
WEBGUI:
A Web Browser Based
Graphical User Interface
for Scientific Software

Users’ Guide

Christopher Deotte

Department of Mathematics
University of California at San Diego
La Jolla, California 92093-0112

June, 2017

ii WEBGUI USERS’ GUIDE

Copyright (c) 2017, Christopher Deotte.

This work was supported by the National Science Foundation
under grant DMS-1345013.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Contents

Preface v

1 Introduction 1
1.1 Description . 1
1.2 Overview . 1
1.3 Installation . 1

2 WebGUI API 3
2.1 Overview . 3
2.2 Compiling and linking . 4
2.3 Basic control . 6

2.3.1 webstart . 6
2.3.2 webwriteline . 8
2.3.3 webreadline . 10
2.3.4 webinit . 11
2.3.5 webupdate . 13
2.3.6 websettitle . 15
2.3.7 webstop . 15

2.4 2D Image display . 16
2.4.1 websetcolors . 16
2.4.2 webimagedisplay . 17

2.5 3D Object display . 20
2.5.1 websetcolors . 20
2.5.2 webframe . 21
2.5.3 weblineflt . 22
2.5.4 webfillflt . 25
2.5.5 weblinedbl . 27
2.5.6 webfilldbl . 27
2.5.7 webgldisplay . 27

2.6 Miscellaneous . 28
2.6.1 webquery . 28
2.6.2 webbutton . 28
2.6.3 webpause . 28
2.6.4 websetmode . 29

iii

iv Contents

3 GUI Command Buttons and Parameters 33
3.1 Introduction . 33
3.2 Calling webinit . 33

3.2.1 Command buttons 34
3.2.2 Parameters . 35
3.2.3 Associate parameters with commands 36
3.2.4 Options for parameters 36

4 GUI Features 39
4.1 Basic layout . 39
4.2 Display panes . 40
4.3 Quaternion rotation . 41
4.4 Control keys . 43
4.5 Miscelleanous . 44

4.5.1 Display without controls 44
4.5.2 Save and view webpage offline 45

5 WEBGUI Memory Usage 47
5.1 Overview . 47
5.2 Basic . 47
5.3 2D Images . 47
5.4 3D Objects . 48

6 Example Driver 49
6.1 Overview . 49
6.2 Example driver source in C . 50
6.3 Example driver source in Fortran 58

7 Modifying WEBGUI 59
7.1 Introduction . 59
7.2 Overview . 59
7.3 index.html . 59
7.4 External versus internal . 61

7.4.1 indexC.html . 61
7.4.2 png images . 61

7.5 Internal variables . 63
7.6 Buffers and communication . 64

7.6.1 Overview . 64
7.6.2 Communication protocall 65

7.7 2D Images . 66
7.8 3D Objects (WebGL) . 67

7.8.1 Internal variables . 68

Preface

The idea for WEBGUI came from Randolph E. Bank and Michael Holst of the
University of California at San Diego. They each have existing scientific software
(PLTMG and FETK respectively) and they wanted a graphical user interface (GUI)
that was platform independent and could control their software either locally or
remotely. They suggested building a GUI that displayed in a web browser. It has
been my great pleasure to create this WEBGUI.

This version of WEBGUI was supported by the National Science Foundation
through grant DMS-1345013.

University of California at San Diego Christopher Deotte
June, 2017

v

vi WEBGUI USERS’ GUIDE

Chapter 1

Introduction

1.1 Description
WEBGUI is a C language library that creates for your software a graphical user
interface (GUI) after only a few library function calls. WEBGUI is platform inde-
pendent because it displays everything in any standard web browser. And WEBGUI
allows the interface to reside on either the local machine or a remote machine.

1.2 Overview
WEBGUI works by enabling your program to mimic a web server. When your
program calls the library routine ”webstart(int x)”, a new thread is created which
sets up a web server and begins listening on port x. Both your program and the
web server run on the same host machine. Using any standard web browser either
locally or remotely, enter the URL of the host machine. Then, the web browser
will display a set of controls. The web browser is in constant communication with
your software running on the host machine. All of your software’s output will be
displayed in the web browser and all input you provide in the web browser will be
sent to your software.

1.3 Installation
Simply compile and link WEBGUI to your program. No other files are needed.
For example, ”gcc YourProgram.c webgui.c”. To start the service, call the routine
”webstart(int port)” within your program. Next, to send text output to the web
browser, call the routine ”writeline(char* str)” where str is a string of length 80. To
receive input, call the routine ”readline(char* str)” where str is a buffer that can
receive a string of length 80. Lastly, to display 2D images, or 3D objects, call either
”webimagedisplay” or ”webgldisplay”. If you would like your web browser controls
to have buttons, call the routine ”webinit”. To learn more about these and other
routines, read Chapter 2 titled, ”WebGUI API” below.

1

2 WEBGUI USERS’ GUIDE

Chapter 2

WebGUI API

2.1 Overview
WEBGUI has 19 available functions organized into 4 categories. Each is described
in its own section below.

Basic control:
int webstart(int port)
void webwriteline(char* str)
void webreadline(char* str)
void webinit(char* str, int len)
void webupdate(int* ip, double* rp, char* sp)
void websettitle(char* str)
void webstop()

2D Image display:
void websetcolors(int nc, double* R, double* G, double* B, int pane)
void webimagedisplay(int nx, int ny, int* image, int pane)

3D Object display:
void websetcolors(int nc, double* R, double* G, double* B, int pane)
void webframe(int frame)
void weblineflt(float* x, float* y, float* z, int n, int color)
void webfillflt(float* x, float* y, float* z, int n, int color)
void weblinedbl(double* x, double* y, double* z, int n, int color)
void webfilldbl(double* x, double* y, double* z, int n, int color)
void webgldisplay(int pane)

Miscellaneous:
int webquery()
void webbutton(int highlight, char* cmd)

3

4 WEBGUI USERS’ GUIDE

void webpause()
void websetmode(int x)

2.2 Compiling and linking
The only file that you need to compile and link to your software is webgui.c. No
other files are needed. It is true that webgui.c mimics a web server and transmits in-
dex.html and 3 png images, but these 4 resources are contained within the webgui.c
file as C data.

You can link and subsequently call the external functions of WEBGUI from
any programming language that can call C language functions. This library has
been tested to work with C and Fortran. Compiling, linking, and calling from C is
straight forward. If you wish to compile, link, and call from Fortran, here are some
notes.

Every routine described in this section has a matching routine that accepts all
the arguments passed as pointers. For example, the routine webstart(int port)
requires that the integer port is passed by value. However there exists a routine
webstart (int* port) that accepts port as a pointer. All of the twin routines
that accept pointer references have the same function name as the original but end
with an underscore.

These matching twin functions are particularly helpful for linking against For-
tran. By default, Fortran calls subroutines by passing pointers for everything. Even
if you call webstart(15000) in Fortran, then Fortran will place the integer 15000
somewhere in memory and pass a pointer to where it resides. That being said,
if you wish to link WEBGUI to Fortran, you do not need to write an underscore
after each routine name. The compiler does this without you knowing. Here is an
example of how you would call webstart with Fortran:

integer(kind=4) :: port

port = 15000

call webstart(port)

Notice that the call to webstart does not contain a trailing underscore. However
the compiler and linker will look and link this Fortran call to the WEBGUI routine
webstart for you.

Fortran differs from C in other ways also. Fortran accesses arrays starting
from index 1 instead of 0. Whenever this is relevent to a routine it is noted in the
API. Namely, the routine websetcolors defines a palette that you later reference
from webimagedisplay, webline, and webfill. When referencing the colors, you
refer to the first color as 0 and the second as 1, etc. This is mentioned in the API
below. Also, when calling webinit you declare indices for the parameters. These
indices need to match array indices of arguments to webupdate. In this case, you
start indexing from 1. This is explained in the API to follow.

Fortran does not terminate strings (character arrays) with a NULL (char =
0) like C does. Instead Fortran adds space characters to fill the entire character
array after the used portion of the array. All of WEBGUI ’s routines that accept

2.2. Compiling and linking 5

strings will accept either C or Fortran strings. These routines are webwriteline,
webinit, webupdate, websettitle, and webbutton.

If you wish to compile and link against a Fortran program, type something
like

gcc -c webgui.c

gfortran YourProgram.f webgui.o

When passing arguments, note that the C language variables int, float, dou-
ble, char[80] are usually 4, 4, 8, 80 bytes respectively. When declaring Fortran
variables to use as arguments to call WEBGUI functions, they must be of compati-
ble size. To match the former C variables, one typically declares integer(kind=4),
real(kind=4), real(kind=8), character(len=80) in Fortran respectively. If
you wish to capture a return value from one of WEBGUI ’s functions, you must
make a Fortran function call instead of a Fortran subroutine call and you must
declare the return value type.

