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1 Introduction

We shall construct robust multilevel preconditioners for the finite element
discretization of second order linear elliptic equations with strongly discon-
tinuous coefficients. We extend corresponding results on uniform grids [57]
to locally refined grids obtained by bisection methods.

Consider the following model problem :

−∇ · (a∇u) = f in Ω, u = gD on ΓD, a
∂u

∂n
= gN on ΓN (1.1)

where Ω ∈ Rd is a polygon (for d = 2) or polyhedron (for d = 3) with
Dirichlet boundary ΓD and Neumann boundary ΓN such that ΓD ∪ ΓN =
∂Ω. The diffusion coefficient a = a(x) is piecewise constant. More pre-
cisely, the domain Ω is partitioned into M open disjoint polygonal or poly-
hedral regions Ωi (i = 1, · · · ,M) and

a|Ωi = ai, i = 1, . . . ,M

where each ai is a positive constant. The regions Ωi (i = 1, · · ·M) may
possibly have complicated geometry but we assume that they are com-
pletely resolved by an initial triangulation T0. Our analysis can be carried
through to more general cases when a(x) varies moderately in each subdo-
main and to other types of boundary conditions in a straightforward way.

The problem (1.1) belongs to the class of interface problems or trans-
mission problems, which are relevant to many applications such as ground-
water flow [29], electromagnetics [27], semiconductor modeling [22,32],
and fuelcells [50]. The coefficients in these applications may have large
jumps across interfaces between regions with different material properties,
i.e. J(a) := maxi ai/mini ai � 1. Due to this J(a) and the meshsize, the
finite element discretization of (1.1) is usually very ill-conditioned, which
leads to deterioration in the rate of convergence of multilevel and domain
decomposition methods [3,26,47].

Only in some special circumstances, we are able to show the (nearly)
uniform convergence of the multilevel and (overlapping) domain decom-
position methods, see [12,48,49,23,37] for examples. For general cases,
we usually need some special techniques to obtain robust iterative meth-
ods, see [16,41,25,1,45]. Recently, in [57,61] we analyzed the eigenvalue
distributions of the standard multilevel and overlapping domain decompo-
sition preconditioned systems, and showed that there are only a small fixed
number of eigenvalues may deteriorate with respect to the discontinuous
jump or meshsize, and that all the other eigenvalues are bounded below
and above nearly uniformly with respect to the jump and meshsize. As a
result, we proved that the convergence rate of the preconditioned conjugate
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gradient methods is uniform with respect to the large jump, and depends
logarithmically on meshsize. These results justified that the standard multi-
level and domain decomposition preconditioners are efficient and robust for
finite element discretization of (1.1) on quasi-uniform grids. In this paper,
we extend our results to locally refined grids.

The discontinuity of diffusion coefficients causes a lack of regularity
of the solution to (1.1), which, in turn, leads to deterioration in the rate of
convergence for finite element approximations over quasi-uniform triangu-
lations. Adaptive finite element methods through local mesh refinements
can be applied to recover the optimal rate of convergence [15]. In order
to achieve the optimal computational complexity in adaptive finite element
methods, it is imperative to study fast algorithms for solving the linear sys-
tem of equations arising from the finite element discretization. The distinct
feature of applying multigrid methods on locally refined meshes is that the
number of nodes of nested meshes obtained by local refinements may not
grow exponentially, violating one of the key properties of multilevel meth-
ods on uniform meshes that leads to optimal O(N) complexity. Indeed,
let N be the number of unknowns in the finest space, the complexity of
smoothing can be as bad asO(N2) [34]. This prevents direct application of
algorithms and theories developed in [57] for quasi-uniform grids to locally
refined grids.

To achieve optimal complexityO(N), the smoothing in each level must
be restricted to the newly added unknowns and their neighbors; see, for ex-
ample, [6,11,34]. Such methods are referred to as local multilevel methods
in [6]. As an extreme case, one can preform the smoothing only on newly
added nodes turning a coarse grid to a fine grid. The resulting method is
known as the hierarchical basis method [59,8]. In two dimensions, the hi-
erarchical basis methods are proven to be robust for jump coefficient prob-
lems on locally refined meshes (cf. [8]). In three dimensions, however,
classic multilevel and domain decomposition methods, including the hi-
erarchical basis multigrid methods, deteriorate rapidly due to the presence
of discontinuity of coefficients. To obtain robust rates of convergence for
multigrid methods, one has to use special coarse spaces [23,40] or assume
that the distribution of diffusion coefficients satisfies the so called quasi-
monotone condition [23]. Therefore the three dimensional case is much
more difficult. There are other works [2,28] on optimal complexity of local
multilevel methods in three dimensions, but the problems with discontinu-
ous coefficients remain open.

We shall design and prove the efficiency and robustness of local multi-
level preconditioners for the finite element discretization of problem (1.1)
on bisection grids – one class of locally refined grids. In these precondi-
tioners, we use a global smoothing in the finest mesh; and for each newly
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added node, we perform smoothing only for three vertices - the new vertex
and its two parents vertices (the vertices sharing the same edge with the
new vertex). We analyze the eigenvalue distribution of the multilevel pre-
conditioned matrix, and prove that there are only a fixed number of small
eigenvalues deteriorated by the coefficient and mesh-size; the other eigen-
values are bounded nearly uniformly. Thus, the resulting preconditioned
conjugate gradient algorithm converges uniformly with respect to the jump
and logarithmically with respect to the mesh size of the discretization. We
establish our results of this type in both two and three dimensions.

To attack the geometric structure of bisection grids, we use the decom-
position of bisection grids developed in the recent work by Chen, Nochetto
and Xu [19,56]. This approach enables us to introduce a natural decompo-
sition of the finite element space into subspaces consisting only the newest
vertices and their two parents vertices. In the analysis of these local mul-
tilevel preconditioners, one of the key ingredient is the stable decompo-
sition (see Theorem 4.2). For the standard multilevel preconditioners on
uniform mesh, in [57] we used the approximation and stability properties
of the weighted L2 projection ([12]) to construct a stable decomposition.
This weighted L2 projection is no longer applicable for the local multilevel
preconditioners, since it is a global projection. In order to preserve the lo-
cal natural of the highly graded meshes, we introduce a local interpolation
operator, which we manage to prove similar approximation and stability
properties (see Theorem 3.1 and 3.2) as the weighted L2-projection. Our
local quasi-interpolation operator and the corresponding analysis is much
more delicate than that in [19,56] for the Poisson equation. We should re-
mark that due to this space decomposition, we are able to remove the as-
sumption, nested local refinement, which is used in most existing work on
multilevel methods on local refinement grids [2,28].

The rest of the paper is organized as follows. In Section 2, we give
some notation and recall some fundamental results as in [57]. In Section 4,
we study bisection grids, and review some technical tools from [19,56].
Here we restrict ourself to a kind of special bisection scheme, namely the
newest vertex bisection. Then in Section 4, we study some technical re-
sults of space decomposition, and present the optimal/stable decomposi-
tion and the strengthened Cauchy-Schwarz inequality on bisection grids.
In Section 5, we analyze multilevel preconditioners, i.e., the BPX precon-
ditioner and the multigrid V -cycle preconditioner, and prove convergence
results for the preconditioned conjugate gradient algorithm. In Section 6,
we present numerical experiments to justify our theoretical results.

We will use the following short notation, x . y means x ≤ Cy, x & y
means x ≥ cy and x h y means cx ≤ y ≤ Cx where c and C are generic



Multilevel Preconditioners for Jump Coefficients Problems on Bisection Grids 5

positive constants independent of the variables appearing in the inequalities
and any other parameters related to mesh, space and coefficients.

2 Preliminary

In this section, we introduce some notation, set up our problem, and review
briefly some facts about the preconditioned conjugate gradient algorithm.

