
−k

S

‖ΞS,i‖LqΛn−k−1(TS) ≤ CΞh
n
q
−n+k+1

S , ‖dΞS,i‖LqΛn−k(TS) ≤ CΞh
n
q
−n+k

S .

Since 1 = 1/p+ 1/q, putting this together produces the desired inequality. �

Corollary 8.2. Let m ∈ [0, r + 1] if PΛk(T ) = PrΛ
k(T ) and let m ∈ [0, r] otherwise. Write

l := max(0,m− 1). Then for all T ∈ ∆n(T ) and all ω ∈ Wp,pΛk(Ω) ∩Wm,pΛk(Ω,Γ) one has

‖ω − IT ,Uω‖LpΛk(T ) ≤ CI,U ,0

(

hmT |ω|Wm,pΛk(U∗
T,T

) + hl+1
T |dω|W l,pΛk+1(U∗

T,T
)

)

.

Here, CI,U ,0 > 0 depends only on n, p, the polynomial degree r, and the shape measure of the
triangulation.

Proof. We observe dω ∈ W l,pΛk+1(Ω) for ω ∈ Wp,pΛk(Ω) ∩Wm,pΛk(Ω). The results follows by
combining Theorem 8.1, Inequalities (30)–(33), and standard estimates. �

9. A Scott-Zhang-type Interpolant

The Clément operator, with or without boundary conditions, has only minimal regularity
assumptions on its argument: the operator is bounded over differential forms whose coefficients
are in an Lp space. Approximation estimates in terms of the mesh size follow from additional
regularity of the interpolated differential form.

However, the quantitative estimates for the Clément operator in either variation require smooth-
ness of the interpolated differential form over patches of cells, across cell boundaries. The Scott-
Zhang interpolation for functions in W 1,2(Ω) overcomes this restriction and yields approximation
error estimates of the same order as the Clément interpolant but merely requiring piecewise higher
smoothness. One consequence is that continuous Lagrange elements have approximation capabil-
ity equivalent to discontinuous Lagrange elements provided the function has square-integrable first
derivatives. Furthermore, the Scott-Zhang interpolant preserves homogeneous partial boundary
conditions. In this section we generalize the Scott-Zhang interpolant and the error estimate to
the setting of differential forms.

When S ∈ T with dim(S) = n, then we introduce the mapping

KS,i : L
pΛk(Ω) → R, ω 7→ φ∗S,i(ω).

By the choice of degrees of freedom in Section 4, these functionals are defined via integration
against a smooth differential form over S, and hence they are well-defined even for integrable
differential forms.

If instead S ∈ T with dim(S) < n, then we consider the mapping

KS,i : W
p,pΛk(Ω) → R, ω 7→

∫

TS

dΞTS ,FS ,S,i ∧ ω + (−1)n−k+1ΞTS ,FS,S,i ∧ dω.
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We define the Scott-Zhang interpolant

JT : Wp,pΛk(Ω) → PΛk(T ), ω 7→
∑

S∈T

∑

i∈I(S)

KS,i(ω)φS,i.(39)

This completes the construction of our Scott-Zhang-type interpolant. We observe that ω ∈
Wp,pΛk(Ω,Γ) implies KS,i(ω) = 0 whenever S ∈ U . Therefore we have got a mapping

JT : Wp,pΛk(Ω,Γ) → PΛk(T ,U).

Next we discuss an error estimate for this approximation operator.

Theorem 9.1. There exists CJ ,U > 0, depending only on n, p, the polynomial degree r, and the
shape measure of the triangulation, such that the following is true: for all T ∈ ∆n(T ) we have

‖JT ω‖LpΛk(T ) ≤ CJ ,U

∑

T ′∈∆n(T )
T∩T ′ 6=∅

‖ω‖Wp,pΛk(T ′), ω ∈ Wp,pΛk(Ω),

and for all T ∈ ∆n(T ) we have

‖ω − JT ω‖LpΛk(T ) ≤ CJ ,U

∑

T ′∈∆n(T )
T∩T ′ 6=∅

‖ω −ΠT ′ω‖LpΛk(T ′) + hT ′‖dω − dΠT ′ω‖LpΛk+1(T ′)

whenever ω ∈ Wp,pΛk(Ω,Γ).