For example, earlier in this section there is an example showing how to call
webstart as a Fortran subroutine. To capture the return value from webstart,
call it as a Fortran function like the following:

integer(kind=4) :: webstart

integer(kind=4) :: error

integer(kind=4) :: port

port = 15000

error = webstart(port)

6 WEBGUI USERS’ GUIDE

2.3 Basic control

2.3.1 webstart

Description The function int webstart(int port) commences the graphical user
interface. Specifically it deploys a web server and creates a new thread which lis-
tens for incoming connections on the chosen port. After calling webstart, any web
browser can connect and display the GUI controls by entering your host computer’s
URL:port. Afterward, inside the web browser, they will see a pane for displaying
text output, three panes for displaying graphical output, and either buttons or a
space where they can enter string commands. See Figure 2.1. If you wish to have
buttons in your GUI, you need to call webinit before this. See Section 2.3.4

Declaration

int webstart(int port)

Parameters port is a (4 byte) integer which defines which port the web server will
listen on.

Return Value If successful, 0 is returned. On failure, a negative number is returned.
-1 indicates that the requested port is already in use. -2 indicates an inability to
create a socket.

Example The following example shows the usage of webstart.

#include <webgui.h>

#include <unistd.h>

int main(){

webstart(15000);

pause();

return 0;

}

Assume that your computer’s ip address is 172.217.5.206, then after compiling and
running the above program. You can open any web browser and enter the URL
= http://172.217.5.206:15000 and your web browser will display basic controls as
displayed in Figure 2.1. If your web browser and program are both running on
the same computer, you can use the URL = http://localhost:15000. After calling
webstart, the host machine’s standard output will display:

webgui: Listening on port 15000 for web browser...

Or you may see the message:

webgui: FAILURE: server can’t bind port 15000

A common webstart error is trying to run two instances of WEBGUI using the
same port. The second instance will fail. In this case, webstart returns -1. Your

2.3. Basic control 7

software should check for this error and act accordingly. Three suggestions are (i)
terminate your program, (ii) wait 5 seconds and try again, or (iii) try binding to a
different port. Here is C code that replaces the line webstart(15000) in the above
example:
case i:

if (webstart(15000)<0) exit(1);

case ii:

while (webstart(15000)<0) sleep(5);

case iii:

int offset=0;

while (webstart(15000+offset)<0) offset++;

In Fortran, you must declare webstart as a 4 byte integer. Here is Fortran code:
case i:

integer(kind=4) :: webstart

if (webstart(15000)<0) stop;

case ii:

integer(kind=4) :: webstart

do

if (webstart(15000)==0) exit;

call sleep(5)

end do

case iii:

integer(kind=4) :: webstart, offset

offset=0

do

if (webstart(15000+offset)==0) exit;

offset = offset+1

end do

8 WEBGUI USERS’ GUIDE

2.3.2 webwriteline

Description The function void webwriteline(char* str) displays a line of text in
the text output pane of the web browser graphical interface.

Declaration

void webwriteline(char* str)

Parameters str is a string of length 80. This string can either be null terminated
and less than length 80 as is the convention of C strings, or the unused characters
of the array should be filled with spaces as is the convention of Fortran strings.

Example The following example shows the usage of webwriteline.

#include <webgui.h>

#include <unistd.h>

int main(){

webstart(15000);

webwriteline("Hello World!");

pause();

return 0;

}

After compiling and running the above program, the web browser will show the
string, ”Hello World!”, in the text output pane (top left pane of 4 panes) as shown
in Figure 2.2. Below is an alternate example which accomplishes the same thing.

#include <webgui.h>

#include <string.h>

#include <unistd.h>

int main(){

char str[80];

strcpy(str,"Hello World!");

webstart(15000);

webwriteline(str);

pause();

return 0;

}

2.3. Basic control 9

Figure 2.1. WEBGUI after calling webstart.

Figure 2.2. WEBGUI after calling webwriteline(”Hello World!”).

10 WEBGUI USERS’ GUIDE

2.3.3 webreadline

Description The function void webreadline(char* str) retrieves the oldest un-
read string from the command string queue. If no strings are available, this function
call will wait and not return until it receives a string. Whenever the user submits a
command string from the web browser, that string is placed in the command string
queue. If the web browser has buttons showing, pushing the buttons generates a
command string as described in Section 3.2.1 and places that command string in
the queue.

Declaration

void webreadline(char* str)

Parameters str is a char buffer of length 80. After calling webreadline, this buffer
will contain the oldest unread command string. The returned string will not be null
terminated as is the convenction of C strings. Instead the unused portion of the
buffer will be filled with the space character as is the convenction of Fortran strings.

Example The following example shows the usage of webreadline.

#include <webgui.h>

#include <stdio.h>

int main(){

char str[80];

webstart(15000);

while(1){

webreadline(str);

printf("%.80s\n",str);

}

return 0;

}

After compiling and running the above program, the standard output will display
any command string(s) that are submitted by the user in the web browser interface.

2.3. Basic control 11

2.3.4 webinit

Description The function void webinit(char* str, int len) is called before web-
start if the user wishes to have command buttons on their web browser GUI. Push-
ing these buttons generates command strings similar to typing commands when
buttons are not present. Additionally, the web browser GUI can store parameter
values associated with your program and allow the user to view and change them.
See Section 3.1 for more info.

Declaration

void webinit(char* str, int len)

Parameters
str is an array of strings where each string is length 80. These strings can be either
null terminated as is the convention of C strings or they can be padded with spaces
as is the convenction of Fortran strings. However, the second string must start at
str[80], and the third string at str[160], etc. A description on how to format str to
create buttons and define parameters can be found in Section 3.1.
len is a (4 byte) integer stating how many strings are present in the array.

Example The following example shows the usage of webinit.

#include <webgui.h>

#include <unistd.h>

int main(){

char str[14][80] = {

"c c=BuildTire, k=t",

"c c=BuildEngine, k=e",

"c c=AssembleCar, k=c",

"n n=TireRadius, a=tr, t=r, i=1, d=12.5",

"n n=TireColor, a=tc, t=s, i=1, d=red",

"n n=EngineSize, a=es, t=i, i=1, d=300",

"n n=CarColor, a=cc, t=i, i=2, d=1",

"r c=BuildTire, n=TireRadius",

"r c=BuildTire, n=TireColor",

"r c=BuildEngine, n=EngineSize",

"r c=AssembleCar, n=CarColor",

"s n=CarColor, v=0, l=red",

"s n=CarColor, v=1, l=white",

"s n=CarColor, v=2, l=blue"

};

webinit((char*)str,14);

webstart(15000);

pause();

return 0;

}

12 WEBGUI USERS’ GUIDE

After compiling and running the above program, the web browser GUI will have
3 command buttons (labeled BuildTire, BuildEngine, and AssembleCar) and each
button will have a drop down menu to view and change associated parameters.
Furthermore, the parameter CarColor (which is in the drop down menu of As-
sembleCar) will have its own drop down menu to help select a value. See Figure
2.3. Additionally, 4 parameters will be stored in the web browser GUI (TireRa-
dius, TireColor, EngineSize, and CarColor). These parameters will be viewable
and changeable by the user. To learn more about creating buttons and defining
parameters, see Section 3.1.

Figure 2.3. WEBGUI after calling webinit to create 3 command buttons
and store 4 parameters. In this picture, the user has toggled the drop down menu
for BuildTire revealing 2 parameters.

2.3. Basic control 13

2.3.5 webupdate

Description The function void webupdate(int* ip, double* rp, char* sp) up-
dates (changes) the parameters being stored in the web browser GUI. By default,
the web browser GUI doesn’t store any parameters, but by using webinit, you can
have the GUI store variables (so the user can view and change them). The function
webupdate can be called anytime after webinit (and before or after webstart).
Read Section 3.2.2 to learn more about parameters and updating them.

Declaration

void webupdate(int* ip, double* rp, char* sp)

Parameters
ip is an array of (4 byte) integers. If your web browser GUI is storing integer pa-
rameters (as a result of a previous call to webinit), they will be updated to these
values.
rp is an array of (8 byte) doubles. If your web browser GUI is storing double pa-
rameters (as a result of a previous call to webinit), they will be updated to these
values.
sp is an array of strings of length 80. If your web browser GUI is storing string
parameters (as a result of a previous call to webinit), they will be updated to these
values. These strings can be either null terminated as is the convention of C strings
or they can be padded with spaces as is the convenction of Fortran strings. How-
ever, the second string must start at str[80], and the third string at str[160], etc.
Therefore, be careful if you use malloc in C. Make sure to allocate a contiguous
block of memory.

Example The following example shows the usage of webupdate.