2.1 Notation and Problem

Given a set of positive constants {ai}Mi=1, we define the following weighted
inner products on the space H1(Ω)

(u, v)0,a =
M∑
i=1

ai(u, v)L2(Ωi) and (u, v)1,a =
M∑
i=1

ai(∇u,∇v)L2(Ωi)

with the induced weighted L2 norm ‖·‖0,a, and the weightedH1-seminorm
| · |1,a, respectively. We denote by

‖u‖1,a =
(
‖u‖20,a + |u|21,a

) 1
2 ,

and the related inner product and the induced energy norm by

(u, v)A = A(u, v) := (u, v)1,a, ‖u‖A =
√
A(u, u).

To impose the Dirichlet boundary condition in (1.1), we define

H1
gD,ΓD

= {v ∈ H1(Ω) : v|ΓD = gD in the trace sense},

and H1
D := H1

0,ΓD
. Given a shape regular triangulation Th, which could

be highly graded, we define Vh as the standard piecewise linear and global
continuous finite element space on Th. Given f ∈ H−1(Ω) and gN ∈
H1/2(ΓN ), the linear finite element approximation of (1.1) is the function
u ∈ Vh ∩H1

gD,ΓD
, such that

A(u, v) = 〈f, v〉+

∫
ΓN

gNv for all v ∈ Vh ∩H1
D. (2.1)

Given any u0 ∈ Vh ∩ H1
gD,ΓD

, the problem (2.1) is equivalent to finding
u ∈ Vh ∩H1

D such that

A(u, v) = 〈f, v〉+

∫
ΓN

gNv −A(u0, v) for all v ∈ Vh,D. (2.2)
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We thus consider the space Vh,D := Vh ∩ H1
D. The bilinear form A(·, ·)

will then introduce a symmetric positive definite (with respect to standard
L2-inner product) operator, still denoted by A, from Vh,D to Vh,D as

(Au, v) = A(u, v).

Define b ∈ Vh,D as

(b, v) = 〈f, v〉+

∫
ΓN

gNv −A(u0, v) for all v ∈ Vh ∩H1
0,ΓD

.

We then get the following operator equation on Vh,D

Au = b. (2.3)

For simplicity, in the remainder of the paper, we should omit the subscript
D in Vh,D without ambiguity.

We are interested in solving equation (2.3) by the preconditioned con-
jugate gradient methods with BPX and multigrid preconditioners.

2.2 Preconditioned Conjugate Gradient Method

Let B be a symmetric positive definite (SPD) operator. Applying it to both
sides of (2.3), we get an equivalent equation

BAu = Bb. (2.4)

We apply the conjugate gradient method to solve (2.4) and the resulting
method is known as the preconditioned conjugate gradient (PCG) method,
where B is called a preconditioner.

Let κ(BA) = λmax(BA)/λmin(BA) be the (generalized) condition
number of the preconditioned system BA. Starting from an arbitrary initial
guess u0, we have the following well known convergence rate estimate for
the kth iteration uk (k ≥ 1) in PCG (see e.g. [39])

‖u− uk‖A
‖u− u0‖A

≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)k
.

Therefore if the condition number κ(BA) is uniformly bounded, then PCG
algorithm converges uniformly. Here the uniformity means the indepen-
dence of the size of the matrix A. Later on, when A is related to equation
(1.1), we shall also discuss the uniformity of convergence with respect to
the jump of diffusion coefficients.

If there are some isolated small or large eigenvalues, we can sharpen the
above convergence rate estimate; see [5].
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Theorem 2.1 [5] Suppose that σ(BA) = σ0(BA) ∪ σ1(BA) such that
there are m elements in σ0(BA) and α ≤ λ ≤ β for each λ ∈ σ1(BA).
Then

‖u− uk‖A
‖u− u0‖A

≤ 2K

(√
β/α− 1√
β/α+ 1

)k−m
, (2.5)

where

K = max
λ∈σ1(BA)

∏
µ∈σ0(BA)

∣∣∣∣1− λ

µ

∣∣∣∣ .
If there are only m small eigenvalues in σ0(BA), say

0 < λ1 ≤ λ2 · · · ≤ λi � λm+1 ≤ · · · ≤ λn,
then

K =
m∏
i=1

∣∣∣∣1− λn
λi

∣∣∣∣ ≤ (λnλ1 − 1

)m
= (κ(BA)− 1)m . (2.6)

Therefore the convergence rate of PCG algorithm will be dominated by the
factor (

√
β/α − 1)/(

√
β/α + 1), i.e. by β/α where β = λn(BA) and

α = λm+1(BA). We define the “effective condition number” as follows.

Definition 1 Let V be an n-dimensional Hilbert space and T : V → V be
a symmetric and positive definite operator. For any integer m ∈ [1, n− 1],
the mth effective condition number of T is defined by

κm(T ) =
λn(T )

λm+1(T )

where λm+1(T ) is the (m+ 1)-th minimal eigenvalue of T.

As a corollary of Theorem 2.1, we have

‖u− uk‖A
‖u− u0‖A

≤ 2(κ(BA)− 1)m

(√
κm(BA)− 1√
κm(BA) + 1

)k−m
. (2.7)

From (2.7), given a tolerance ε, the number of iterations of the PCG method
to reduce the relative error below the tolerence ε is [4,5]

m+

⌈(
log

(
2

ε

)
+m| log(κ(BA)− 1)|

)
/c0

⌉
,

where c0 = log
(

(
√
κm(BA) + 1)/(

√
κm(BA)− 1)

)
. Therefore if there

exists an m ≥ 1 such that the mth effective condition number is bounded
uniformly, then the PCG algorithm will still converge almost uniformly,
even though the standard condition number κ(BA) may not be uniformly
bounded.

To estimate the effective condition number λm+1(A), we use a funda-
mental tool known as the Courant “minimax” principle (see e.g. [24]).
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Theorem 2.2 Let V be an n-dimensional Hilbert space with inner product
(·, ·)V and T : V → V a symmetric positive operator on V. Suppose λ1 ≤
λ2 ≤ · · · ≤ λn are the eigenvalues of T, then

λm+1(T ) = max
dim(S)=m

min
06=v∈S⊥

(Tv, v)V
(v, v)V

for i = 1, 2, · · · , n−1. Especially, for any subspace V0 ⊂ V with dim(V0) =
n−m

λm+1(T ) ≥ min
06=v∈V0

(Tv, v)V
(v, v)V

. (2.8)

If both A and B are SPD operators, then BA is SPD in the inner product
induced by B−1 and A. We shall apply Theorem 2.2 to T = BA and
(u, v)V := (B−1u, v)L2 . Therefore if we have an inequality of the type
(Av, v) ≥ c(B−1v, v) for all v in a suitable subspace V0 with dim(V0) =
n−m, we can get a lower bound of λm+1(BA).

3 Local Quasi-interpolation

The theoretical justification of the robustness of multilevel precondition-
ers relies on establishing approximation and stability properties of certain
interpolation operators. In [57,61], we used the weighted L2-projection
Qah : L2(Ω)→ Vh defined by

(Qahu, vh)0,a = (u, vh)0,a for all vh ∈ Vh.

For the analysis of local multilevel preconditioners, we require the interpo-
lation operator to preserve certain local structure. Therefore, the weighted
L2-projection, which is a global operator, is not appropriate. On the other
hand, the standard nodal interpolation operator is local but not stable in
the energy norm. Local quasi-interpolation, such as Scott-Zhang opera-
tors [42], are developed to achieve both locality and stability. The stability
constant of the standard quasi-interpolation, however, depends on the jump
of diffusion coefficients.

In this section, we construct a local and stable quasi-interpolation op-
erator by gluing Scott-Zhang operators in each subdomains and interfaces.
Our operator is stable uniformly with respect to the jump of coefficients
and nearly uniform to the mesh size of the triangulation. We stress that this
local quasi-interpolation operator is designed for the analysis and will not
enter the algorithm.
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3.1 Notation on Triangulations

Let us introduce some notation related to the domain and its triangulations.
As we mentioned earlier, we assume that the polygonal or polyhedral sub-
domains Ωi (i = 1, · · · ,M) are open, disjoint to each other, and satisfy
∪Mi=1Ωi = Ω.We denote Γij = ∂Ωi∩∂Ωj , or simply Γ if without ambigu-
ity, as the interface between two subdomains Ωi and Ωj . The subdomains
Ωi (i = 1, · · ·M) may possibly have complicated geometry but we assume
that they are resolved by an initial conforming triangulation T0. Recall that
a triangulation T is called conforming if the intersection of any two ele-
ments τ and τ ′ in T either consists of a common vertex, edge, face (when
d = 3), or empty.