Proof. The first inequality is easily seen, so we focus on the second inequality. Let T ∈ T be any
n-dimensional simplex. We find that

ω|T − (JT ω)|T = ω|T −ΠTω +ΠTω −
∑

S⊆T

∑

i∈I(S)

KS,i(ω)φS,i|T

= ω|T −ΠTω +
∑

S⊆T

∑

i∈I(S)

φ∗S,i(ΠTω)φS,i|T −
∑

S⊆T

∑

i∈I(S)

KS,i(ω)φS,i|T .

Hence

‖ω − JT ω‖LpΛk(T ) ≤ ‖ω −ΠTω‖LpΛk(T ) +
∑

S⊆T

∑

i∈I(S)

∣

∣φ∗S,i(ΠTω)−KS,i(ω)
∣

∣ ‖φS,i‖LpΛk(T )

≤ ‖ω −ΠTω‖LpΛk(T ) +
∑

S⊆T

∑

i∈I(S)

∣

∣φ∗S,i(ΠTω)−KS,i(ω)
∣

∣CAh
n
p
−k

S .

We study the terms in the second sum in closer detail. The functionals φ∗T,i and KT,i are the
same and thus

φ∗T,i(ΠTω)−KT,i(ω) = φ∗T,i(ΠTω − ω|T ).

With Hölder’s inequality, a scaling argument and Theorem 5.2 we thus get the upper bound

∣

∣φ∗T,i(ΠTω)−KT,i(ω)
∣

∣ ‖φS,i‖LpΛk(T ) ≤ Ch
n(p−1)

p
−n+k

T h
n
p
−k

T ‖ΠTω − ω‖LpΛk(T ).

We dedicate our attention to the degrees of freedom that are associated to proper subsimplices S
of T . Here, the functionals φ∗S,i and KS,i generally differ. We recall that for any F ∈ F(T ) with
S ⊆ F we have

φ∗S,i(ΠTω) =

∫

F

ξ̊F,S,i ∧ trT,F ΠTω =

∫

T

dΞT,F,S,i ∧ ΠTω + (−1)n−k+1ΞT,F,S,i ∧ dΠTω.

On the other hand,

KS,i(ω) =

∫

TS

dΞTS ,FS,S,i ∧ ωT + (−1)n−k+1ΞTS ,FS ,S,i ∧ dωT .

The simplicial complex T is face-connected since it triangulates a domain. Therefore there exists
a sequence T0, T1, . . . , TN of n-dimensional simplices of T without repetitions such that T0 = TS
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and TN = T and such that for all 1 ≤ j ≤ N there exist facets Fj := Tj ∩ Tj−1 for which S ⊆ Fj .
Write F0 := FS and FN+1 := F . We utilize the technique of telescope sum and find

φ∗S,i(ΠTω)−KS,i(ω)

=

∫

F

ξ̊F,S,i ∧ trT,F ΠTω −KS,i(ω)

=

∫

FN+1

ξ̊FN+1,S,i ∧ trTN ,FN+1 ΠTN
ω +

N
∑

j=0

φ∗S,i(ΠTj
ω)− φ∗S,i(ΠTj

ω)−KS,i(ω)

=

∫

FN+1

ξ̊FN+1,S,i ∧ trTN ,FN+1 ΠTN
ω −

N
∑

j=0

∫

Fj+1

ξ̊Fj+1,S,i ∧ trTj ,Fj+1 ΠTj
ω

+

N
∑

j=0

∫

Fj

ξ̊Fj ,S,i ∧ trTj ,Fj
ΠTj

ω −KS,i(ω)

=

N
∑

j=1

∫

Fj

ξ̊Fj ,S,i ∧ trTj ,Fj
ΠTj

ω −

∫

Fj

ξ̊Fj ,S,i ∧ trTj−1,Fj
ΠTj−1ω

+

∫

F0

ξ̊F0,S,i ∧ trT0,F0 ΠT0ω −KS,i(ω)

From the definition of KS,j we get

KS,i(ω) =

∫

T0

dΞT0,F0,S,i ∧ ω + (−1)n−k+1ΞT0,F0,S,i ∧ dω.