#include <webgui.h>

#include <unistd.h>

int main(){

char str[14][80] = {

"c c=BuildTire, k=t",

"c c=BuildEngine, k=e",

"c c=AssembleCar, k=c",

"n n=TireRadius, a=tr, t=r, i=1, d=12.5",

"n n=TireColor, a=tc, t=s, i=1, d=red",

"n n=EngineSize, a=es, t=i, i=1, d=300",

"n n=CarColor, a=cc, t=i, i=2, d=1",

"r c=BuildTire, n=TireRadius",

"r c=BuildTire, n=TireColor",

"r c=BuildEngine, n=EngineSize",

"r c=AssembleCar, n=CarColor",

"s n=CarColor, v=0, l=red",

"s n=CarColor, v=1, l=white",

14 WEBGUI USERS’ GUIDE

"s n=CarColor, v=2, l=blue"

};

int ip[2] = {400,2};

double rp[1] = {13.5};

char sp[1][80] = {"black"};

webinit((char*)str,14);

webstart(15000);

webupdate(ip,rp,(char*)sp);

pause();

return 0;

}

After compiling and running the above program, initially the parameter values of
TireRadius, TireColor, EngineSize, and CarColor are set to 12.5, red, 300, and 1
respectively. The call to webupddate changes these values to 13.5, black, 400, and
2 respectively.

Figure 2.4. WEBGUI after calling webinit and then webupdate. Pa-
rameter values TireRadius and TireColor changed from 12.5 and red to 13.5 and
black.

2.3. Basic control 15

2.3.6 websettitle

Description The function void websettitle(char* str) is called before webstart
if the user wishes for the web browser GUI’s webpage to show a title on top of the
web browser.

Declaration

void websettitle(char* str)

Parameters str is a string of length 80 or less. This string can either be null termi-
nated as is the convention of C strings, or the unused characters of the array length
should be filled with spaces as is the convention of Fortran strings.

Example The following example shows the usage of webwriteline.

#include <webgui.h>

#include <unistd.h>

int main(){

websettitle("Sample program");

webstart(15000);

pause();

return 0;

}

After compiling and running the above program, the web browser’s webpage will
show the title, ”Sample program”.

2.3.7 webstop

Description The function void webstop() terminates the web server. Afterward
web browsers can no longer connect and display the graphical interface. Also, the
listening thread is terminated and all memory is freed.

Declaration

void webstop()

16 WEBGUI USERS’ GUIDE

2.4 2D Image display

2.4.1 websetcolors

Description The function void websetcolors(int nc, double* R, double* G,
double* B, int pane) defines a color palette to be used by subsequent calls. Col-
ors are defined by giving their red, green, blue amounts. This function defines a
color palette for one of the three display panes. Each pane has two palettes; one for
2D images and one for 3D objects. Call this function before sending any informa-
tion about 2D images with webimagedisplay and before sending any information
about 3D objects with webline and webfill.

Declaration

void websetcolors(int nc, double* R, double* G, double* B, int pane)

Parameters nc is a (4 byte) integer stating the number of colors in the palette. For
2D images, the maximum value of nc is 256. (For 3D objects, max is 2 billion.)
R is an array of (8 byte) doubles. The length of the array is nc. The first element of
this array is the amount of red in the first color. The value of each element should
be between 0.0 and 1.0 inclusive.
G is an array of (8 byte) doubles. The length of the array is nc. The first element
of this array is the amount of green in the first color. The value of each element
should be between 0.0 and 1.0 inclusive.
B is an array of (8 byte) doubles. The length of the array is nc. The first element
of this array is the amount of blue in the first color. The value of each element
should be between 0.0 and 1.0 inclusive.
pane is a (4 byte) integer stating which display pane’s color palette you are defin-
ing. Use integers 0, 1, 2 to define palettes for 3D objects corresponding with panes
top right, bottom left, and bottom right respectively. Use 3, 4, 5 to define the
color palette’s for 2D images corresponding with panes top right, bottom left, and
bottom right respectively.

Example The following example shows the usage of websetcolors. Imagine that
you would like to define and later use the 6 colors of the rainbow. In conventional
RGB, red is RGB = (255,0,0); orange is RGB = (255,128,0); yellow is RGB =
(255,255,0); green is RGB = (0,255,0); blue is RGB = (0,0,255); and purple is RGB
= (128,0,128). The follow code defines this palette for a 2D image in pane 3.

double red[6] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.5};

double green[6] = {0.0, 0.5, 1.0, 1.0, 0.0, 0.0};

double blue[6] = {0.0, 0.0, 0.0, 0.0, 1.0, 0.5};

websetcolors(6,red,green,blue,3);

This program defines a color palette with the 6 colors of the rainbow for 2D images
in pane 3. Subsequent calls to webimagedisplay in the top right display pane will
use this color palette.

2.4. 2D Image display 17

2.4.2 webimagedisplay

Description The function void webimagedisplay(int nx, int ny, int* image,
int pane) displays a 2D image in the designated display pane. Before calling this,
you must call websetcolors to define a palette to be referenced.

Declaration

void webimagedisplay(int nx, int ny, int* image, int pane)

Parameters nx is a (4 byte) integer stating the pixel width of the image to be dis-
played. The variable nx must be divisible by 4.
ny is a (4 byte) integer stating the pixel height of the image to be displayed.
image is an array of (4 byte) integers of size nx width and ny height. Each integer
represents a pixel. Each integer’s value is between and including 0 and nc-1, the
number of colors in the palette you previously declared by calling websetcolors.
Note that the first color in your palette is referred to as 0 not 1. The second color
is 1, not 2, etc. The variable image is assumed to reside in memory contiguously
row by row as is the convention in C. Fortran stores arrays column by column so
you need to be careful. Furthermore, the image is drawn row by row from the
bottom upward. So your array’s first row of integers will be the bottom row of your
image and your array’s last row of integers will be the top row of your image. Also
note that your image will display in a rectangle with aspect ratio 1.5 width by 1.0
height. (Therefore it looks best if nx = 1.5ny. This is optional not mandatory.)
See example below.
pane is a (4 byte) integer stating which display pane to display the image in. Valid
integers are 3, 4, 5. These refer to the top right, bottom left, and bottom right
display panes respectively. Note that this integer should match the integer that you
used to set the palette with websetcolors.

Example The following example shows the usage of webimagedisplay in the C
programming language.

double red[7] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.5, 0.0};

double green[7] = {0.0, 0.5, 1.0, 1.0, 0.0, 0.0, 0.0};

double blue[7] = {0.0, 0.0, 0.0, 0.0, 1.0, 0.5, 0.0};

websetcolors(7,red,green,blue,3);

int image[6][4] = {

{0,0,0,6},

{1,1,1,6},

{2,2,2,6},

{3,3,3,6},

{4,4,4,6},

{5,5,5,6}

};

webimagedisplay(4,6,image,3);

After this program is compiled and ran, it will display an image in the top right
display pane as show in Figure 2.5. The first call to websetcolors defines a 2D

18 WEBGUI USERS’ GUIDE

image palette in pane 3 with colors 0, 1, 2, 3, 4, 5, 6 being red, orange, yellow, green,
blue, purple, black respectively. The second call to webimagedisplay defines and
draws the image. Notice how the first row of ”0,0,0,6” which refers to colors red,
red, red, black is the bottom row of the image and the last row ”5,5,5,6” which
refers to colors purple, purple, purple, black is the first row of the image. This is
illustrated in Figure 2.6.

Note that Fortran places arrays of integers in memory contiguously column
by column. Therefore to display this same image in Fortran, the code would be:

integer(kind=4), dimension(4,6) :: image

real(kind=8), dimension(7) :: red,green,blue

data r/1.0,1.0,1.0,0.0,0.0,0.5,0.0/

data g/0.0,0.5,1.0,1.0,0.0,0.0,0.0/

data b/0.0,0.0,0.0,0.0,1.0,0.5,0.0/

do j=1,6

do i=1,3

image(i,j)=j-1

enddo

image(4,j)=6

enddo

call websetcolors(7,red,green,blue,3)

call webimagedisplay(4,6,image,3)

or you could force Fortran to place rows together in memory by writing this:

integer(kind=4), dimension(24) :: image

do i=0,5

do j=1,3

image(4*i+j)=i

enddo

image(4*i+4)=6

enddo

call websetcolors(7,red,green,blue,3)

call webimagedisplay(4,6,image,3)

Another example of using webimagedisplay can be found in Section 2.6.4.
See example 2.

2.4. 2D Image display 19

Figure 2.5. WEBGUI after calling websetcolors and webimagedisplay.

Figure 2.6. How the image array becomes an image.