Let N , E and F (when d = 3) denote the set of vertices, edges, and
faces of T respectively. For each vertex p ∈ N ,we define local patch ωp :=
∪τ3pτ and, for τ ∈ T , ωτ = ∪p∈τωp. Similarly, on the (d−1) dimensional
interface Γ , op, oe and of denote the intersection of corresponding local
patches and the interface. The linear finite element space associated to T is
denoted by V(T ), or simply V.More generally, for any subset § ⊂ T , V(§)
denote the finite element subspace restricted to the subset G. Similarly, we
should denoteN (G) ⊂ N , E(G) ⊂ E andF(G) ⊂ F as the set of vertices,
edges, and faces in G ⊂ Ω, respectively.

For each element τ ∈ T , we define hτ = |τ |1/d and ρτ for the radius
of its inscribed ball. In the whole paper, we assume that the triangulation is
shape regular in the sense hτ h ρτ . Let h denote the piecewise constant
meshsize function with h|τ = hτ , and hmin := minτ∈T hτ .We should also
denote he by the length of an edge e ∈ E and hf by the diameter of a face
f ∈ F . Moreover, we define hp as the diameter of the local patch ωp. By
the shape regularity assumption, for all e, f, τ ⊂ ωp, we have

hp h he h hf h hτ .

3.2 Technical Lemmas

Here for completeness, we quote some technical lemmas from [12], which
will be used later for proving the approximation and stability of our local
interpolation operator.

In two dimensions, it is well known that H1(Ω) is not embedded into
L∞(Ω). But for finite element functions, we can control the L∞ norm by
its H1-norm with a factor | log h|1/2.

Lemma 3.1 ([12, Lemma 2.3]) LetG be a bounded Lipschitz domain in R2

and V(G) be a finite element space based on a quasi-uniform triangulation
of G with mesh size h. Then for all v ∈ V(G), it satisfies

‖v‖L∞(G) . | log h|1/2‖v‖H1(G).
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In three dimensions, the trace of a H1-function on an edge is not well
defined. But for a finite element function, its L2-norm on an edge can be
bounded by its H1-norm with a factor | log h|1/2.

Lemma 3.2 ([12, Lemma 2.4]) Let G be a polyhedral domain in R3 and
V(G) be a finite element space based on a quasi-uniform triangulation of
G with mesh size h. Then for all v ∈ V(G), and any edge E of G, there
holds

‖v‖L2(E) . | log h|1/2‖v‖H1(G).

In the following application of Lemma (3.2), G is usually taken as a local
patch which is quasi-uniform.

3.3 Stable Local Quasi-Interpolation

Given a conforming triangulation T , the standard Scott-Zhang interpola-
tion operator Π : H1(Ω) → V(T ) can be defined as follows. For any
p ∈ N (T ), choose an element τ ⊂ ωp. The choice of τ is not unique. Let
{λτ,i : i = 1, · · · , d + 1} be the barycentric coordinates of τ. One can de-
fine the L2-dual basis {θτ,i : i = 1, · · · , d+1} of {λτ,i : i = 1, · · · , d+1},
namely,

∫
τ θτ,iλτ,j = δij . We define a quasi-interpolation Π as

Πv =
∑

p∈N (T )

(∫
τ
θpv

)
φp,

where {φp}p∈N (T ) is the set of nodal basis of V. Note that if v ∈ P1(τ),
then

∫
τ θpv = v(p) and thus Π will preserve linear polynomial in ωτ .

The following properties of the quasi-interpolation Π can be found at
[36,42].

Lemma 3.3 The interpolation operator Π satisfies the following proper-
ties:

Stability: ‖Πv‖L2(τ) . ‖v‖L2(ωτ ), ‖Πv‖H1(τ) . ‖v‖H1(ωτ ); (3.1)

Locality: (Πv)|τ = v|τ if v ∈ V(ωτ ); (3.2)

Approximability: ‖h−1(v −Πv)‖L2(τ) . ‖v‖H1(ωτ ). (3.3)

We treat the interior of each subdomain and the interfaces separately
and use a subscript to indicate different quasi-interpolations. For example
Πi : L2(Ωi)→ V(Ωi) denotes a Scott-Zhang interpolation restricted to Ωi
and ΠΓ : L2(Γ )→ V(Γ ) on the interface Γ ⊂ ∂Ωi. On the interface, ΠΓ

has similar properties as stated in Lemma 3.3:

‖ΠΓ v‖L2(f) . ‖v‖L2(of ); (3.4)

‖h−1(v −ΠΓ v)‖L2(f) . ‖v‖H1(of ). (3.5)
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We now construct a local interpolation operator Iah with desirable lo-
cal approximation and stability properties in the weighted Sobolev norms.
Given a u ∈ H1(Ω), we define Iahu ∈ V(T ) such that for p ∈ N (Ωi)

Iahu(p) :=


(Πiu)(p), if p ∈ N (Ωi) \ N (∂Ωi),
(ΠΓu)(p), if p ∈ N (Γ ) \ N (∂Γ )

for each interface Γ ⊂ ∂Ωi,
0, otherwise.

(3.6)

For a vertex p, let us denote by σp the simplex chosen to define the nodal
value at p. Then the interpolant Iah is uniquely determined by the mapping
p → σp. In (3.6), if p is in the interior of some subdomain Ωi, then we
choose a d-simplex σp ⊂ Ωi; if p is in the interior of the interface Γ, we
choose σp ⊂ Γ as a (d − 1)-simplex on the interface. The choice of σp is
not unique. However, in order to preserve the local structure of the adaptive
grids, we need to choose σp carefully. This will be clear in Section 4 when
we discuss the geometry of the bisection grids.

Now we are in the position to present the main result in this section:

Theorem 3.1 Let Ω ⊂ Rd with d = 2 or 3 and Th be a triangulation of Ω
with mesh size h. Then for all u ∈ H1(Ω), we have

‖h−1(u− Iahu)‖0,a,Ω .
∥∥∥| log h|1/2u

∥∥∥
1,a,Ω

.

Proof Here we present the proof for d = 3. The case for d = 2 can be
proved similarly (indeed with simpler arguments by using the nodal inter-
polation and Lemma 3.1 cf. [8]). We define w = Iahu ∈ V as (3.6), and
denote wi := Πiu for simplicity.

Note that w(p) = wi(p) for all interior nodes p ∈ N (Ωi) \ N (∂Ωi).
By the equivalence of continuous and discrete L2 norms, we obtain

‖h−1(w − wi)‖2L2(Ωi)

.
∑

p∈N (∂Ωi)

hp(w − wi)2(p) ≤
∑

Γ⊂∂Ωi

∑
p∈N (Γ )

hp(w − wi)2(p)

≤
∑

Γ⊂∂Ωi

 ∑
p∈N (Γ )

hp (ΠΓu− wi)2 (p) +
∑

p∈N (∂Γ )

hpw
2
i (p)


.

∑
Γ⊂∂Ωi

 ∑
f⊂F(Γ )

h−1f ‖ΠΓu− wi‖2L2(f) + ‖wi‖2L2(∂Γ )

 .
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We need to bound two terms appearing in the last expression. For the first
term, we have

h−1f ‖ΠΓu− wi‖2L2(f) . h
−1
f ‖u− wi‖

2
L2(of )

. h−2f ‖u− wi‖
2
L2(ωf )

+ ‖u− wi‖2H1(ωf )

. ‖u‖2H1(ωf )
,

where recall that of ⊂ ∂Ωi is the local patch associated with f on the
interface, and ωf ⊂ Ωi. In the first step, we used theL2 stability (3.4) ofΠΓ

and the fact ΠΓwi = wi|Γ . In the second step, we used the trace theorem
(cf. [12, Lemma 2.1]), and in the last inequality, we used Lemma 3.3 for
the Scott-Zhang interpolation Πi. Hence we have that∑

Γ⊂∂Ωi

∑
f⊂F(Γ )

h−1f ‖wi −ΠΓu‖2L2(f) . ‖u‖
2
H1(Ωi)

.