Aside from that, we know
∫

F0

ξ̊F0,S,i ∧ trT0,F0 ΠT0ω =

∫

T0

dΞT0,F0,S,i ∧ ΠT0ω + (−1)n−k+1ΞT0,F0,S,i ∧ dΠT0ω.

Thus it becomes apparent that
∫

F0

ξ̊F0,S,i ∧ trT0,F0 ΠT0ω −KS,i(ω)

=

∫

T0

dΞT0,F0,S,i ∧ (ΠT0ω − ω) + (−1)n−k+1ΞT0,F0,S,i ∧ d (ΠT0ω − ω) .

Therefore, writing q := p/(p− 1),

|φ∗S,i(ΠT0ω)−KS,i(ω)|

≤ ‖dΞT0,F0,S,i‖LqΛn−k(T0)‖ω −ΠT0ω‖LpΛk(T0) + ‖ΞT0,F0,S,i‖LqΛn−k−1(T0)‖dω − dΠT0ω‖LpΛk+1(T0)

≤ CΞh
n(p−1)

p
−n+k

S ‖ω −ΠT0ω‖LpΛk(T0) + CΞh
n(p−1)

p
−n+k+1

S ‖dω − dΠT0ω‖LpΛk+1(T0).

Now consider any 1 ≤ j ≤ N . By the equivalence of the boundary integrals with an integration
by parts formula we find

∫

Fj

ξ̊Fj ,S,i ∧ trTj ,Fj
ΠTj

ω −

∫

Fj

ξ̊Fj ,S,i ∧ trTj−1,Fj
ΠTj−1ω

= o(Fj , Tj)

∫

Tj

dΞTj ,Fj ,S,i ∧ΠTj
ω + (−1)n−k+1ΞTj ,Fj ,S,i ∧ dΠTj

ω

− o(Fj , Tj−1)

∫

Tj−1

dΞTj−1,Fj ,S,i ∧ ΠTj−1ω + (−1)n−k+1ΞTj−1,Fj ,S,i ∧ dΠTj−1ω.

Let ΞFj ,S,i ∈ L∞Λn−k−1(Ω) with ΞFj ,S,i|Tj
= ΞTj ,Fj ,S,i and ΞFj ,S,i|Tj−1

= ΞTj−1,Fj ,S,i and van-

ishing on all other n-simplices of T . One sees that ΞFj ,S,i ∈ W∞,∞Λn−k−1(Ω) with support in
the interior of Tj ∪ Tj−1. So an integration by parts reveals that

∫

Tj∪Tj−1

dΞFj ,S,i ∧ ω + (−1)n−k+1ΞFj ,S,i ∧ dω = 0.
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Consequently
∫

Tj

dΞTj ,Fj,S,i ∧ ω + (−1)n−k+1ΞTj ,Fj ,S,i ∧ dω

+

∫

Tj−1

dΞTj−1,Fj ,S,i ∧ ω + (−1)n−k+1ΞTj−1,Fj ,S,i ∧ dω = 0.

Moreover, o(Fj , Tj−1) = −o(Fj , Tj), because the two n-simplices induce opposing orientations on
F . One derives

o(Fj , Tj)

∫

Tj

dΞTj ,Fj ,S,i ∧ ω + (−1)n−k+1ΞTj ,Fj ,S,i ∧ dω

− o(Fj , Tj−1)

∫

Tj−1

dΞTj−1,Fj ,S,i ∧ ω + (−1)n−k+1ΞTj−1,Fj ,S,i ∧ dω = 0.

We combine our calculations and obtain
∫

Fj

ξ̊Fj ,S,i ∧ trTj ,Fj
ΠTj

ω −

∫

Fj

ξ̊Fj ,S,i ∧ trTj−1,Fj
ΠTj−1ω

= o(Fj , Tj)

∫

Tj

dΞTj ,Fj ,S,i ∧
(

ΠTj
ω − ω

)

+ (−1)n−k+1ΞTj ,Fj ,S,i ∧ d
(

ΠTj
ω − ω

)

− o(Fj , Tj−1)

∫

Tj−1

dΞTj−1,Fj ,S,i ∧
(

ΠTj−1ω − ω
)

+ (−1)n−k+1ΞTj−1,Fj ,S,i ∧ d
(

ΠTj−1ω − ω
)

.