20 WEBGUI USERS’ GUIDE

2.5 3D Object display

2.5.1 websetcolors

Description The function void websetcolors(int nc, double* R, double* G,
double* B, int pane) defines a color palette to be used by subsequent calls. Col-
ors are defined by giving their red, green, blue amounts. This function defines a
color palette for one of the three display panes. Each pane has two palettes; one for
2D images and one for 3D objects. Call this function before sending any informa-
tion about 2D images with webimagedisplay and before sending any information
about 3D objects with webline and webfill.

Declaration

void websetcolors(int nc, double* R, double* G, double* B, int pane)

Parameters nc is a (4 byte) integer stating the number of colors in the palette.
R is an array of (8 byte) doubles. The length of the array is nc. The first element of
this array is the amount of red in the first color. The value of each element should
be between 0.0 and 1.0 inclusive.
G is an array of (8 byte) doubles. The length of the array is nc. The first element
of this array is the amount of green in the first color. The value of each element
should be between 0.0 and 1.0 inclusive.
B is an array of (8 byte) doubles. The length of the array is nc. The first element
of this array is the amount of blue in the first color. The value of each element
should be between 0.0 and 1.0 inclusive.
pane is a (4 byte) integer stating which display pane’s color palette you are defin-
ing. Use integers 0, 1, 2 to define palettes for 3D objects corresponding with panes
top right, bottom left, and bottom right respectively. Use 3, 4, 5 to define the
color palette’s for 2D images corresponding with panes top right, bottom left, and
bottom right respectively.

Example The following example shows the usage of websetcolors. Imagine that
you would like to define and later use the 6 colors of the rainbow. In conventional
RGB, red is RGB = (255,0,0); orange is RGB = (255,128,0); yellow is RGB =
(255,255,0); green is RGB = (0,255,0); blue is RGB = (0,0,255); and purple is RGB
= (128,0,128). The follow code defines this palette for a 2D image in pane 3.

double red[6] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.5};

double green[6] = {0.0, 0.5, 1.0, 1.0, 0.0, 0.0};

double blue[6] = {0.0, 0.0, 0.0, 0.0, 1.0, 0.5};

websetcolors(6,red,green,blue,3);

This program defines a color palette with the 6 colors of the rainbow for 2D images
in pane 3. Subsequent calls to webimagedisplay in the top right display pane will
use this color palette.

2.5. 3D Object display 21

2.5.2 webframe

Description The function void webframe(int frame) declares which portion of
a display pane subsequent calls to webline and webfill will draw in. The web
browser GUI has 3 display panes and each display pane is divided into 3 frames (or
sub panes). Call this function after websetcolors and before drawing lines and
polygons with webline and webfill. Note that to draw multiple lines and polygons
in a particular frame, you only need to call webframe once and then follow with
multiple calls to webline and webfill.

Declaration

void webframe(int frame)

Parameters frame is a (4 byte) integer stating which frame to draw future calls to
webline and webfill in. Valid integers are 1, 2, 3, 4, 5. Each display pane is a
rectangle with aspect ratio width to height as 1.5 to 1.0. This rectangle is the union
of 3 squares, see Figure 2.7. The big square on the left is frame = 4, the square in
the top right is frame = 2, and the square in the bottom right is frame = 3. After
declaring a frame, all subsequent calls will draw in this square only. After drawing
to frames 2, 3, 4, the resultant 3D objects will not be able to be zoomed, panned,
nor rotated. If you wish for your object to be zoomed, panned, and rotated then
draw to frame = 5. Frame 5 draws to the big square on the left (frame = 4) but
provides the ability of zoom, pan, and rotate. Lastly, set frame = 1 if you wish to
draw to the entire rectangle display pane ignoring the sub pane structure.

Example To see an example of webframe, read the example in the next subsection
2.5.3, webline.

Figure 2.7. Frames 2, 3, 4 within a display pane.

22 WEBGUI USERS’ GUIDE

2.5.3 weblineflt

Description The function void weblineflt(float* x, float* y, float* z, int n,
int color) draws a line in the display pane that was last declared with webset-
colors using the colors declared in websetcolors and within the sub pane (frame)
declared with the last call to webframe.

Declaration

void weblineflt(float* x, float* y, float* z, int n, int color)

Parameters x, y, z are arrays of (4 byte) single precision floating point real numbers.
The first number in each array are the x, y, z coordinates of your first point in 3D.
The second elements are the second point, etc. You can submit any number of points
and this function draws line segments between each consecutive pair of points. The
values of x,y,z are between 0.0 and 1.0 inclusive. The center of each frame (sub
pane) is (x, y, z) = (0.5, 0.5, 0.5), the bottom left corner is (x, y, z) = (0, 0, z) and
the top right corner is (x, y, z) = (1, 1, z). Positive z comes out of the screen, while
negative z goes into the screen. An exception to these bounds is frame = 1 which
accesses the entire display pane rectangle. In this case the value of x is between
0.0 and 1.5 inclusive. (and y is still between 0.0 and 1.0). The bottom left corner
is (x, y, z) = (0, 0, z) and the top right corner is (x, y, z) = (1.5, 1, z).
n is a (4 byte) integer stating the length of arrays x,y,z which is the number of 3D
points that your are submitting.
color is a (4 byte) integer between 1 and nc, where nc is the number of colors you
declared in your last call to websetcolors. The value color references those colors
with 1 being the first color (not 0), 2 the second (not 1), etc. All line segments will
be drawn with this color.

Example The following example shows the usage of weblineflt.

double red[3]={1.0,0.0,0.0};

double green[3]={0.0,1.0,0.0};

double blue[3]={0.0,0.0,1.0};

websetcolors(3,red,green,blue,0);

float x[4]={0.0,0.75,0.5,0.0};

float y[4]={0.0,0.25,0.75,0.0};

float z[4]={0.5,0.5,0.5,0.0};

webframe(4);

weblineflt(x,y,z,4,1);

webframe(3);

weblineflt(x,y,z,4,2);

webframe(2);

weblineflt(x,y,z,4,3);

webgldisplay(0);

The above block of code, defines a 3D object color palette for display pane 0 (top
right pane) declaring the 3 colors red, green, blue as a result of the first call to

2.5. 3D Object display 23

websetcolors. Furthermore, websetcolors declares that subsequent calls to we-
bline and webfill will draw lines and polygons in display pane 0. The first call to
webframe declares future drawing to be in the sub pane of frame = 4. The subse-
quent call to weblineflt draws a triangle of color = 1 which is red into frame = 4 of
pane = 0. A second call to webframe and weblineflt draws a triangle of color = 2
which is green into frame = 2 of pane = 0. And a third call to webframe and
weblineflt draws a triangle of color = 3 which is blue into frame = 3 of pane = 0.
Lastly, calling webgldisplay displays the 3D object in display pane 0. See Figure
2.8.

Figure 2.8. WEBGUI after calling webline three times in display pane 0
with different frames and colors.

Below is another example. It draws a black triangle in frame = 1 of pane = 1.
Output shown in Figure 2.9.

double red[1]={0.0};

double green[1]={0.0};

double blue[1]={0.0};

websetcolors(1,red,green,blue,1);

float x[4]={0.0,1.5,0.25,0.0};

float y[4]={0.75,0.25,0.25,0.75};

float z[4]={0.5,0.5,0.5,0.5};

webframe(1);

weblineflt(x,y,z,4,1);

webgldisplay(1);

24 WEBGUI USERS’ GUIDE

Figure 2.9. WEBGUI after calling webframe(1) and webline in display
pane 1.

2.5. 3D Object display 25

2.5.4 webfillflt

Description The function void webfillflt(float* x, float* y, float* z, int n, int
color) draws a filled convex polygon in the display pane that was last declared with
websetcolors using the colors declared in websetcolors and within the sub pane
(frame) declared with the last call to webframe.

Declaration

void webfillflt(float* x, float* y, float* z, int n, int color)

Parameters x, y, z are arrays of (4 byte) single precision floating point real num-
bers. The first number in each array are the x, y, z coordinates of your first vertex in
3D. The second elements are the second vertex, etc. You can submit any number of
vertices and this function draws filled triangles between each consecutive pair of ver-
tices together with the first vertex (thus drawing the entire filled convex polygon).
The values of x,y,z are between 0.0 and 1.0 inclusive. The center of each frame (sub
pane) is (x, y, z) = (0.5, 0.5, 0.5), the bottom left corner is (x, y, z) = (0, 0, z) and
the top right corner is (x, y, z) = (1, 1, z). Positive z comes out of the screen, while
negative z goes into the screen. An exception to these bounds is frame = 1 which
accesses the entire display pane rectangle. In this case the value of x is between
0.0 and 1.5 inclusive. (and y is still between 0.0 and 1.0). The bottom left corner
is (x, y, z) = (0, 0, z) and the top right corner is (x, y, z) = (1.5, 1, z).
n is a (4 byte) integer stating the length of arrays x,y,z which is the number of 3D
vertices that your are submitting.
color is a (4 byte) integer between 1 and nc, where nc is the number of colors
you declared in your last call to websetcolors. The value color references those
colors with 1 being the first color (not 0), 2 the second (not 1), etc. The entire filled
polygon (all separate triangles) will be drawn with this color.