For the second term, we bound it by using the discrete Sobolev inequality
Lemma 3.2 on each local patch ωp and the local H1-stability (3.1) of Πi to
obtain∑

Γ⊂∂Ωi

‖wi‖2L2(∂Γ ) .
∥∥∥| log h|1/2wi

∥∥∥2
H1(Ωi)

.
∥∥∥| log h|1/2u

∥∥∥2
H1(Ωi)

.

Consequently,

‖h−1(wi − w)‖L2(Ωi) .
∥∥∥| log h|1/2u

∥∥∥
H1(Ωi)

.

Finally, by the triangle inequality and the approximation property (3.3)
of Πi we have

‖h−1(u− Iahu)‖L2(Ωi) ≤ ‖h
−1(u− wi)‖L2(Ωi) + ‖h−1(wi − Iahu)‖L2(Ωi)

. ‖u‖H1(Ωi) +
∥∥∥| log h|1/2u

∥∥∥
H1(Ωi)

.

Multiplying by a suitable weight and summing up over all subdomains on
both sides, we get the desired estimate.

�

In general, we can not replace ‖u‖1,a by the energy norm |u|1,a in the
above lemma; see [52] for a counter example. To be able to use |u|1,a in the
estimate, we introduce a subspace H̃1

D(Ω) of H1
D(Ω) as follows:

H̃1
D(Ω) =

{
u ∈ H1

D(Ω) :

∫
Ωi

u dx = 0 for all i ∈ I
}
,
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where I is the set of indices of all floating subdomains:

I = {i : meas(∂Ωi ∩ ΓD) = 0}.

Let m0 := #I be the cardinality of I. We emphasize that m0 is a constant,
depending only on the distribution of the coefficients, and m0 ≤M. In this
subspace H̃1

D(Ω), the interpolation Iah has the following properties.

Theorem 3.2 For any v ∈ H̃1
D(Ω), we have the approximation property of

Iah ∥∥h−1(v − Iahv)
∥∥
0,a
. |log hmin|

1
2 |v|1,a , (3.7)

and the stability of Iah in the energy norm

|Iahv|1,a . |log hmin|
1
2 |v|1,a . (3.8)

Proof For v ∈ H̃1
D(Ω), it satisfies the Poincaré-Friedrichs inequality on

each subdomainΩi. Therefore we get ‖v‖0,a . |v|1,a . The inequality (3.7)
then follows from Lemma 3.1.

To prove inequality (3.8), we use the inequality (3.7) and the local L2

projection Qτ : L2(τ) → P0(τ) defined by Qτu|τ = |τ |−1
∫
τ udx. Then

on each element τ ∈ Th, we have

|Iahv|
2
H1(τ) . |I

a
hv −Qτv|

2
H1(τ) . h

−2
τ ‖Iahv −Qτv‖

2
L2(τ)

. h−2τ
(
‖v − Iahv‖

2
L2(τ) + ‖v −Qτv‖2L2(τ)

)
. h−2τ ‖v − Iahv‖

2
L2(τ) + |v|2H1(τ)

where in the last inequality, we used the approximation properties of Qτ .
Multiplying by a suitable weight and summing up over all τ ∈ T on both
sides, we get

|Iahv|
2
1,a .

∥∥h−1(v − Iahv)
∥∥2
0,a

+ |v|21,a . |log hmin| |v|21,a
where in the last step, we used inequality (3.7).

�

Remark 3.1 When the coefficients satisfy the quasi-monotone assumption,
the factor | log hmin| can be removed by arguments on a modified local
patch; see [23,38]. �

4 Bisection Grids and Space Decomposition

In this section, we give a short overview of the framework in the multilevel
space decomposition on bisection grids in the recent work [19,56]. Most of
the material in this section can be found there.
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4.1 Bisection Methods

We recall briefly the bisection algorithm for the mesh refinements. Detailed
discussions can be found in [10,17,34] and the references cited therein.

Given a conforming triangulation T of Ω, for each element τ ∈ T ,
we assign an edge of τ to be the refinement edge of τ , denoted by e(τ) or
simply e without ambiguity. This procedure is called labeling. Given a set
of elements marked for refinement, the refinement procedure consists two
steps:

(1) bisect the marked element into two elements by connecting the middle
point of the refinement edge to the vertices not contained in the refine-
ment edge;

(2) assign refinement edges for two new elements.

Given a labeled initial grid T0 of Ω and a bisection method, we define

F(T0) = {T : T is refined from T0 using the chosen bisection method },
T(T0) = {T ∈ F(T0) : T is conforming}.

Namely F(T0) contains all triangulations obtained from T0 using the chosen
bisection method. But a triangulation T ∈ F(T0) could be non-conforming
and thus we define T(T0) as a subset of F(T0) containing only conforming
triangulations.

Given any triangulation T , we define T 0 = T , and the kth uniform
refinement T k (k ≥ 1) being the triangulation obtained by bisecting all
element in T k−1 only once. Note that for a conforming initial triangula-
tion T0 with arbitrary labeling, T k ∈ F(T0) but not necessarily in the set
T(T0) in general. Throughout this paper, we shall consider bisection meth-
ods which satisfy the following two assumptions:

(B1) Shape Regularity: F(T0) is shape regular.

(B2) Conformity of Uniform Refinement: T k(T0) ∈ T(T0) for all k ≥ 0.

In two dimensions, newest vertex bisection with compatible initial la-
beling [33] satisfies (B1) and (B2). In three and higher dimensions, the
bisection method by Kossaczký [31] and Stevenson [44] will satisfy (B1)
and (B2). We note that to satisfy assumption (B2), the initial triangulation
is modified by further refinement of each element, which deteriorates the
shape regularity. Although (B2) imposes a severe restriction on the initial
labeling, it is crucial to control the number of elements added in the comple-
tion which is indispensable to establish the optimal complexity of adaptive
finite element methods [35].
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4.2 Compatible Bisections

For a vertex p ∈ N (T ) or an edge e ∈ E(T ), we define the first ring of p
or e to be

Rp = {τ ∈ T | p ∈ τ}, Re = {τ ∈ T | e ⊂ τ},

and the local patch of p or e as ωp = ∪τ∈Rpτ, and ωe = ∪τ∈Reτ. Note that
ωp and ωe are subsets of Ω, while Rp and Re are subsets of T which can
be thought of as triangulations of ωp and ωe, respectively. The cardinality
of a set S will be denoted by #S.

Given a labeled triangulation T , an edge e ∈ E(T ) is called a compat-
ible edge if e is the refinement edge of τ for all τ ∈ Re. For a compatible
edge, the ring Re is called a compatible ring, and the patch ωe is called a
compatible patch. Let p be the midpoint of e andRp be the ring of p in the
refined triangulation. A compatible bisection is a mapping be : Re → Rp.
We then define the addition

T + be := T \Re ∪Rp.

For a compatible bisection sequence B := (b1, · · · , bk), the addition T +B
is defined as

T + B = ((T + b1) + b2) + · · ·+ bk,

whenever the addition is well defined. Note that if T is conforming, then
T + be is conforming for a compatible bisection be, whence compatible
bisections preserve the conformity of triangulations.

We now present a decomposition of meshes in T(T0) using compati-
ble bisections, which will be instrumental later. We only give a pictorial
demonstration in Fig. 4.1 to illustrate the decomposition. For the proof, we
refer to [56].