We use Hölder’s inequality again and can summarize
∣

∣

∣

∣

∣

∫

Fj

ξ̊Fj ,S,i ∧ trTj ,Fj
ΠTj

ω −

∫

Fj

ξ̊Fj ,S,i ∧ trTj−1,Fj
ΠTj−1ω

∣

∣

∣

∣

∣

≤ ‖dΞTj ,Fj ,S,i‖LqΛn−k(Tj)‖ω −ΠTj
ω‖LpΛk(Tj)

+ ‖ΞTj ,Fj ,S,i‖LqΛn−k−1(Tj)‖dω − dΠTj
ω‖LpΛk+1(Tj)

+ ‖dΞTj−1,Fj ,S,i‖LqΛn−k(Tj−1)‖ω −ΠTj−1ω‖LpΛk(Tj−1)

+ ‖ΞTj−1,Fj ,S,i‖LqΛn−k−1(Tj−1)‖dω − dΠTj−1ω‖LpΛk+1(Tj−1)

≤ CΞ

(

h
n
q
−n+k

S ‖ω −ΠTj
ω‖LpΛk(Tj) + h

n
q
−n+k+1

S ‖dω − dΠTj
ω‖LpΛk+1(Tj)

+ h
n
q
−n+k

S ‖ω −ΠTj−1ω‖LpΛk(Tj−1) + h
n
q
−n+k+1

S ‖dω − dΠTj−1ω‖LpΛk+1(Tj−1)

)

.

All estimates are in place and we recall that

‖φS,i‖LpΛk(T ) ≤ CAh
n
p
−k

S .

The desired estimate now follows. �

Corollary 9.2. Let m ∈ [0, r + 1] if PΛk(T ) = PrΛ
k(T ) and let m ∈ [0, r] otherwise. Write

l := max(0,m− 1). Then for all T ∈ ∆n(T ) we have

‖ω − JT ω‖LpΛk(T ) ≤ CJ ,U ,0

∑

T ′∈∆n(T )
T ′∩T 6=∅

(

hmT ′ |ω|Wm,pΛk(T ′) + hl+1
T ′ |dω|W l,pΛk+1(T ′)

)

whenever

ω ∈ Wp,pΛk(Ω) ∩
⊕

T∈∆n(T )

Wm,pΛk(T ).

Here, CJ ,U ,0 > 0 depends only on n, p, the polynomial degree r, and the shape measure of the
triangulation.

Proof. We observe dω|T ∈ W l,pΛk+1(T ) for ω ∈ Wp,pΛk(Ω) and ω|T ∈ Wm,pΛk(T ) with T ∈
∆n(T ). The results follows by combining Theorem 9.1, Inequalities (30)–(33), and standard
estimates as in previous corollaries. �
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Remark 9.3. The original Scott-Zhang interpolant was only defined for scalar functions in the
Sobolev spaces W s,p(Ω) for p > 1 and s > 1

p . Under those conditions on the parameters s and p,

traces onto facets are well-defined. With regards to scalar functions, we instead constrain ourselves
to the case W s,p(Ω) with s ≥ 1, as we approach boundary traces only indirectly via an integration
by parts formula. That approach generalizes naturally to differential forms. We do not attempt to
find an analogue of the low regularity setting on differential forms.

10. Applications

For the purpose of illustration, we review the results in this article in the setting of three-
dimensional vector analysis. This last section centers on applications of the Scott-Zhang inter-
polant and L2 theory. Let Ω ⊆ R3 be a Lipschitz domain triangulated by a triangulation T . Let
Γ ⊆ ∂Ω be a two-dimensional submanifold of the boundary triangulated by a subtriangulation
U ⊂ T .

We let L
2(Ω) be the space of square-integrable vector fields over Ω, and we let H

m(Ω) be the
space of vector fields with coefficients in Wm,2(Ω). We write

H(curl) :=
{

u ∈ L
2(Ω) | curlu ∈ L

2(Ω)
}

, H(div) :=
{

u ∈ L
2(Ω) | divu ∈ L2(Ω)

}

.