Example The following example shows the usage of webfillflt.

double red[3] = {1.0, 1.0, 1.0};

double green[3] = {0.0, 0.5, 1.0};

double blue[3] = {0.0, 0.0, 0.0};

websetcolors(3,red,green,blue,0);

webframe(5);

float xA[5]={0.25,0.75,0.75,0.25,0.25};

float yA[5]={0.25,0.25,0.75,0.75,0.25};

float zA[5]={0.75,0.75,0.75,0.75,0.75};

webfillflt(xA,yA,zA,5,1);

float xB[5]={0.25,0.75,0.75,0.25,0.25};

float yB[5]={0.25,0.25,0.25,0.25,0.25};

float zB[5]={0.25,0.25,0.75,0.75,0.25};

webfillflt(xB,yB,zB,5,2);

float xC[5]={0.25,0.25,0.25,0.25,0.25};

float yC[5]={0.25,0.75,0.75,0.25,0.25};

float zC[5]={0.25,0.25,0.75,0.75,0.25};

26 WEBGUI USERS’ GUIDE

webfillflt(xC,yC,zC,5,3);

webgldisplay(0);

The above block of code, defines a 3D object color palette for display pane 0 (top
right pane) declaring the 3 colors red, orange, yellow as a result of the first call to
websetcolors. Furthermore, websetcolors declares that subsequent calls to we-
bline and webfill will draw lines and polygons in display pane 0. Then webframe
declares future drawing to be in the sub pane of frame = 5. The subsequent call
to webfillflt draws one face of a cube (a square) with color = 1 which is red into
frame = 5 of pane = 0. A second call to webframe and webfillflt draws a second
face of a cube with color = 2 which is orange into frame = 5 of pane = 0. And a
third call to webframe and webfillflt draws a third face of a cube with color = 3
which is yellow into frame = 5 of pane = 0. Lastly, calling webgldisplay displays
the 3D object in display pane 0. After the 3D object is displayed, the user can
rotate the cube so that one vertex is pointed forward. See Figure 2.10.

Figure 2.10. WEBGUI after calling webfill three times in display pane 0
and rotating the object.

2.5. 3D Object display 27

2.5.5 weblinedbl

Description The function void weblinedbl(double* x, double* y, double* z,
int n, int color) is the same as weblineflt except that the array arguments are
double precision reals instead of single precision. Note that WEBGUI only draws
lines in single precision, but you should call either weblineflt or weblinedbl based
on how your vertices are stored in your software either as single precision (4 byte
reals) or double precision (8 byte reals). Don’t cast your variables, let WEBGUI
do the casting for you.

2.5.6 webfilldbl

Description The function void webfilldbl(double* x, double* y, double* z,
int n, int color) is the same as webfillflt except that the array arguments are
double precision reals instead of single precision. Note that WEBGUI only draws
triangles in single precision, but you should call either weblineflt or weblinedbl
based on how your vertices are stored in your software either as single precision (4
byte reals) or double precision (8 byte reals). Don’t cast your variables, let WE-
BGUI do the casting for you.

2.5.7 webgldisplay

Description The function void webgldisplay(int pane) displays the 3D object
that was previously sent to the indicated display pane. Call this function after
calling websetcolors, webframe, webline, and webfill.

Declaration

void webgldisplay(int pane)

Parameters pane is a (4 byte) integer stating which display pane should display
its 3D object. Valid integers are 0, 1, 2 referring to the top right, bottom left,
and bottom right display pane. The variable pane should match the value in your
previous call to websetcolors.

Example For an example of webgldisplay, see the examples in the previous sub
sections, 2.5.3 and 2.5.4.

28 WEBGUI USERS’ GUIDE

2.6 Miscellaneous

2.6.1 webquery

Description The function int webquery() informs the caller whether the web
browser is displaying command buttons or not. Even if your software calls we-
binit to create command buttons, the user can toggle them off and on with key
strokes, therefore this function exists. (To learn how to toggle buttons off and on,
see Section 4.4)

Declaration

int webquery()

Return Value If command buttons are showing, 1 is returned. If a command prompt
to accept only typed strings is showing, 0 is returned.

2.6.2 webbutton

Description The function void webbutton(int highlight, char* cmd) will high-
light a command button by making it a darker gray. This is a useful function to
indicate whether a feature of your software is turned on or off.

Declaration

void webbutton(int highlight, char* cmd)

Parameters highlight is a (4 byte) integer of value 1 or 0. Setting highlight = 1,
causes the indicated command button to be highlighted. Setting highlight = 0
causes the indicated command button to be unhighlighted (normal).
cmd is a string of length 20 or less. cmd can be either a NULL terminated C type
string, or it can be a Fortran type string padded with spaces to its array length. The
string cmd must match the command name that you supplied in webinit (with
the key value pair associated with c.)

2.6.3 webpause

Description The function void webpause() requests that the user click a continue
button before proceeding. This is useful if your software is outputting multiple im-
ages that potentially overwrite themselves. You can request the user click continue
which forces them to view the image before proceeding.
Declaration

void webpause()

2.6. Miscellaneous 29

2.6.4 websetmode

Description The function void websetmode(int x) can allow your program to
receive the keyboard and mouse presses from the web browser. It can also allow
your program to display 2D images or 3D objects faster than the default two per
second (thus simulating animation). And this function determines whether new
3D objects inherit zoom, pan, and rotation settings from previously displayed 3D
objects. By default, WEBGUI runs in mode 0. If this is adequate, you do not need
to call websetmode. This function can be called as often as you like and before
or after webstart. Recommended usage is to change the mode when needed and
change back to 0 when not needed.

Declaration

void websetmode(int x)

Parameter x is a (4 byte) integer between -4 and 9 inclusive requesting the desired
mode. The fourteen modes are listed in the table below.

Valid modes for websetmode

x keyboard mouse webZZZdisplay FPS reset

blocking position

-1 no no no 2 no
-2 yes no no 2 yes
-3 no yes no 2 yes
-4 yes yes no 2 yes

0 no no no 2 yes
1 yes no no 2 no
2 no yes no 2 no
3 yes yes no 2 no

4 yes yes yes 10 no
5 yes yes yes 20 no
6 yes yes yes 30 no

7 no no yes 10 no
8 no no yes 20 no
9 no no yes 30 no

The second column, keyboard, indicates whether the web browser sends key-
board presses to webgui.c (the server). Keyboard presses are sent as command
strings. Your program receives the string by calling webreadline. See Section
2.3.3 or Section 3.2.1. The string is formatted as follows:

key code=XXX

where XXX is the key’s browser code. To discover browser codes, run WEBGUI in
mode 1, press keys, and read the codes from the bottom of the web page. As you
press keys in modes -4,-2,1,3,4,5,6, the bottom of the web page says:

30 WEBGUI USERS’ GUIDE

(last pressed key: code = XXX)

The third column, mouse, indicates whether the web browser sends mouse
presses to webgui.c. Mouse presses are sent as command strings. The string is
formatted as follows:

mse button=AAA,x=BBB,y=CCC,pane=DDD

AAA is 0,1,2 referring the the left, center, or right mouse button. (On one button
systems, you can simulate the center or right button by holding the OPTION/ALT
key or COMMAND/WINDOWS key on Mac/Windows when you press the left
button.) BBB is the x-coordinate of the mouse click. CCC is the y-coordinate
of the mouse click. The (x, y) coordinates are relative to frame=5. (Frames are
explained in Section 2.5.2). Clicking in the center of frame=5 sends (0,0), the
bottom left corner sends (-1,-1) and the top right corner of frame=5 sends (1,1).
The reported (x, y) coordinates are the result of mapping the mouse click into the
xy plane according to the current zoom, pan, and rotation. When the display pane
contains a 2D image then coordinates are relative to frame=1. The bottom left
corner sends (0,0) and the top right corner of frame=1 sends (1.5,1). (Pan, zoom,
and rotation are not applicable and ignored.) DDD is 0,1,2 (or 3,4,5 for 2D images)
referring to the top right, bottom left, or bottom right display pane. You can view
example coordinates by running WEBGUI in mode 2, pressing the mouse button,
and reading the bottom of the page which says:

(last pressed mouse: button = AAA, x = BBB, y = CCC, pane = DDD)

The fourth column, blocking, indicates whether the functions webimagedis-
play and webgldisplay are blocking are not. By default they are not. But in
modes 4,5,6,7,8,9 these functions do not return until the web browser displays the
2D image or 3D object. Thus your program can send 2D images or 3D objects as
fast as it can and let webZZZdisplay regulate the speed of your program.

