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ABSTRACT. Many results in mathematical relativity, including results for both the initial data prob-
lem and for the evolution problem, rely on the existence of a constant mean curvature (CMC) Cauchy
surface in the underlying spacetime. However, it is known that some spacetimes have no CMC
Cauchy surfaces (slices). This is an obstacle for many results and constructions with these types
of spacetimes, and is particularly worrisome since it is not known whether spacetimes that do have
CMC slices are in any sense generic. In this expository paper, we will discuss the known results
about the existence (and non-existence) of CMC slices, examine the evidence for cases which are
unknown, and make several conjectures concerning the existence of CMC slices and their generality.
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1. INTRODUCTION

As is well known, the problem of finding solutions to the Einstein Equations of general relativity
can be split into finding initial data satisfying the constraint equations, and then evolving that data
using the evolution equations. Both portions have their own interesting problems. What kinds of
initial data are or are not possible? Is there a way to parameterize all initial data? Is the evolution
problem stable? What happens near singularities, and what kinds of singularities can occur? Much
progress has been made in recent decades on these kinds of problems. But looking at many of these
papers, a common theme appears: Constant mean curvature (CMC) initial data makes everything
easier.

In finding initial data in general relativity, the commonly used conformal method involves solv-
ing a system of coupled equations (the conformal constraint equations), in which the mean curva-
ture function is one of the freely-specified parameters. If the chosen mean curvature is constant,
then the equations decouple, making finding solutions much easier. Because of this, the CMC case
of the initial data question is mostly understood. For instance, a parameterization of all closed
CMC initial data has been found (see [11]). However, the conformal method in the non-CMC case
is a completely different story, and is one of the main motivations for this study; we will come
back to this shortly.

In the evolution problem in general relativity, there is some coordinate freedom; you may pick
a lapse and shift arbitrarily. Obviously, some choices are better adapted to proving estimates than
others. If you start with CMC initial data, there is a choice of lapse and shift that allow your time
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function to be the (constant) mean curvature of each time slice. This choice ends up being useful
in proving various key estimates. For example, it is used in the recent resolution of the bounded
L2 curvature conjecture by Klainerman, Rodnianski, and Szeftel [12], which states, essentially,
that the evolution of the spacetime can continue as long as the L2 norm of the curvature remains
bounded.

In both of these examples of results for the Einstein constraint and evolution equations, the
authors make the assumption that the spacetimes they are considering have a CMC slice (Cauchy
data). Unfortunately, not all spacetimes have CMC slices! This was first observed by Bartnik in
[4], and vacuum examples were later found by Chruściel, Isenberg, and Pollack in [7]. This has
serious implications for many of the results that have been obtained for both the Einstein constraint
and evolution equations.

For those investigating initial data through study of the Einstein constraint equations, one major
goal is the parameterization of all initial data. The conformal method works well as this parame-
terization for CMC initial data but, unfortunately, it fails for non-CMC data. The solution space
of the conformal constraint equations for far-from-CMC data exhibit folds and blowup in unex-
pected places. This has been shown analytically in some cases [14, 15], and numerically in others
[8]. The behavior of the conformal constraint equations in the far-from-CMC regime is very com-
plicated. However, if every spacetime had a CMC Cauchy surface (slice), while the conformal
method would not parameterize all initial data, it would at least parameterize initial data for every
spacetime. Unfortunately, not all spacetimes have CMC slices, but a similar statement could be
made as long as spacetimes with CMC slices are generic.

Many of the most important conjectures in mathematical relativity ask whether generic space-
times have (or don’t have) certain properties or features, such as Cauchy horizons. However, in
many papers about the evolution problem, assuming the existence of a CMC slice is a key first step
in the analysis. While this may be more a limitation of methods rather than an actual obstruction,
it is still worrying. These results (such as the L2 curvature theorem) cannot be used to prove any-
thing about generic spacetimes, unless it is known that a generic spacetime has a CMC slice. That
is currently unknown. Additionally, is it possible that the spacetimes without CMC slices are an
obstruction that makes proving these results more difficult? The main concern is that it is unknown
how general spacetimes without CMC slices are. While there are a few examples, they are very
special examples, with high levels of symmetry. Is there an open set of such spacetimes? Are they
ubiquitous, or very special?