Theorem 4.1 (Decomposition of Bisection Grids) Let T0 be a conform-
ing triangulation. Suppose the bisection method satisfies assumptions (B2),
i.e., for all k ≥ 0 all uniform refinements T k of T0 are conforming. Then
for any T ∈ T(T0), there exists a compatible bisection sequence B =
(b1, b2, · · · , bN ) with N = #N (T )−#N (T0) such that

T = T0 + B. (4.1)

We point out that in practice it is not necessary to store B explicitly dur-
ing the refinement procedure. Instead we can apply coarsening algorithms
to find out the decomposition. We refer to Chen and Zhang [20] (see also
Chen [18]) for a vertex-oriented coarsening algorithm and the application
to multilevel preconditioners and multigrid methods.
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T4

=

T0

+

{

b1

b2

b3

b4

}

1

Fig. 4.1. A decomposition of a bisection grid.

For a compatible bisection bi ∈ B, we use the same subscript i to denote
related quantities such as:

– ei: the refinement edge;
– pi: the midpoint of ei;
– ω̃i = ωpi ∪ ωpli ∪ ωpri ;
– Ti = T0 + (b1, · · · , bi);

– ωi: the patch of pi i.e. ωpi ;
– pli , pri : two end points of ei;
– hi: the diameter of ωi;
– Ri: the first ring of pi in Ti.

4.3 Generation of Compatible Bisections

The generation of each element in the initial grid T0 is defined to be 0, and
the generation of a child is 1 plus that of the father. The generation of an
element τ ∈ T ∈ F(T0) is denoted by gτ and coincides with the number
of bisections needed to create τ from T0. For any vertex p ∈ N (T0), the
generation of p is defined as the minimal integer k such that p ∈ N (T k)
and is denoted by gp. In [56], we show that if bi ∈ B is a compatible
bisection, then all elements of Ri have the same generation gi. Therefore
we can introduce the concept of generation of compatible bisections. For a
compatible bisection bi : Rei → Rpi , we define gi = g(τ), τ ∈ Rpi .

Throughout this paper we always assume h(τ) h 1 for τ ∈ T0. Then
since a bisection of a simplex will reduce the volume by half, we have the
following important relation between generation and mesh size

hi h γ gi , with γ =
(1

2

)1/d
∈ (0, 1).

In particular, we introduce a “level” (or generation) constantL := maxτ∈T gτ .
It is obvious that L h d| log hmin|e.

Different bisections with the same generation have disjoint local patches.
Namely for two compatible bisections bi and bj with gj = gi, we then have
ωi∩ωj = ∅.A simple but important consequence is that, for all u ∈ L2(Ω)
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and k ≥ 0, ∑
gi=k

‖u‖2a,ω̃i . ‖u‖
2
a,Ω. (4.2)

4.4 A Local Quasi-Interpolation

We define a sequences of quasi-interpolation operators recursively. Let Ia0 :
V(TN ) → V0 be an arbitrary quasi-interpolation operator defined by (3.6).
Assume Iai−1 : V(TN ) → V(Ti−1) is defined. A compatible bisection bi
introduces a new vertex pi from Ti−1 to Ti = Ti−1 + bi. We construct
Iai : V(TN )→ V(Ti) as follows. For a boundary vertex p ∈ ΓD, we simply
define (Iai v)(p) = 0 to reflect the vanishing boundary condition of v. To
define the nodal value at the new vertex pi /∈ ΓD, we choose σpi as follows:

(i) if pi is in the interior of some subdomain Ωi, we choose σi as a d-
simplex introduced by the bisection σpi ⊂ ωi;

(ii) if pi is in the interior of some interface Γ, we choose a (d− 1)-simplex
σpi ⊂ oi;

(iii) otherwise, we simply let σpi = ∅ and define (Iai v)(pi) = 0.

For other vertices p ∈ N (Ti−1), let σp ∈ Ti−1 be the simplex used to define
(Iai−1v)(p), we update (Iai v)(p) according to the following cases:

(i) if σp ⊂ ωp(Ti) we keep the nodal value, i.e., (Iai v)(p) = (Iai−1v)(p);
(ii) otherwise we update σp as σp ← ωp(Ti) ∩ σp to define (Iai v)(p).

In either case, we ensure that the simplex σp ⊂ ωp(Ti). In this way, we
obtain a sequence of quasi-interpolation operators

Iai : V(TN )→ V(Ti), i = 0 · · ·N.

Note that in general IaNv 6= v since the simplex used to define nodal values
of IaNv may not be in the finest mesh TN but in TN−1. Figure 4.2 illustrates
the choice of σp in different cases in 2D.

4.5 Stable Space Decomposition

Let φi,p ∈ V(Ti) denote the nodal basis at node p ∈ N (Ti). Motivated by
the stable three-point wavelet construction by Stevenson [43], we define the
subspaces V0 = V(T0), and

Vi = span{φi,pi , φi,pli , φi,pri}.

Let {φp : p ∈ Λ} be a basis of V(TN ), where Λ is the index set of the
basis functions, and let Vp be the 1-dimensional subspace spanned by the
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ei pi

τpi

FIGURE 1. Patches are similar

1

(a) Simplex to define (Iai u)(pi)

eipli

τpli τpli

pli

FIGURE 1. Patches are similar

1

(b) Simplex to define (Iai u)(pli)

ei pri

τpri

pri

τpri

FIGURE 1. Patches are similar

1

(c) Simplex to define (Iai u)(pri)

ei

p

τp τp

p

FIGURE 1. Patches are similar

1

(d) Simplex to define (Iai u)(p)

Fig. 4.2. Update of nodal values Iai u to yield Iai−1u: the element τ chosen to perform the
averaging that gives (Iai u)(p) must belong to ωp(Ti). This implies (Iai − Iai−1)u(p) 6= 0
possibly for p = pi, pli , pri and = 0 otherwise.

nodal bases associated to p in the finest grid. We choose the following space
decomposition:

V :=
∑
p∈Λ
Vp +

N∑
i=0

Vi. (4.3)

Recall that bi only changes the local patches of two end points of the re-
finement edge ei going from Ti−1 to Ti. By construction (Iai −Iai−1)v(p) =
0 for p ∈ N (Ti), p 6= pi, pli or pri , which implies vi := (Iai −Iai−1)v ∈ Vi.
Although IaNv 6= v in general, the difference v − IaNv is of high frequency
in the finest mesh. Let us write v−IaNv =

∑
p∈Λ vp as the basis decompo-

sition. We then obtain a decomposition

v =
∑
p∈Λ

vp +

N∑
i=0

vi, vi ∈ Vi, (4.4)

where for convenience we define Ia−1 := 0. Moreover, we introduce a sub-
space Ṽ := V∩H̃1

D(Ω). Then we have the following stable decomposition.

Theorem 4.2 (Stable Decomposition) Given a triangulation TN = T0+B
in T(T0), let L = maxτ∈TN g(τ).

(i) For any v ∈ V, there exist vp ∈ Vp (p ∈ Λ) and vi ∈ Vi (i = 1, · · · , N)

such that v =
∑

p∈Λ vp +
∑N

i=0 vi and

∑
p∈Λ

h−2p ‖vp‖20,a + ‖v0‖21,a +

N∑
i=1

h−2i ‖vi‖
2
0,a . cd(L)‖v‖21,a, (4.5)
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where cd(L) =


1, d = 1
L2, d = 2
2L, d = 3

.

(ii) For any v ∈ Ṽ, there exist vp ∈ Vp (p ∈ Λ) and vi ∈ Vi (i = 1, · · · , N)

such that v =
∑

p∈Λ vp +
∑N

i=0 vi and

∑
p∈Λ

h−2p ‖vp‖20,a + ‖v0‖21,a +
N∑
i=1

h−2i ‖vi‖
2
0,a . L

2‖v‖21,a (4.6)

Proof The result of (i) is standard. We may use the standard nodal interpo-
lation operator to define a decomposition using hierarchical basis (cf. [55]).

Now we prove (ii). Given a v ∈ Ṽ, we define v0 := Ia0v and vi :=
(Iai − Iai−1)v. For v − IaNv =

∑
p∈Λ vp, by the approximability of the

quasi-interpolation, cf. (3.7), we have∑
p∈Λ

h−2p ‖vp‖20,a . ‖h−1(v − IaNv)‖20,a . L‖v‖21,a. (4.7)

On the other hand, by Theorem 3.2 we obtain

‖Ia0v‖
2
1,a +

N∑
i=1

h−2i ‖(I
a
i − Iai−1)v‖20,a,ωi

= ‖Ia0v‖
2
1,a +

L∑
l=1

∑
gi=l

h−2l ‖(I
a
i − Iai−1)v‖20,a,ωi

.