The fifth column, FPS, indicates the maximum frame rate per second in which
the web browser displays 2D images or 3D objects. Note that this rate is how often
the web browser polls the server (asks the server if there is a new image or object
to display). Therefore if you don’t need a high FPS, then you should choose a
lower FPS to minimize bandwidth and socket activity. Also if your web browser
misbehaves, lower the FPS.

The sixth column, reset position, indicates whether sending a new 3D object
(WebGL) to a display pane’s frame=5 resets the zoom, pan, and rotation. By
default, in mode=0, when you display a new 3D object, it will display without
any zoom, pan, or rotation applied even if you zoomed, panned, and rotated the
previous 3D object that was in the same display pane. In some situations when
the second 3D object relates to the first 3D object, it is preferable to not reset the
zoom, pan, and rotation but instead have the second object inherit the positioning
of the first object.

In addition to controlling ”reset position” by calling websetmode, you can
toggle this feature off and on in the web browser by pressing the OPTION + R key.
(On Windows machines, use ALT instead of OPTION.)

2.6. Miscellaneous 31

When the web browser is in a mode other than 0, the web browser indicates
this by displaying

INTERACTIVE MODE: YYY

on the bottom of the web page where YYY describes the mode.

Example 1. The following example shows the usage of websetmode.

#include <webgui.h>

#include <stdio.h>

int main(){

char str[80];

websetmode(3);

webstart(15000);

while(1){

webreadline(str);

printf("%.80s\n",str);

}

return 0;

}

After compiling and running the above program, the web browser will display at
the bottom:

INTERACTIVE MODE: Key and mouse presses sent to server.

And if you hit the ”1” key and then click the mouse inside pane 0, the standard
output will display:

key code=49

mse button=0,x=0.473881,y=0.597015,pane=0

Example 2. Below is another example which demonstrates animation and keyboard
capture. The following code displays 30 images per second at resolution 720 by 480
pixels (DVD quality):

#include<stdio.h>

#include<unistd.h>

#include<pthread.h>

#include<webgui.h>

pthread_t pth;

int image[480][720]={{0}};

int x=336, y=216, d=48, v[2]={6,0}, stop=0;

double r[2]={1,1}, g[2]={1,0}, b[2]={1,0};

void *processcommand(void *arg);

32 WEBGUI USERS’ GUIDE

int main(){

int i,j;

websetmode(6);

webstart(15000);

websetcolors(2,r,g,b,3);

pthread_create(&pth,NULL,processcommand,NULL);

while(stop==0){

for (i=0;i<480;i++) for (j=0;j<720;j++) image[i][j]=0;

for (i=y;i<y+d;i++) for (j=x;j<x+d;j++) image[i%480][j%720]=1;

webimagedisplay(720,480,(int*)image,3);

x+=v[0]+720; x%=720;

y+=v[1]+480; y%=480;

}

return 0;

}

void *processcommand(void *arg){

char str[80];

while(1){

webreadline(str);

if (str[0]==’q’) stop=1;

/* expecting str = "key code=XX" */

else if (str[0]==’k’){

if (str[10]==’8’) {v[0]=0; v[1]=6;} // up is 38

if (str[10]==’0’) {v[0]=0; v[1]=-6;} // down is 40

if (str[10]==’7’) {v[0]=-6; v[1]=0;} // left is 37

if (str[10]==’9’) {v[0]=6; v[1]=0;} // right is 39

}

}

}

After running this program, the web browser will display at the bottom:

INTERACTIVE MODE: Frame rate = 30 fps. Key and mouse presses sent to server.

and a red square begins to move across display pane 0. Motion is an illusion created
by rapidly drawing new images where the red square has a different location. Use
the arrow keys to change the red square’s direction. The code for this program and
another example program which demonstrates drawing dots by clicking the mouse
are included in the examples folder that came inside the tar file containing this
software.

Here’s a final remark; the mode should be set within your program by calling
websetmode. However for debugging purposes, you can change the mode during
runtime in the web browser. To set a mode, press the OPTION + P key, and then
press the OPTION + XXX where XXX is the number key of the desired mode.
On Windows machines use ALT instead of OPTION. To set modes -1,-2,-3,-4, first
set the mode to 0,1,2,3 and then toggle the ”reset position” feature by pressing the
OPTION + R key.

Chapter 3

GUI Command Buttons
and Parameters

3.1 Introduction
The purpose of a graphical interface is to control some software and display output.
Presumably the software has a variety of routines (tasks it can perform). And with
each routine, there can be associated parameters (variables). Therefore, it would
be helpful if the GUI can view and change parameters before requesting that a
routine to be executed. After execution, the GUI should be able to display text and
graphical output.

If you only use the command line version of WEBGUI, you do not need to read
this section. If however, you would like to call webinit to add command buttons
and parameter storage in your web browser, then this section explains how that
works.

In order for the web browser interface to provide command buttons and store
parameters for viewing and changing, you must inform the web browser about your
software’s routines and variables. You accomplish this with the webinit call which
is described in Section 2.3.4.

3.2 Calling webinit
The argument of webinit is an array of strings (each 80 characters in length). This
section describes the formatting of these strings. There are 4 types of argument
strings. Strings that begin with the letter ”c” define command buttons. Strings
that begin with the letter ”n” define a parameter. Strings that begin with the letter
”r” define an association between a command and a parameter. And strings that
begin with the letter ”s” define a list of options for a parameter. All strings have
the same format. Each begins with a single letter (either c, n, r, or s) and then each
has a list of key = value pairs separated by commas. Spaces are optional.

Below is the example array of strings we presented in Section 2.3.4. These
strings create 3 command buttons, store 4 parameters (2 integers, 1 real, and 1
string) and provide 3 options for 1 of the parameters. Notice the 4 types of strings

33

34 WEBGUI USERS’ GUIDE

and the common format. We will explain this example in the 4 sections to follow:

char str[14][80] = {

"c c=BuildTire, k=t",

"c c=BuildEngine, k=e",

"c c=AssembleCar, k=c",

"n n=TireRadius, a=tr, t=r, i=1, d=12.5",

"n n=TireColor, a=tc, t=s, i=1, d=red",

"n n=EngineSize, a=es, t=i, i=1, d=300",

"n n=CarColor, a=cc, t=i, i=2, d=1",

"r c=BuildTire, n=TireRadius",

"r c=BuildTire, n=TireColor",

"r c=BuildEngine, n=EngineSize",

"r c=AssembleCar, n=CarColor",

"s n=CarColor, v=0, l=red",

"s n=CarColor, v=1, l=white",

"s n=CarColor, v=2, l=blue"

};

3.2.1 Command buttons

Key-value pairs associated with c string

Name Key Value

command button text c maximum of 20 characters
abbreviation k maximum of 3 lowercase characters

Every string that begins with ”c” will create a command button in the web
browser GUI. The name on the button is the value associated with the key c.
When this button is pushed, a command string is generated and placed in the
command string buffer. (Your software retrieves this command string when it calls
webreadline.)

The format of the generated command string is as follows. The first 1-3
characters will be the abbreviation that you assigned to that command via the
key-value pair of k. The remainder of the command string will be key-value pairs
separated by commas. The keys will be parameter names that you define with an n
string (and associate with an r string) and the values will be any parameters that
you changed from their defaults with the web browser drop down menus.

For example, if you push the button ”Build Tire”, the command string trans-
mitted will be an 80 character string with the first letter ”e” and the remaining 79
characters as spaces. If before you push the button ”Build Tire”, you change the
associated parameter ”TireRadius” from its default of 12.5 to 13.5, and ”TireColor”
from red to while, then the transmitted command string will be

e TireRadius=13.5, TireColor=white

padded out with spaces to length 80.

3.2. Calling webinit 35

3.2.2 Parameters

Key-value pairs associated with n string

Name Key Value

parameter name n maximum of 20 characters
abbreviation a maximum of 3 characters
data type t i (int), r (real), s (string), f (file)
index i pointer to IP, RP, SP

default value d maximum of 40 characters/digits

Every string that begins with ”n” will define a parameter for the web browser
to store and allow the user to view and change. When a user changes a parameter
via a web browser drop down menu, the new value of that parameter is transmitted
when the associated command button is pressed. (This is described in the subsection
prior and following.)

Changed parameter values are also transmitted when you close the drop down
menu but have not actually issued the associated command. If you close a drop
down menu where a parameter has been changed, then a command string is placed
in the command string buffer. This isn’t a normal command string. The first 1-3
characters of the command string are the capital letter version of the associated
command abbreviation. It is important that your software is aware of this and
processes these slightly different command strings correctly after receiving them
from webreadline. For example, if you change the parameter ”TireRadius” from
its default of 12.5 to 13.5, and ”TireColor” from red to while, and then you close the
drop down menu (without issuing the ”BuildTire” command), then the following
command string will be transmitted:

E TireRadius=13.5, TireColor=white

Note that this differs from the command string in the preceding subsection which
started with a lowercase ”e”.