In this expository paper, we will discuss known results about the existence and non-existence of
constant mean curvature slices in spacetimes, possible directions for investigation, and make a few
conjectures.

2. TECHNICAL BACKGROUND

A Lorentzian manifold V is a cosmological spacetime if it is globally hyperbolic with compact
Cauchy surfaces and satisfies the timelike convergence condition,

(1) RµνT
µT ν ≥ 0, for every timelike vector T.

If the spacetime also obeys the Einstein equations, this is equivalent to the strong energy condi-
tion. Many results included will not require that V satisfies the Einstein equations, though we
are predominately interested in their solutions. By slice, we will always mean a compact Cauchy
surface.
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Intuitively, the mean curvature gives the expansion and contraction rate of the universe. We will
use the sign convention that trk = H < 0 means the universe is contracting to the future. It is well
known [10] that if H < 0 on a slice, then all future timelike geodesics must be incomplete (in the
globally hyperbolic development), with a uniform upper bound on their proper length of 3/−H .

There are a number of well known, useful facts about CMC slices in cosmological spacetimes,
when they exist (see [4, 13]). For instance, if a CMC slice exists in V , with H 6= 0, it is necessarily
unique. For maximal slices, with H ≡ 0, we can only say that the spacetime is static, with a
timelike Killing field T with RµνT

µT ν = 0.
When a spacetime has a CMC slice, there is a foliation, at least locally, by CMC slices. The

mean curvatures vary along the foliation monotonically, except, sometimes, when H ≡ 0. In the
maximal case, nearby slices may also be maximal, but if they are, the spacetime is static. A major
question (see, for instance, [16]) is whether this foliation covers the spacetime, and whether they
necessarily achieve all possible mean curvatures.1

For any two slices with mean curvatures H1 and H2, and one in the future of the other, then for
any mean curvature H satisfying supH1 ≤ H ≤ inf H2, then there is a slice with mean curvature
H in the spacetime, between the other slices.

One common use for this result is that, if V has CMC slices of mean curvature H1 ≤ H2,
then the region between the slices is foliated by CMC slices, with mean curvatures monotonically
increasing along the foliation from H1 to H2.

It will also be useful to define a spacetime ray and line.

Definition 2.1. A future (resp. past) ray is a future (resp. past) timelike path with infinite affine
length.

Definition 2.2. A line is a a timelike geodesic with infinite affine length to the future and past,
which is also globally maximizing in distance.

The earlier mentioned result, that if there is a slice with H < 0, then timelike geodesics have an
upper bound on length to the future, shows that the existence of a CMC implies the nonexistence
of rays, either to the past or future, depending on the sign. On the other hand, the importance of
lines is shown by the following theorem from [4].

Theorem 2.3. A globally hyperbolic spacetime satisfying the timelike convergence criterion (1)
and admitting a line is a metric product. Thus, it has maximal slices.

3. WHICH SPACETIMES HAVE CMC SLICES?

The most basic question to ask is, “Under what conditions does a spacetime have or not have
CMC slices?”

Since CMC slices are unique, it is easy to cut enough out of a spacetime to create a spacetime
without a CMC slice. We are not concerned with such examples. In order to avoid that, we will
consider only maximal globally hyperbolic developments (MGHDs).

Unfortunately, since work on barrier methods in the 80’s, by Bartnik and others, there are rela-
tively few papers that deal with the existence of a CMC slice. (Most papers assume three is one,
then investigate the foliation by CMC slices.) Various barrier methods are well developed. The

1If the topology of the slices do not allow a metric with positive scalar curvature, the spacetime cannot have a
maximal slice. Thus, all allowable mean curvatures would be (−∞, 0) or (0,∞).
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barriers are essentially used to guarantee that the slices avoid the singularities at future or past
infinity.

One type of barrier was used in [4]. In that paper, he showed that if V − I(p) is compact for
some point p ∈ V , then there is a CMC slice, passing through p. The barrier in the proof is ∂I(p),
which is also compact. He uses this boundary to show that there are CMC slices through p, though
singular at p, with any desired mean curvature. He then shows that one of these slices must in fact
be smooth.