(
L∑
i=1

| log hmin|

)
‖v‖21,a . L2‖v‖21,a.

Then (4.6) follows by adding the above inequality to inequality (4.7).

�

Remark 4.1 The estimate (4.5) is not uniform for d ≥ 2. For d = 2,
L ≈ | log hmin| and the growth of c2(L) is acceptable. But for d = 3,
the constant c3(L) = 2L grows exponentially. This is the main reason that
the hierarchical basis multilevel method deteriorates rapidly in 3D (cf. [60,
7]). For discontinuous coefficients problems, it seems unlikely to find a bet-
ter decomposition with a better constants; see the counterexamples in [12,
37].

If the coefficients satisfy certain monotonicity, e.g. quasi-monotonicity
(cf. [23,38]) in the local patches, one can show that the interpolation oper-
ator defined above is stable in the energy norm without deterioration. �
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Remark 4.2 With a close look at the proof of (4.6), we may regroup the
vi = (Iai − Iai−1)v into groups ∪L′l=1G(l) = {1, 2, · · · , N} such that for
any i, j ∈ G(l), ωj ∩ ωi = ∅ and therefore

N∑
i=1

h−2i ‖vi‖
2
0,a,ωi =

L′∑
l=1

∑
j∈G(l)

h−2j ‖vj‖
2
0,a,ωi ≤ L

′| log hmin|‖v‖21,a.

The constant L′ could be much smaller than L; see Section 6 for numerical
examples. �

4.6 Strengthened Cauchy-Schwarz inequality

An important tool in analysis of the multiplicative preconditioner is the
following strengthened Cauchy-Schwarz inequality. A proof can be found
in [19,56].

Lemma 4.1 (Strengthened Cauchy-Schwarz Inequality) For any ui, vi ∈
Vi, i = 0, 1, · · · , N, we have∣∣∣∣∣∣

N∑
i=0

N∑
j=i+1

A(ui, vj)

∣∣∣∣∣∣ .
(

N∑
i=0

|ui|21,a

)1/2( N∑
i=0

h−2i ‖vi‖
2
0,a

)1/2

. (4.8)

As a corollary of (4.8) and the inverse inequality, we have

∥∥∥ N∑
i=0

ui

∥∥∥2
1,a
.

N∑
i=0

h−2i ‖ui‖
2
0,a (4.9)

5 Multilevel Preconditioners

In this section, we shall analysis the eigenvalue distribution of the BPX
preconditioner and the multigrid V -cycle preconditioner on bisection grids,
and prove the effective conditioner number is uniformly bounded.

5.1 BPX (Additive) Preconditioner

To simplify the notation, we include VN+1 = V and rewrite our space
decomposition as V =

∑N+1
i=0 Vi. Based on this space decomposition, we

choose SPD smoothers Ri : Vi → Vi satisfying

(R−1i ui, ui)0,a h h−2i (ui, ui)0,a, ∀ui ∈ Vi (i = 1, · · · , N + 1). (5.1)
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According to [57], both of the standard Jacobi and symmetric Gauss-
Seidel smoother satisfy the above assumption. On the coarsest level, i.e.
when i = 0, we choose the exact solverR0 = A−10 . LetQai : V → Vi be the
weighted L2 projection. Then we can define the BPX-type preconditioner

B =
N+1∑
i=0

RiQ
a
i . (5.2)

It is well known [51,54,58] that the operator B defined by (5.2) is SPD,
and

(B−1v, v)0,a = inf∑N+1
i=0 vi=v

N+1∑
i=0

(R−1i vi, vi)0,a. (5.3)

We have the following main result for BPX preconditioner.

Theorem 5.1 Given a triangulation TN = T0 + B in T(T0), let L =
maxτ∈TN g(τ). For the BPX preconditioner defined in (5.2), we have

κ(BA) ≤ C1cd(L), and κm0(BA) ≤ C0L
2.

Consequently, we have the following convergence estimation of the BPX
preconditioned conjugate gradient method:

‖u− uk‖A
‖u− u0‖A

≤ 2 (C1cd(L)− 1)m0

(
C0L− 1

C0L+ 1

)k−m0

, for k ≥ m0.

Proof First of all, let us estimate λmax(BA). For any decomposition v =

ṽ +
∑N

i=0 vi, ṽ ∈ V, vi ∈ Vi, we have

‖v‖2A . ‖ṽ‖2A +
∥∥∥ N∑
i=0

vi

∥∥∥2
A

≤ ‖h−1ṽ‖20,a +
N∑
i=0

h−2i ‖vi‖
2
0,a

≤
N+1∑
i=0

(R−1i vi, vi)0,a.

In the second step, we used the inverse inequality and the inequality (4.9).
In the third step, we used the assumption (5.1) of Ri . Taking infimum, we
get

‖v‖2A . inf∑N+1
i=0 vi=v

N+1∑
i=0

(R−1i vi, vi)0,a = (B−1v, v)0,a,

which implies that λmax(BA) . 1.
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To estimate λmin, in view of (5.3) we choose the decomposition as in
the stable decomposition Theorem 4.2 (see (4.5)) to conclude that

(B−1v, v)0,a ≤
N+1∑
i=0

(R−1i vi, vi)0,a . cd(L)(Av, v)0,a,

which implies that λmin(BA) & cd(L). Therefore we have

κ(BA) . cd(L).

On the other hand, if we apply (4.6) in the subspace Ṽ ⊂ V, we ob-
tain λm0+1(BA) & L2 by the “min-max” Theorem 2.2. Hence we get an
estimate of the effective condition number κm0+1(BA) . L2. The con-
vergence rate estimate then follows by Theorem 2.1. This completes the
proof.

�

From this convergence result, we can see that the convergence rate will
deteriorate a little bit by cd(L) as L grows. But since m0 is a fixed num-
ber, when k grows, the convergence rate will be controlled by the effec-
tive condition number, which is bounded uniformly with respect to the
coefficient and logarithmically with respect to the meshsize. Notice that
L h | log hmin| and thus the asymptotic convergence rate of the PCG algo-
rithm is 1− 1

C| log hmin| for h < 1.

Remark 5.1 The estimate κ(BA) ≤ C1cd(L) is sharp in the sense that
there exists an example on BPX preconditioner such that κ(BA) h cd(L);
see [37]. �

Remark 5.2 Here we should emphasize that the convergence rate estimate
in Theorem 5.1 holds for general substructures. In some special circum-
stance, for example “edge type” or “exceptional” in the terminology in
[37], or “quasi-monotone” coefficient in [23], we can sharpen the conver-
gence estimate in Theorem 5.1 by a modification of Theorem 4.2, see [37].
More precisely,

(i) For all the exceptional T0, which includes the quasi-monotone coeffi-
cients case, we have λmin(BA) ≥ C0 and thus κ(BA) ≤ C where
C is a constant independent the coefficient a, meshsize h, and levels
L. In this case, by the standard conjugate gradient theory, we get the
convergence rate

‖u− uk‖A ≤ 2ρk‖u− u0‖A

with ρ =

√
κ(BA)−1√
κ(BA)+1

< 1. In this case, the convergence rate is bounded

uniformly with respect to the coefficients and meshsize.
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(ii) For d = 2 or T0 is of edge type in d = 3, we have λmin(BA) ≥
C−20 L−2. In this case, we obtain the convergence rate

‖u− uk‖A ≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)k
‖u− u0‖A

≤ 2

(
1− 1

C0L

)k
‖u− u0‖A.