We let Ned
fst
r (T ) and Ned

snd
r (T ) be the curl-conforming Nédélec spaces of first and second kind,

respectively, and BDMr(T ) and RTr(T ) be the divergence-conforming Brezzi-Douglas-Marini
space and the Raviart-Thomas space, respectively, of degree r over T . These finite element spaces
contain the polynomial vector fields up to degree r.

We introduce spaces with boundary conditions along Γ. We write u ∈ H(curl,Γ) if u ∈ H(curl)
satisfies

∫

Ω

〈curlu, φ〉 =

∫

Ω

〈u, curlφ〉

for all vector fields φ ∈ C∞(Ω)3 vanishing near ∂Ω \ Γ. Similarly, we write u ∈ H(div,Γ) if
u ∈ H(div) satisfies

∫

Ω

〈divu, φ〉 = −

∫

Ω

〈u, gradφ〉

for all functions φ ∈ C∞(Ω) vanishing near ∂Ω \ Γ. We set

Ned
fst
r (T ,U) := H(curl,Γ) ∩Ned

fst
r (T ), Ned

snd
r (T ,U) := H(curl,Γ) ∩Ned

snd
r (T ),

BDMr(T ,U) := H(div,Γ) ∩BDMr(T ), RTr(T ,U) := H(div,Γ) ∩RTr(T ).

These are the finite element spaces with boundary conditions along Γ. We can equally define
them by setting the degrees of freedom associated to simplices in U to zero.

The results in this article include the following theorems as a special case.

Theorem 10.1. There exist linear mappings

JBDMr(T ,U) : H(div,Γ) → BDMr(T ,U),

such that for m ∈ [0, r + 1], l ∈ [0, r], all tetrahedra T ∈ T , and all u ∈ H(div,Γ) we have

‖u− JBDMr(T ,U)u‖L2(T ) ≤ C
∑

T ′∈T
dim(T ′)=3
T ′∩T 6=∅

hmT ‖u‖Hm(T ′) + hl+1
T ‖ divu‖W l,2(T ′)

whenever the right-hand side is well-defined. Here, the constant C > 0 depends only on the
polynomial degree r and the shape measure of T .

Theorem 10.2. There exist linear mappings

JRTr(T ,U) : H(div,Γ) → RTr(T ,U),
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such that for m ∈ [0, r + 1], l ∈ [0, r + 1], all tetrahedra T ∈ T , and all u ∈ H(div,Γ) we have

‖u− JRTr(T ,U)u‖L2(T ) ≤ C
∑

T ′∈T
dim(T ′)=3
T ′∩T 6=∅

hmT ‖u‖Hm(T ′) + hl+1
T ‖ divu‖W l,2(T ′)

whenever the right-hand side is well-defined. Here, the constant C > 0 depends only on the
polynomial degree r and the shape measure of T .

Theorem 10.3. There exist linear mappings

JNedfst
r (T ,U) : H(curl,Γ) → Ned

fst
r (T ,U),

such that for m ∈ [0, r + 1], l ∈ [0, r + 1], all tetrahedra T ∈ T , and all u ∈ H(curl,Γ) we have

‖u− JNedfst
r (T ,U)u‖L2(T ) ≤ C

∑

T ′∈T
dim(T ′)=3
T ′∩T 6=∅

hmT ‖u‖Hm(T ′) + hl+1
T ‖ curlu‖Hl(T ′)

whenever the right-hand side is well-defined. Here, the constant C > 0 depends only on the
polynomial degree r and the shape measure of T .

Theorem 10.4. There exist linear mappings

JNedsnd
r (T ,U) : H(curl,Γ) → Ned

snd
r (T ,U),

such that for m ∈ [0, r + 1], l ∈ [0, r], all tetrahedra T ∈ T , and all u ∈ H(curl,Γ) we have

‖u− JNedsnd
r (T ,U)u‖L2(T ) ≤ C

∑

T ′∈T
dim(T ′)=3
T ′∩T 6=∅

hmT ‖u‖Hm(T ′) + hl+1
T ‖ curlu‖Hl(T ′)

whenever the right-hand side is well-defined. Here, the constant C > 0 depends only on the
polynomial degree r and the shape measure of T .
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