The condition that V − I(p) is compact is an interesting condition. It roughly states that an
observer at p could observe all events that happened in the universe, sufficiently far in the past.
There is no “hidden” portion of the universe. A similar statement can be said about the future.
However, it is not a necessary condition. Spherical FRLW spacetimes don’t satisfy it (light rays
emitted from the big bang don’t travel across the universe before recollapse, and so there can be
no such p), but they still have CMC slices.

A more common kind of barrier is a slice with a certain mean curvature. As discussed in Section
2, if we can find two slices, one in the future of the other, and with mean curvatures supH1 ≤
inf H2, then there is a CMC slice between them.

This immediately shows that a spacetime with a crushing singularity has CMC slices. A (future)
crushing singularity means that there is a sequence of slices Σi approaching the future edge of the
MGHD, with mean curvatures Hi satisfying supΣi

Hi → −∞. If you have a crushing singularity,
pick any slice Σ as one barrier, then use the crushing singularity to find a slice Σ′ with supΣ′ H ′ ≤
infΣ H . A CMC slice is then between them.

It is then useful to find other conditions which guarantee that your future singularity is crushing.
One such condition is the strong curvature singularity.

Definition 3.1. A timelike geodesic λ(t) terminates in a strong curvature singularity at affine pa-
rameter value t0 if the following holds: Let µ(t) be the three-from on the normal space to λ′(t) de-
termined by any three linearly independent vorticity-free Jacobi fields along λ(t). If µ(t) vanishes
for at most finitely many t is some neighborhood [t1, t0) of t0, then we require limt→t0 µ(t) = 0.

For cosmological spacetimes, if µ(t) vanishes finitely many times, the limit exists. The basic
equation is

(2)
d2

dt2
µ(t)1/3 +

1

3
(Rabv

avb + 2σ2)µ1/3 = 0,

and, importantly, note that the second term is positive, which makes µ behave well. Using this
equation, it can be shown that any global strong curvature singularity is also a crushing singularity.

Theorem 3.2. [13, Thm 6] For a cosmological spacetime, if there exists a Cauchy surface from
which all orthogonal (future or past) timelike geodesics end in a strong curvature singularity, then
that singularity is crushing, and so there is a CMC slice.

Another theorem in that same paper gives another condition guaranteeing that a singularity is
crushing. It has to do with the c-boundary. The future c-boundary is essentially constructed by
associating each point p of the spacetime with its past I−(p). The future boundary is then defined
as the sets I−(γ), where γ is an inextendible future directed timelike path. (The technical details
for these “indecomposable pasts” can be complicated, but we won’t need them in this paper.)

Theorem 3.3. [13, Thm 6] Suppose a cosmological spacetime with global future singularity has
c-boundary consisting of a single “point,” i.e., that all inextendible future timelike paths have the
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same past (and thus, that past is all of the spacetime.) Then the singularity is crushing, and so a
CMC slice exists.

Those are the most general results that we are aware of for proving that a CMC slice exists.
Let’s now turn our attention to the known examples of spacetimes without CMC slices. Unfor-

tunately, only a few examples are known.
Though this paper is predominantly focused on spatially compact spacetimes, we should briefly

mention results for spatially asymptotically Euclidean manifolds. In these spacetimes, an CMC
asymptotically Euclidean Cauchy surface can only have H ≡ 0, i.e., be maximal. If the spacetime
obeys the weak energy condition, then the Cauchy surface must have a metric of positive scalar.

However, just as in the compact case, there are topological obstructions to this. An explicit
example was found by Brill in [5], but it is now known [9] that any asymptotically Euclidean
manifold, if it can be one point compactified (one point for each end) to a manifold not allowing
a metric of positive scalar curvature, itself cannot have an asymptotically Euclidean metric of
positive scalar curvature. This gives well-understood topological restrictions to the existence of
maximal Cauchy surfaces in spatially asymptotically Euclidean spacetimes.

For spatially compact spacetimes, the original, explicit example comes from Bartnik’s paper [4].
To construct his example, take the maximally extended Schwarzschild spacetime. Then, on each
of the ends, cut off each end and attach a torus with a homogeneous dust in it. Bartnik uses a
particular model (Tolman-Bondi) that allows gluing between these regions in such a way that the
spacetime evolves nicely and satisfies the strong energy condition.

