Problem 0.1. If I try to solve $Ax = b$ with $A = \begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix}$ using the Gauss-Seidel method, will it converge? If it does converge, by approximately what factor is the error reduced each iteration?

Solution. It will converge. For Gauss-Seidel, we have

$$G = M^{-1}N = (D - E)^{-1}F = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -3/4 \end{bmatrix}.$$

It is easy to calculate that the eigenvalues of G are 0 and $3/4$, and so $\rho(G) = 3/4 < 1$, and so it will converge. For each iteration, the error will be approximately multiplied by $3/4$. □

Problem 0.2. Consider a generic descent method for solving $Ax = b$. What is the function $J(y)$, and how is it used in this method? Describe in words and pictures how descent methods work in general.

Solution. The function $J(y) = \frac{1}{2}y^T Ay - y^T b$ is a quadratic quantity, often representing some kind of “energy” in a physical system. The quantity is set up so that the minimizer of $J(y)$ is exactly the solution to $Ax = b$. Thus, descent methods seek to minimize $J(y)$ via an iterative process. The general process is that you choose a direction (such as the gradient of J direction for the steepest descent method), and a distance to go in that direction. Often, you will choose to go the distance such that you minimize J, at least in that direction. In the earlier figures, you can see some examples, where the directions are chosen in different ways. □