The web browser recognizes 3 types of parameters; integer, real, and string.
Strings come in 3 types, (i) contain no space characters, (ii) contain space characters,
and (iii) file names. If you declare a string as a file name, then the web browser will
give you a file selection dialog box to change them. Declare a parameter’s type by
using the key-value pair associated with t. For a number, set the value to either i
or r denoting integer or real respectively. For a string, set the value to either s, l,
or f to denote the string has no spaces, the string has spaces, and file name.

The web browser also assumes that your software maintains these variables
(integers, reals, strings) in 3 arrays, IP, RP, SP. Therefore each parameter that you
let the web browser know about needs an index into your software’s associated IP,
RP, SP array. The first integer variable in your software’s IP array is referred to as
1, not 0. The second is 2, not 1, etc. When you declare a parameter with an n string,
the key-value pair associated with i should be the index of that parameter in your
software’s associated array. Indices for integers, reals, and strings are independent
of each other and all start at 1. It is significant to match these correctly so that

36 WEBGUI USERS’ GUIDE

future calls to webupdate(ip,rp,sp) can update (change) the correct parameters
in the web browser.

For each parameter that you associate with a command (explained in the next
subsection), you should provide a default value with the key-value pair associated
with d. If you wish to provide a default string that contains spaces, then surround
the default string with quotation marks, otherwise quotation marks are optional.

3.2.3 Associate parameters with commands

Key-value pairs associated with r string

Name Key Value

command name c maximum of 20 characters
parameter name n maximum of 20 characters

Any parameter that you would like a user to be able to view and change must
be associated with a command. You associate a parameter with a command with a
string that begins with ”r”. Each command button has a smaller button beside it
with a plus-sign on it. Pressing this button opens a drop down menu revealing all
the parameters associated with a command. You may associate a parameter with
more than 1 command. Figure 2.3 shows the result of our example here after the
user opened a drop down menu. Command ”BuildTire” has 2 parameters associated
with it. Pressing the plus-sign button beside the ”BuildTire” button opens a drop
down menu containing the parameters ”TireRadius” and ”TireColor”. Figure 3.1
also shows the result of our example here. In this Figure, the user opened the
”AssembleCar” drop down menu and then opened the ”CarColor” options menu.

3.2.4 Options for parameters

Key-value pairs associated with s string

Name Key Value

parameter name n maximum of 20 characters
hidden value v maximum of 40 characters/digits
display name l maximum of 40 characters/digits

If you would like the user to see possible options for a given parameter, then
for each such option, provide a string that starts with the letter ”s”. Below is our
example where we provide the 3 options of red, white, blue for parameter CarColor.
The hidden values are 0, 1, 2 respectively. That means that if a user selects the
color blue, then the parameter CarColor will be set to the integer 2. The user gets
a drop down menu when they click on the name of the parameter. See Figure 3.1.

3.2. Calling webinit 37

Figure 3.1. WEBGUI after calling webinit to create 3 command buttons,
and 1 parameter with 3 options.

38 WEBGUI USERS’ GUIDE

Chapter 4

GUI Features

4.1 Basic layout

Figure 4.1. WEBGUI’s appearance in a web browser.

Above is an image of WEBGUI running together with Randolph Bank’s software
PLTMG. This picture illustrates the basic features of WEBGUI ’s graphic user in-
terface. Randy’s softare PLTMG called webinit to define 11 buttons and many
parameters and options. (To learn how to add buttons see Section 3.1.) Next it
called webstart. After that a user opened a web browser and directed it to the host
computer’s URL. Then the user clicked some buttons issuing commands. PLTMG

39

40 WEBGUI USERS’ GUIDE

outputted many lines of text and one 2D image and two 3D objects.
The web browser graphic interface is divided into 4 rectangle areas. The top

left area contains the command buttons and a pane to display text output. The text
output pane also displays a history of the commands issued. A command is issued
whenever the user (i) presses a command button, (ii) closes a drop down menu after
changing a parameter, or (iii) types a command into the command string field and
hits enter. (If you wish for your software to send text output to the text output
pane, use the routine webwriteline described in Section 2.3.2.)

The remaining 3 rectangle areas are panes numbered 0, 1, 2 (corresponding
to the top right, bottom left, and bottom right pane)(they are also numbered 3,
4, 5). These panes are where 2D images and 3D objects (WebGL) outputted by
software are displayed. Each pane can display either one 2D image or one 3D object.
Whenever a new image or object is sent to a pane, the old image or object disappears
and is replaced. (If you wish your software to send 2D images to a display pane,
see Section 2.4. To send 3D objects to a display pane, see Section 2.5.)

4.2 Display panes
The web browser interface has 3 display panes. Each display one 2D image or one
3D object. The display panes are numbered 0, 1, 2 corresponding to the top right,
bottom left, bottom right (also numbered 3, 4, 5). In Figure 4.1, pane 0(3) and
2(5) contain a 3D object. And pane 1(4) contains a 2D image.

3D objects are displayed using WebGL 1.0. Most web browsers and computers
from the year 2010 onward have WebGL enabled by default. When a 3D object is
displayed, the user can rotate, pan, and zoom the object using their mouse. Rotate
using the left mouse button, pan using the middle mouse button, and zoom using
the right mouse button. If your mouse doesn’t have a center button, you can push
the ”option” (on Mac) or ”alt” (on Windows) key while using the left mouse button
instead. If your mouse doesn’t have a right button, you can push the ”command”
(on Mac) or ”windows” (on Windows) key while using the left mouse button instead.

Display pane buttons

Button Effect

RESET return a zoomed / panned / rotated image to its initial state
FREE clear the image and free associated memory
SPIN spin image
POP place canvas in its own web browser tab
PUSH return canvas to its original location in the web browser tab
SAVE save image to a file
LOAD read image from a file

Under each 3D object are 6 buttons labeled Reset, Free, Spin, Pop, Save,
and Load. Pressing the Reset button returns the 3D object to its original location
reseting any rotation, pan, or zoom information.

Pressing Free, deletes the object and frees any memory associated with storing
the object. See Section 5.1 to learn about WEBGUI ’s memory usage.

4.3. Quaternion rotation 41

Pressing Spin allows the object to rotate freely. It will continue rotating in
the direction that the user last rotated. After pressing Spin, you will see a new
button labeled Stop. Pressing Stop stops the object from rotating freely.

Pressing Pop places the current display pane in its own browser tab or window
(depending on your web browser’s settings). If your web browser places the pane in
a new tab but you prefer a new window, either change your web browser’s settings
or open a new window and cut and paste the tab’s URL into the new window.
When a display pane resides in its own tab or window, you will see a button labeled
Push under the new pane. Pressing Push will put the display pane back into the
main controls window.

Pressing Save will save a binary file with an extension of ”gpu” to your local
computer containing the 3D object’s information. This file can be loaded back into
a display pane using the Load button.

Under each 2D image is only 1 button labeled Free. Pressing this button
deletes the image and frees any memory associated with storing the image. See
Section 5.1 to learn about WEBGUI ’s memory usage.

4.3 Quaternion rotation
3D objects that are drawn to frame 5 can be rotated, panned, and zoomed with the
mouse (explained in previous section). Objects in frames 1, 2, 3, 4 cannot. Frame
5’s viewing area is a cube with the coordinates of the lower left back (0, 0, 0) and
the upper right front (1, 1, 1). The center of this frame is coordinates (0.5, 0.5, 0.5).
See Figure 4.2.

Figure 4.2. A 2D projection of a sphere in frame 5

42 WEBGUI USERS’ GUIDE

Figure 4.3. Moving the mouse from A to B rotates the object in 3D around
the dotted line axis.

A 3D object gets rotated whenever a user depresses the left mouse button,
moves the mouse, and then releases the left mouse button. Rotation is calculated as
follows. Imagine a sphere of radius 0.5 that fills frame 5 with center at (0.5, 0.5, 0.5).
Projected into 2D, this is a circle as shown in Figure 4.2. The user can zoom and
pan frame 5 moving the circle to a new size and location in the web browser. When
a user depresses the left mouse button, call this point A. Then the user moves
the mouse. Call the point where the user releases the left mouse button point B.
Projected into 2D, the line through the center of the circle perpendicular to line
AB is the axis of 3D rotation. The axis is the dotted line in Figure 4.3.

In 3D, the angle between the axis of rotation and the XY plane is α =
sin−1(d/r) where r is the radius of the circle and d is the distance between the
center of the circle and the line AB. If d > r then α = π/2. The above defines the
axis of rotation u. The amount of rotation in radians is θ = 3s/(2r) where s is the
distance from A to B and r is the radius of the circle. The associated quaternion to
facilatate this rotation is q = [cos(θ/2), uxsin(θ/2), uysin(θ/2), uzsin(θ/2)] when u
is normalized to length 1.