Bartnik proves that this spacetime has no CMC slices in two ways.
The first way is by symmetry. The spacetime has a “time inversion” symmetry. In particular,

if there is a non-maximal CMC slice, then by this symmetry there is one with the same mean
curvature but opposite sign.

In between these slices, you can foliate the spacetime with CMC slices, and thus find a maximal
slice. But the spacetime satisfies the weak energy condition, and so the maximal slice has non-
negative scalar curvature by the constraint equations. This contradicts the topology of the slices,
T 3#T 3.

This proof method is simple, and shows that the topology of the slices may be important in
proving more general results. However, symmetry is obviously not a generic property, and so this
proof seems limited to very symmetric data, a serious limitation.

However, it also allowed the development of a family of examples in [7]. In this paper, they take
T 3 vacuum solutions, then glue them (using IMP gluing) symmetrically. The important addition
is that these examples are vacuum, and so the dust from Bartnik’s example was not necessary. 2

However, it is still hard to generalize these examples due to the symmetry requirement.
Bartnik’s second proof uses timelike path incompleteness.

Theorem 3.4 ([4]). If a globally hyperbolic, cosmological spacetime V has a future ray and a past
ray, but no line, then V has no CMC Cauchy surfaces.

Proof. Suppose V did have a CMC slice, with H 6≡ 0. Then by [10, pg 274], all future (or past)
timelike paths have finite length (depending on the sign of H .) This is a contradiction.

2It is known that dust can cause shell-crossing singularities (though there are none in Bartnik’s example), and so
dust is sometimes avoided.
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If H ≡ 0, the spacetime is locally foliated either by CMC slices with nonzero H (in which case
the first paragraph applies), or it is foliated by maximal slices. If this maximal foliation covers the
spacetime, the spacetime is static and thus contains a line. This is a contradiction. �

The explicit example constructed by Bartnik has rays (complete timelike paths to the past or
future), because the Schwarzschild spacetime does. However, it clearly has no line (and, in fact,
no complete timelike geodesics at all), and so cannot have a CMC slice.

As this second proof doesn’t use symmetry, this approach seems a more likely candidate for
generalization. Indeed, our main conjecture is that this condition is both necessary and sufficient.

Conjecture 3.5. A globally hyperbolic, cosmological spacetime has no CMC Cauchy surfaces if
and only if it contains a future and a past ray, but no line.

To see why this conjecture is reasonable, recall Theorem 2.3, which says that if a spacetime has
a line, then your spacetime is a metric product, and thus have maximal slices. The difficult part of
the conjecture is then to show the following:

Conjecture 3.6. If, in a cosmological spacetime, every future (or past) timelike path is incomplete
(i.e., of finite length), then there exists a CMC slice.

In this formulation the conjecture essentially says that, if you have a global singularity, then you
have a CMC slice.

For certain kinds of singularities, such as the crushing and strong curvature singularities we
discussed earlier, we know this conjecture holds. Unfortunately, not all singularities are necessarily
of the crushing type. For instance, in [16, pg 3594], Rendall constructs an example where a dust
shell-crossing singularity causes a CMC foliation to stop at a finite mean curvature, and so the
singularity is not crushing. Of course, this example uses dust, which is known to cause problems,
and still has CMC slices. We are aware of no other cosmological MGHDs, ending in a global
singularity, which do not have a crushing singularity.

Both of Bartnik’s proofs in fact prove something stronger than that the spacetime has no CMC
slices. They also show that the spacetimes have no slices of constant signed mean curvature. This
observation leads to a conjecture.

Conjecture 3.7. A cosmological spacetime has a CMC slice if and only if it has a slice of constant
signed mean curvature.

Since a slice of constant (non-zero) signed mean curvature implies that there can be no rays,
the main conjecture 3.6 would imply this conjecture. However, it provides an interesting intuitive
picture for spacetimes without CMC slices.

If this conjecture is true, then every slice must have a region with positive mean curvature and
a region with negative mean curvature. Because of this, there appears to be one region of the
spacetime that expands for all time, and another that expands to the past for all time. (This also
lines up with the existence of rays, as in the main conjecture 3.6.) If these regions were causally
linked, you might expect to find a line going from the one region to the other, which would lead to a
contradiction. Thus the spacetime has (at least) two regions separated by some sort of “wormhole,”
as in Bartnik’s example, with on region expanding, the other contracting.