For interested readers, we refer to [12,37,52,57]. So in fact, Theorem 5.1
provides an estimate of the convergence rate in the worst case. �

5.2 Multigrid (Multiplicative) Preconditioner

We shall use the following symmetric V-cycle multigrid as a preconditioner
in PCG method and prove the efficiency of such a method. Let Ai := A|Vi .
Then one step of the standard V -cycle multigrid B : V → V is recursively
defined as follows:

Let B0 = A−10 , for i > 0 and g ∈ Vi, define Big = w3.

(i) Presmoothing : w1 = Rig;
(ii) Correction: w2 = w1 +Bi−1Qi−1(g −Aiw1);

(iii) Postsmoothing: w3 = w2 +R∗i (g −Aiw2).

Set B = BN+1.

For simplicity, we focus on the case of exact subspace solver, i.e., Ri =
A−1i for i = 0, · · · , N and for the finest level, RN+1 is chosen as Gauss-
Seidal smoother, which can be also understood as the multiplicative method
with exact local solvers applied to the nodal decomposition [53]. Let Pp :
V → Vp and Pi : V → Vi be the orthogonal projection with respect to the
inner product (·, ·)a. For our special choices of smoothers, we then have

I −RN+1A =
∏
p∈Λ

(I − Pp),

I −BNA =

(
N∏
i=0

(I − Pi)

)∗( N∏
i=0

(I − Pi)

)
,

‖I −BA‖A =

∥∥∥∥∥∥
N∏
i=0

(I − Pi)
∏
p∈Λ

(I − Pp)

∥∥∥∥∥∥
2

A

For exact local solvers, we can apply the crucial X-Z identity [58] to
conclude

‖I −BA‖A = 1− 1

1 + c0
, (5.4)
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where

c0 = sup
‖v‖A=1

inf
v=

∑
p∈Λ vp+

∑N
i=0 vi

 N∑
i=0

∥∥∥Pi N∑
j=i+1

vj + Pi
∑
p∈Λ

vp

∥∥∥2
A

+

∑
p∈Λ

∥∥Pp∑
q>p

vq
∥∥2
A

 .

Theorem 5.2 Given a triangulation TN = T0 + B in T(T0), let L =
maxτ∈TN g(τ). For the multigrid V -cycle preconditioner B, we have

κ(BA) . cd(L), κm0(BA) . L2.

Consequently, we have the following the convergence rate estimate of the
BPX preconditioned conjugate gradient method:

‖u− uk‖A
‖u− u0‖A

≤ 2 (C1cd(L)− 1)m0

(
C0L− 1

C0L+ 1

)k−m0

, for k ≥ m0.

Proof Since I−BA is a non-expansion operator, we conclude λmax(BA) ≤
1. Since I − BA is SPD in the A-inner product and λmax(BA) ≤ 1, we
have

‖I −BA‖A = max{|1−λmin(BA)|, |1−λmax(BA)|} = 1−λmin(BA).

To get an estimate on the minimum eigenvalue of BA, we only need to get
a upper bound of the constant c0 in (5.4).

To do so, for any v ∈ V , we chose the decomposition in Theorem 4.2.
That is,

v = ṽ +
N∑
i=1

vi, with v0 = Ia0v, vi = (Iai − Iai−1)v,

where ṽ = v − IaNv =
∑

p∈Λ vp. Then by shape regularity of the triangu-
lation, we have

c0 .
N∑
i=0

∥∥∥Pi N∑
j=i+1

vj

∥∥∥2
A

+
N∑
i=0

‖Piṽ‖2A +
∑
p∈Λ

∥∥∥∥∥Pp∑
q>p

vq

∥∥∥∥∥
2

A

.

We estimate these three terms as follows. For the last term, by the finite
overlapping of nodal bases, we have∑

p∈Λ

∥∥Pp∑
q>p

vq
∥∥2
A
.
∑
p∈Λ

∥∥∑
q>p

vq
∥∥2
A,ωp

.
∑
p∈Λ
‖vp‖2A,ωp

.
∑
p∈Λ

h−2p ‖vp‖20,a,ωp . ‖h
−1(v − IaNv)‖20,a . ‖v‖2A.



Multilevel Preconditioners for Jump Coefficients Problems on Bisection Grids 25

For the middle term, we regroup by generations and use (4.2) to get

N∑
i=0

∥∥∥Piṽ∥∥∥2
A

=
L∑
k=0

∑
l,gl=k

∥∥∥Plṽ∥∥∥2
A

≤
L∑
k=0

∑
l,gl=k

‖ṽ‖2A,ω̃l

.
L∑
k=0

‖ṽ‖2A = L‖ṽ‖2A.

For the first term, we define ui = Pi

(∑N
j=i+1 vj

)
and u0 := P0(v−v0)

and apply the strengthened Cauchy Schwarz inequality, cf. Lemma 4.1 to
get

N∑
i=0

∥∥∥Pi N∑
j=i+1

vj

∥∥∥2
A

=

N∑
i=0

N∑
j=i+1

A(ui, vj)

. ‖v − v0‖2A +
N∑
i=1

h−2i ‖vi‖
2
0,a

. cd(L)‖v‖2A.

Here the constant cd(L) can be improved to L2 if we consider the decom-
position (4.6) of v ∈ Ṽ. Combined with the Mini-Max Theorem 2.2, yields
λmin(BA) & cd(L), λm0+1(BA) & L−2, and thus

κ(BA) . cd(L), κm0+1(BA) . L2.

Finally, the convergence rate of the PCG method follows by Theorem 2.1.

�

Follow the same proof as Theorem 5.2, we can also obtain the following
convergence result for the local multigrid V -cycle solver.

Corollary 5.1 For the multigrid V -cycle algorithm defined above on bisec-
tion grids, we have

‖E‖A = ‖I −BA‖A = 1− 1

1 + c0
,

where c0 . cd(L).
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This corollary implies that multigrid alone is not robust, especially in 3D.
In this case, the convergence rate of multigrid will be proportional to 1 −
2−L ' 1−h−1min, which deteriorates rapidly as the meshsize become small.

Remark 5.2 is also applicable here, i.e., all the above estimates are es-
timates for the worst case. For the special circumstances mentioned in Re-
mark 5.2, the estimates can be improved in the same way.

6 Numerical Experiments

In this section, we present some numerical experiments to support the the-
oretical results in previous sections.

In the implementation of the adaptive loop, we use a modification of
the error indicator presented in [38]. Some other a posteriori error indica-
tors for jump coefficients problem (1.1) can be found in [9,21,46,14]. The
adaptive algorithm using different error indicators will generate different
grids. However, we should emphasize that the robustness of the local adap-
tive multilevel preconditioners is independent of how the grids are gener-
ated in the refinement procedure. Our theoretical results are applicable to
all of these cases.

The implementation of the BPX preconditioner and the multigrid meth-
ods are standard, and can be found in, for example, [13,55]. The imple-
mentation of PCG algorithm can be found in [24,30,39]. All numerical
examples are implemented by using iFEM [18]. We only present three-
dimensional examples here and refer to [20] for two-dimensional ones. In
the PCG algorithm, we use the stopping criterion

‖uk − uk−1‖A
‖uk‖A

≤ 10−10.

In the implementation of the local multilevel preconditioners, we use
an algorithm for coarsening bisection grids introduced by Chen and Zhang;
see [20] for two dimensional case and [18] for three dimensional one. The
coarsening algorithm will find all compatible bisections and regroup them,
with possibly different generations, into groups ∪L′l=1G(l) = {1, 2, · · · , N}
such that for any i, j ∈ G(l), ωj ∩ ωi = ∅. Each coarsening step is cor-
responding to a level in the multilevel terminology, and the total number
of levels is L′. There are two major benefits of using this coarsening algo-
rithm.

(i) We do not need to store the complex bisection tree structure of the re-
finement procedure explicitly in the algorithm. Instead, we only need
the grid information on the finest level and the coarsening subroutine
will restore multilevel structure.
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(ii) Our numerical evidence shows that the number of nodes will decrease
around one half in one coarsening step. Therefore the constant L′ is
much smaller than the maximal generation L h | log hmin|; see Remark
4.2.

In what follows, we will use some shorthand notation for the different al-
gorithms implemented.