The one implication of the conjecture 3.7 is obvious. he other makes sense heuristically. If V
has a slice of constant signed (non-maximal) mean curvature, there is a global singularity to the
future or past. By the previous conjecture, there must be a CMC slice.
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More directly, suppose that V has a slice of constant signed (non-maximal) mean curvature. It is
possible to evolve the slice by mean curvature flow. On a Lorentzian manifold, the mean curvature
flow tends to expand slices, and so the slice will evolve into the expanding universe direction, i.e.,
towards H ≡ 0. As the universe is expanding, you would not expect singularities to appear before
you reach the point where the new mean curvature is globally closer to zero than the original mean
curvature.3 Using the standard interpolation result, there is a slice of constant mean curvature
between them.

The most useful condition for showing the existence or nonexistence of a CMC slice would
refer only to the initial data. For instance, if a set of vacuum initial data is of Yamabe class Y +,
the closed universe recollapse conjecture [3] says that the spacetime will begin and end in a global
singularity. If this conjecture is true, and the main conjecture 3.6 is true, then every Yamabe
positive vacuum initial data set leads to a spacetime with CMC slices.

Another idea is to try to find conditions on a region of initial data such that that region, when
evolved, will contain rays. For instance, like in Bartnik’s example, if there is a region of the initial
data with positive mean curvature, and is is separated from other regions by a black-hole-type
region, then it seems reasonable that this region should expand for all time, and thus have rays.
Then, if an initial data set had one region expanding to the future in this way, and one to the
past, then, by Theorem 3.4, the spacetime cannot have any CMC slices. This condition would be
especially interesting if it were stable under perturbations, which it seems like it should be.

The difficulty in any attempt to find conditions on initial data is that proving that there are or
are not CMC slices in the spacetime requires asking questions about the long time behavior of the
spacetime. Results of this nature tend to be difficult to prove, and many of the best results require
the existence of a CMC slice. This difficulty is the reason that the only known condition on initial
data is the very restrictive time-antisymmetric condition used earlier.

4. ARE CMC SLICES GENERIC?

The most important question about CMC slices is their genericity. If the existence of CMC
slices is generic, then the special examples where they do not exist can mostly be ignored, and
CMC slicing can be used for proving generic properties. Unfortunately, to our knowledge, there
no evidence that this is the case, other than the weak evidence that all known examples are all very
special, all on T 3#T 3 with time-antisymmetry.

In any question of genericity, it is vital to choose a useful and meaningful topology. In questions
about spacetimes, there are several choices that could be made.

The simplest choice would be a global C2,α topology. Using this topology, Choquet-Bruhat
[6] showed that spacetimes with CMC slices form an open set. In particular, she proves that
perturbations in a neighborhood of the evolution of a CMC slice always has another CMC slice.
This is done using the linearization of the mean curvature operator.

However, in this topology, the existence of CMC slices is not generic! Due to Theorem 3.4,
if there are timelike rays, but no timelike line, then the spacetime does not have a CMC slice.

3Indeed, this can almost be carried out. Using basic estimates, it is not hard to show that as long as all timelike
geodesics exist for a certain explicit amount of proper time into the expanding direction (based only on the starting
mean curvature), then you can evolve the slice long enough to get the desired slice with small mean curvature. Unfor-
tunately, in trying to show that you can always evolve long enough to find such a slice, you need an estimate of certain
quantities. The type of estimate that would seem to work is exactly the kind of estimate that CMC slices are used for
in evolution problem papers–a relationship between the second fundamental form and the lapse. Thus the problem
becomes somewhat circular.
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However, the unboundedness of rays is stable under a global C2,α perturbation. Also, if there
were a line, Theorem 2.3 says the spacetime would be static. However, Bartnik’s example is not
C2,α close to a static spacetime, and so a small enough C2,α perturbation could not create a line.
Together, this means that every small, global C2,α perturbation of Bartnik’s example would still
have no CMC slices.

We would be among the first to admit, though, that the global C2,α topology, along with any
other global topology, is probably not the right one for this problem. For instance, since we are
dealing only with MGHDs, spacetimes end in singularities or exist for all time. In either case,
something is unbounded. Thus, C2,α close is extremely restrictive.

A related problem is that there are one parameter families of initial data which are not close
to each other in the C2,α norm. For example, initial data for the flat toroidal, static universe can
be perturbed into initial data which evolve into spacetimes with either global future or global past
singularities.

It seems that a topology based on initial data is more reasonable for this problem. We propose
to use the C2,α topology on initial data sets (M, g,K).

Using this topology, the existence of CMC slices is still an open condition. Consider initial data
evolving into a spacetime with at least one CMC slice. That CMC slice is within some amount of
coordinate time t0 from the initial slice. For any initial data sufficiently close to the original data,
the spacetimes are C2,α close within t0 of the initial data. Again using Choquet-Bruhat’s argument
in [6], the nearby spacetime also has a CMC slice, of the same mean curvature.

Unfortunately, as with the global C2,α topology, it appears that the existence of CMC slices is
not a generic condition.

Conjecture 4.1. There is an open set of initial data (in the C2,α norm) such that the associated
spacetimes do not have CMC slices.

Consider Bartnik’s example that we discussed earlier. To remind the reader, his spacetime is two
toroidal universes, (one expanding to the future, the other to the past,) separated by a Schwarzschild
bridge. If the existence of CMC slices was a dense condition, a generic perturbation of initial data
for Bartnik’s example should evolve into a spacetime with CMC slices.

This perturbed data could not lead to a static spacetime, and so it has a non-maximal CMC slice.
Thus, all future (or past) geodesics are incomplete. In other words, a generic perturbation causes at
least one of the expanding toroidal universes to collapse. But a small perturbation shouldn’t cause
global collapse. To make this a bit more precise, we make the following conjecture.

Conjecture 4.2. If a compact, vacuum initial data set evolves into a non-static spacetime such that
there is a family of future rays intersecting the initial Cauchy surface in an open set, then any small
C2,α perturbation of the initial data evolves into a spacetime with at least one future ray.

This is not the same as stability of the spacetime. For instance, the perturbation could coalesce
into a black hole type region, but as long as it didn’t cause the global collapse of the expanding
region, the conjecture would still hold.

If this conjecture were true for initial data with dust, Bartnik’s example would immediately im-
ply that the existence of CMC slices is not generic. Similarly, the examples of Chruściel, Isenberg,
and Pollack, if they contain a ray, would also imply that the existence of CMC slices is not generic.

Another heuristic example can be found by gluing together two stable 2-tori. In two papers,
[1, 2], Andersson and Moncrief give vacuum, hyperbolic FLRW models with the metric −dρ2 +
ρ2γ, where γ is the hyperbolic metric on the 2-torus slice. Importantly, they prove these spacetimes
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are stable attractors of nearby initial data, at least in the expanding direction. If we take two of the
same constant-ρ slices, but change the sign of the second fundamental form k on the second one,
we can do the same gluing they used in [7] in order to glue these together anti-symmetrically in
k and symmetrically in the metric. Then, as with their examples, the evolution can have no CMC
slices due to the symmetry and bad topology.

Of course, these examples are really just a special case of the examples in [7]. The advantage
these have is that the base hyperbolic space we are using is known to be stable. That means, after
the gluing, in the domain of dependence (in the expanding direction) away from the gluing region,
the spacetime is close to, and in fact converging toward, the original FLRW. If this domain existed
for all time under any perturbation, the new spacetime would have infinite length timelike paths,
and thus no CMC slices. That would show that the set of initial data that evolve to have CMC
slices is not dense!

Unfortunately, it is unclear whether this domain of dependence lasts for all time. In the original
FLRW spacetime, it is straightforward to check that the expansion rate of the universe is just barely
too slow to guarantee that. (If the ρ2 were replaced by ρ2 ln3(ρ), for instance, it would work.)

However, perturbations of this glued spacetime likely still have no CMC slices. Heuristically,
the wormhole bridge connecting the two glued tori should act like the Schwarzschild bridge in
Bartnik’s example. Since it is a black-hole-like region, we would expect it to stay small, only
lightly affecting the spacetime outside its immediate neighborhood. If this were true, the spacetime
would not recollapse in the expanding direction, and so all perturbations would lead to spacetimes
without CMC slices.