– TPSMG stands for the V -cycle multigrid with Three-Point Smoothing
(TPS), which only performs smoothing on new vertices and their two
direct neighbors sharing the same edge.

– TPSMGCG is the PCG algorithm using the TPSMG as preconditioner.
– TPSBPXCG is the additive version of TPSMG preconditioner.

Among all these algorithms, the main focus of this paper is the behavior of
TPSMGCG and TPSBPXCG. In the numerical experiments below, we also
report some results for TPSMG for comparison.

6.1 Example 1: Subdomains Touching Dirichlet Boundary

As the first example, we consider an example from [38]. In particular, we
consider the domain Ω = (−1, 1)3 with the subdomains Ω1 = (0, 1)3 and
Ω2 = Ω \ Ω̄1. We set the coefficients a1 = 1 and a2 = ε. We choose f = 0
and impose Dirichlet conditions

u{−1}×[−1,1]×[−1,1] = 0, u{1}×[−1,1]×[−1,1] = 1,

and homogenous Neumann boundary conditions on the remaining bound-
ary. Note that both Ω1 and Ω2 have a nontrivial portion of the Dirichlet
boundary.

For this problem, singularities occur along three interior edges of Ω1.
Figure 6.1 shows an adaptive mesh and corresponding finite element ap-
proximation after several local refinements. To view the mesh around the
singularity, we cut the part {(x, y, z) : x > 0, y > 0} of the domain Ω. As
we can see from Figure 6.1, the adaptive algorithm captures the singularity
quite well.

To test the robustness of the preconditioners with respect to the jump of
coefficients, we vary ε = 10−4, 10−2, 102, 104. Figure 6.2 shows the con-
dition number of the TPSBPXCG and TPSMGCG with respect the degree
of freedoms (DOFs) and the varies coefficients. As we can see from the fig-
ure, the condition numbers are robust with respect the choice of ε. Also, the
range of the condition numbers are quite robust with respect to the DOFs
(κ(BA) ∈ (1, 23) for TPSBPXCG and κ(BA) ∈ (1, 6.5) for TPSMGCG).

Figure 6.3 shows the eigenvalue distributions for the TPSMGCG and
TPSBPXCG preconditioned systems. As we can see from the figure, there
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Fig. 6.1. An adaptive mesh and finite element solution for Example 1 with ε = 10−4 and
32236 vertices.
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Fig. 6.2. Example 1: The Estimated Condition Numbers κ(BA)

is no obvious “bad” eigenvalue. This agrees with the theoretical results,
because both Ω1 and Ω2 has nontrivial portion of Dirichlet boundary, i.e.,
the number of floating domains m0 ≡ 0.

6.2 Example 2: Floating Subdomains with Cross Point

For the second example, inspired by [37,52,57], we consider solving the
model equation (1.1) in the cubic domainΩ = (−1, 1)3. Let the coefficient
a(x) be the constants a1 = a2 = 1 and a3 = ε on the three regions Ω1, Ω2

and Ω3 respectively (see Figure 6.4), where

Ω1 = (−0.5, 0)3, Ω2 = (0, 0.5)3 and Ω3 = Ω \ (Ω1 ∪Ω2).

We choose f = 1 and impose the same boundary conditions as in Example
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Fig. 6.3. Example 1: Eigenvalues of BA when ε = 10−4 with 13459 vertices

1

Fig. 6.4. Example 2: the coefficients a1 = a2 = 1 in the gray domains Ω1 and Ω2, and
a3 = ε in the rest of the domain.

1: Dirichlet conditions

u{−1}×[−1,1]×[−1,1] = 0, u{1}×[−1,1]×[−1,1] = 1,

and homogenous Neumann boundary conditions on the remaining bound-
ary.

For this problem, singularities occur along edges of Ω1 and Ω2. Figure
6.5 shows an adaptive mesh and the corresponding finite element approxi-
mation after several iterations of the adaptive algorithm. To view the mesh
around the singularity, we only show half of the domain Ω.

For comparison, we also present the number of iterations for TPSMG al-
gorithms (reducing the relative error in energy norm to the tolerance 10−10)
in Tables 6.1. This table shows that the TPSMG algorithm itself will dete-
riorate quickly when ε is small. On the other hand, if ε is large, the standard
MG algorithm will converge uniformly. This is because the coefficient in
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Fig. 6.5. An adaptive mesh and finite element approximation for Example 2 with ε = 10−4

and 36466 vertices.

Ω3, which contains the Dirichlet boundary, is dominant. In this case, we
could use the standard multigrid analysis (as in [53]) to show the robust-
ness of the preconditioners.

ε = 10−4

4913 41
5505 62
6617 89
8666 99
10585 98
12411 125
16353 154
21248 182
27755 197
36466 178
43271 238
51163 283
72349 395
89146 424

104747 413

ε = 10−2

4913 46
5550 51
6743 61
8907 65

10729 66
13281 86
17146 90
23139 90
28613 160
37338 175
43610 149
52715 154
72967 238
89320 165
113131 294

ε = 102

4913 16
5279 37
5867 43
6522 48
7562 68
9493 61

11858 49
15257 68
20649 61
27946 49
36735 52
48890 58
68297 71
89872 55
119109 61

ε = 104

4913 16
5269 37
5863 42
6493 45
7531 68
9419 59

11721 46
14941 69
20065 59
27199 47
35601 59
47743 55
66989 71
88079 57

116739 56

Table 6.1. Number of iterations of TPSMG for Example 2.

Figure 6.6 shows the eigenvalue distributions for the TPSMGCG and
TPSBPXCG preconditioned systems. As we can see from the figure, there
is one small eigenvalue for both preconditioned systems. This agrees with
the theoretical results, the number of small eigenvalues is bounded by the
floating subdomains m0 ≡ 2.
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Fig. 6.6. Example 2: Eigenvalues of BA when ε = 10−4 with 12411 vertices

Figure 6.7 shows the condition number and effective condition num-
ber of TPSBPXCG and TPSMGCG preconditioned systems. From Fig-
ure 6.7, we observed that when ε is small, the condition number deteri-
orates (κ(BA) ∈ [3, 1100] for TPSBPXCG, and κ(BA) ∈ [3, 125] for
TPSMGCG) as we can see from the figure). Comparing with the first ex-
ample, the condition number is more sensitive to the coefficient in this case.

On the other hand, if we get rid of the first small eigenvalue, the effec-
tive condition number κ1(BA) (the black-diamond and red-star lines) of
TPSBPXCG and TPSMGCG preconditioned systems are almost identical
for different ε. This indicates that the effective condition numbers are uni-
form with respect to the jumps. Moreover, as we can see from Figure 6.7,
κ1(BA) are mildly increasing with respect to the DOFs (κ1(BA) ∈ [1, 80]
for TPSBPXCG, and κ1(BA) ∈ [1, 30] for TPSMGCG). These results
agree with our theoretical expectations from Section 5.

7 Conclusion

In this paper, we designed local multilevel preconditioners based on the
decomposition of the finite element space into 3-point subspaces for the
highly graded mesh obtained from adaptive bisection algorithms. To ana-
lyze the behavior of the local multilevel preconditioners, we introduced a
local interpolation operator and proved some approximation and stability
properties of it. Based on these properties, we showed the decomposition
of the finite element space is stable , which is a key ingredient in the mul-
tilevel analysis. This enabled us to analyze the eigenvalue distributions of
the preconditioned systems. In particularly, we showed that there are only
a small fixed number of eigenvalues are deteriorated by the coefficients and
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Fig. 6.7. Example 2: κ(BA) and κ1(BA) for the cases ε = 10−6, 10−4 w.r.t the DOFs.

meshsize, and the other eigenvalues are uniformly bounded with respect
to the coefficients and logarithmically depends on the meshsize. As a re-
sult, we proved the asymptotic convergence rate of the PCG algorithm is
uniform with respect to the coefficient and nearly uniform with respect to
the meshsize. Moreover, the overall computation complexity of these mul-
tilevel preconditioner are nearly optimal. Numerical experiments justified
our theoretical results.
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