It is, of course, possible that spacetimes with CMC slices are generic. If that were true, for
any initial data set S leading to a spacetime without CMC slices, there are sets of initial data Si,
leading to spacetimes with CMC slices, converging to the initial data in theC2,α topology. Since the
corresponding spacetimes Vi will then converge on any compact interval of time (of the spacetime
V evolved from S), if the CMC slices of the Vi were well behaved, then the boundary spacetime V
would also contain a CMC slice. Thus, the CMC slices of the Vi cannot be well behaved.

There are three ways the convergence of CMC slices could fail. The first is that for each H , the
CMC slice in Vi of mean curvature H could “run off” to infinity, so that, in the limit, no compact
interval of time could contain the slices. The second is that these slices may become null in the
limit. For the third, it is possible that, for any H , for i large enough, Vi does not have a CMC slice
of mean curvature H . In other words, the foliation by CMC slices in Vi covers a vanishing interval
of the possible mean curvatures.

In any of these cases, the boundary spacetime V should have slices of arbitrarily near constant
mean curvature. If the converging slices are non-maximal, the slices in V should be near-CMC in
the traditional sense of ‖∇H‖ being small compared to ‖H‖. If the converging slices are maximal
(or approach maximal), as they would be in Conjecture 3.7 were true, the slices in V would be
near-CMC but perhaps only in the sense that the average of H could be made arbitrarily small.

Thus, heuristically, the existence of CMC slices is a generic property if and only if every space-
time has near-CMC slices. Thus, one way to check whether we should expect this property to be
generic is to check whether the known examples have arbitrarily near-CMC slices. If they do not,
we would expect that the existence of CMC slices is not generic. If they do, we cannot, however,
conclude the opposite.

Let us mention that this heuristic argument has consequences for the initial data problem. The
conformal method, as mentioned in the introduction, parameterizes all CMC initial data. While
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it fails for far-from-CMC data, it still behaves well for near-CMC data, including existence and
uniqueness. If it were true that all spacetimes have near-CMC slices, the conformal method may
still be able to provide a reasonable parameterization of initial data for all spacetimes.

While genericity is the main question, it is not even known whether spacetimes with CMC slices
and those without are even in the same connected component. To prove that they aren’t, one could
try to show that the no-CMC-slice condition is open, or that the CMC-slice condition is closed.
Both of those methods, if our main Conjecture 3.6 is true, are questions about long term stability
of the spacetime: If a spacetime has a ray, do all nearby spacetimes also have a ray?

At first glance it may seem like a spacetime with a single (future) ray could be perturbed to a
spacetime without a ray. However, do such spacetimes even exist? By conjecture 3.7, which says
that spacetimes without CMC slices will have no slices of constant sign, we expect that a spacetime
without CMC slices will be expanding in some region. An expanding region should have an open
set of rays.

Additionally, an expanding region should be stable. The boundary example of the static universe
is unstable, and cannot occur since there is a region that is expanding to the past as well. Any
sufficiently small perturbation of the expanding region, as we’ve argued before, should not cause
the expanding region to collapse. This would suggest that having no CMC slices is also an open
condition, and thus forms a disconnected component of initial data.

One could also try to show connectedness direction. The most obvious way is to take the initial
data for an example with no CMC slices, and treat it as seed data for the conformal constraint
equations. Then one can make a path of seed data from that given data to one with constant mean
curvature. The difficulty is that one must solve the conformal constraint equations for each set of
seed data in order to find initial data for a spacetime. Unfortunately, it is now well established
(see [8]) that for far-from-CMC seed data, which we, of necessity, would have to work with, the
conformal constraint equations are very complicated, and it is unclear that they have solutions for
that seed data.

5. FINAL COMMENTS

Constant mean curvature Cauchy surfaces are useful and much easier to work with than their
non-CMC counterparts. This is true both for initial data and for the evolution of the data. Unfortu-
nately, while much is known about foliations by CMC slices, given a starting CMC slice, less has
been written about whether or not spacetimes have CMC slices at all.

Importantly, many results assume that the spacetime has a CMC slice. Unfortunately, it is cur-
rently unknown whether or not that assumption is true for a generic spacetime. Our conjecture is
that it is not a generic condition. Since many of the most important conjectures in mathematical
relativity concern generic spacetimes, this means that results that assume the existence of a CMC
slice are not applicable to those problems, unless the assumption of the existence of a CMC slice
can somehow be removed.
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