As the user holds down the left mouse button and moves the mouse between
point A and point B, the mouse travels through points Ck in between. For each
point Ck, WEBGUI shows the user what the object would look like if the user
released the left mouse button at Ck. Therefore as the mouse moves, the object
appears to continually rotate. None-the-less, when the mouse button is released,
the inbetween points Ck are ignored and the above formula is used to calculate the
new orientation of the object.

4.4. Control keys 43

4.4 Control keys
WEBGUI has some features which are toggled with key strokes.

Control keys

Key Feature

OPTION + C toggles between command buttons and command text field
OPTION + I toggles displaying rotation, pan, and zoom information
OPTION + R toggles whether 3D objects inherit rotation, pan, and zoom
OPTION + W toggles between 2 display panes wide and 1 pane wide
OPTION + F toggles firewall on and off
OPTION + E toggles endian flip on and off
OPTION + SAVE saves 3D object as text instead of binary

To use the above features, you hold down the OPTION key while pressing
the indicated key. On a Windows machine, hold down the ALT key instead of the
OPTION key.

OPTION + C toggles between command buttons and command text field. If
your software calls webinit before calling webstart, then your web browser GUI
will have command buttons. Note that the command buttons are just short cuts
for generating and submitting command strings to the command string buffer. See
Section 3.2.1 for an explanation. Therefore the buttons are never needed. If you
prefer to type your own command strings, then you can toggle the command buttons
off and on with OPTION +C.

OPTION + I toggles displaying rotation, pan, and zoom information. When
these keys are pressed, the 3D object display pane that is in focus will display
its current rotation, pan, and zoom information. Note that when a display pane
contains a 2D image, there is no rotation, pan, and zoom information to display for
that display pane.

OPTION + R toggles whether 3D objects inherit the rotation, pan, and zoom
setting from the previously displayed 3D object. By default, when you display a
new 3D object, it will display without any zoom, pan, or rotation applied even
if you zoomed, panned, and rotated the previous 3D object that was in the same
display pane. After you press OPTION + R, the web browser will display a pop
up message indicating the status of inheritance.

OPTION + W toggles the web browser’s appearance between 2 display panes
wide and 1 display pane wide. On mobile devices the default is 1 display pane wide.
On other devices the default is 2 display panes wide.

OPTION + F toggles the firewall on and off. When the firewall is activated,
the bottom of the web browser will display the following line of text indicating this

FIREWALL ON: Only your ip address (X.X.X.X) can access webgui.

and, on the server machine, the standard output will display

webgui: Only accepting ip address = X.X.X.X

44 WEBGUI USERS’ GUIDE

where x.x.x.x is your ip address. And when the firewall is turned off, the standard
output will display

webgui: Accepting all ip addresses.

OPTION + E toggles an endian flip on and off. All but one feature of WE-
BGUI are independent of whether the server machine and client machine have the
same endianness or not. The only feature that is affected is displaying 3D objects.
3D objects are sent between the server and client as a binary stream of 4 byte
variables (either integers or floating point numbers). By default, the client assumes
that the server has the same endianness as itself. If this is not the case, then press
OPTION + E, to toggle an endian flip to allow the correct display of 3D objects.
When endian flip is turned on, the bottom of the web browser will display the
following line of text indicating this

ENDIAN FLIP: Client is receiving flipped endianness of server.

OPTION + SAVE allows your computer to save a 3D object as ASCII text
instead of a binary string of floating point numbers. This allows you to view the
3D object and see the individual triangles and lines that make up the object. You
can also view the colors of these triangles and lines. Currently, the Load button
will not load the ASCII text files. If you want to be able to load a saved 3D object,
then press SAVE without holding down OPTION. This will save the 3D object as
a binary file and allow it to be loaded later.

4.5 Miscelleanous

4.5.1 Display without controls

WEBGUI can be used another way. Instead of receiving user input and displaying
software output, WEBGUI can just be used to display output as show in Figure 4.4.
Notice how this is different than the normal appearance in Figure 4.1. To have your
web browser perform this way, use the URL = ”http:// localhost:15000/ sg?x=0”
instead of URL = ”http:// localhost:15000/ index.html”. In place of x = 0, choose
x = 0, x = 1, or x = 2 depending on which display pane you wish to view. And of
course in place of ”http:// localhost”, you put the ip address of the host machine
and in place of 15000, you put the port that your web server is listening on.

4.5. Miscelleanous 45

Figure 4.4. WEBGUI in display only mode by using a special URL.

4.5.2 Save and view webpage offline

When you are viewing WEBGUI within your web browser, you may desire to save
the web page so that you can view or edit the webpage offline. Of course at any
time you can just select ”Save page as” in your web browser. You can even select
”Save webpage complete”. However if you do either of these and then open the
saved files, they will not display any 3D objects. If you wish to save a version that
contains the 3D objects, there is a work around.

In your web browser, change the URL from ”http:// localhost:15000/ in-
dex.html” to ”http:// localhost:15000/ save”. Of course in place of ”http:// lo-
calhost”, you put the ip address of the host machine and in place of 15000, you put
the port that your web server is listening on. After entering this new URL, you
will see what looks like the same web page. However, if you choose ”Save webpage
complete” and reload it offline, you will see the 3D objects. This works because
the 3D objects will be stored as ASCII text data within a JavaScript file. This
is recognized by your web browser and your web browser will save it. Normally,
the 3D objects are being stored as proprietary binary data which is must faster to
transmit and load. But your web browser does not recognize these binary files and
won’t save them. Only use the special save URL to save the web page; WEBGUI
will not operate correctly in save mode.

If you wish to save the appearance of a single 3D object (without the command
buttons showing as displayed in Figure 4.4), you have two choices. You can simply
click the Save button beneath the object you wish to save as explained in Section
4.2. This saves a very small binary file. Or instead, you can go to the URL =
”http:// localhost:15000/ save?x=0” which will allow you to view display pane 0

46 WEBGUI USERS’ GUIDE

and save it by selecting ”Save webpage complete” from your web browser. Use
x = 1 or x = 2 for display panes 1 and 2.

Chapter 5

WEBGUI Memory Usage

5.1 Overview
When you compile and link WEBGUI to your software, upon running it shares the
memory space of your software. This section describes WEBGUI ’s memory usage
so that you are aware. There are five main consumers of memory. Only one can
really become significant which is displaying large 3D objects.

5.2 Basic
Since webgui.c is a web server, the first use of memory is maintaining index.html in
memory to be ready whenever a web browser requests it. This is roughly 100,000
bytes. Next, if you call webinit and enable the web browser to store parameters
giving the user the ability to view and change parameters, these variables are stored.
An average number of command buttons, parameters, and options uses around
10,000 bytes. (Each parameter uses about 100 bytes and each command button
uses about 50 bytes.) Next webgui.c maintains a few command string buffers; these
buffers use a total of 25,000 bytes.

5.3 2D Images
The two large uses of memory are the display of 2D images and 3D objects. When
a 2D image is displayed, webgui.c must keep a copy of the image in memory even
though it passes the data on to the web browser. If someone refreshes a web browser,
then webgui.c must serve up the image again. WEBGUI only allows 2D images to
have a maximum of 255 colors, therefore each pixel consumes 1 byte in memory.
Storing the palette doesn’t use much memory. If your software displays a 1200 by
800 image (by calling webimagedisplay), then 1200 x 800 = 960,000 pixels were
submitted. Thus this image uses 1 megabyte of memory. If the user viewing the web
browser no longer needs the image, they can click a button labeled Free beneath
the image to free this 1 megabyte of memory in memory space.

47

48 WEBGUI USERS’ GUIDE

5.4 3D Objects
3D objects can require the most use of memory depending on how many polygons
and lines make up the object. Whenever your software calls webline thus sending
a line with multiple vertices, the line is saved in webgui.c ’s memory as separate
line segments. When your software calls webfill thus sending a convex polygon, the
polygon is saved in webgui.c ’s memory as separate triangles. Every line segment
uses 32 bytes of memory and every triangle uses 44 bytes of memory. Therefore if
you send a large 3D object with one million line segments and one million triangles,
then this object will use 75 megabytes of memory. Even though webgui.c sends this
data to the web browser, it keeps a copy of the object in memory in case someone
reloads a web page and a web page needs to receive the object again. At any time, a
user can free this memory by clicking the button labeled Free beneath the displayed
3D object.

Additionally webgui.c uses a large temporary block of memory for a few sec-
onds. Every time webline is called, then 32 more bytes are allocated for each line
segment. Each time webfill is called, 44 bytes are used per triangle. This memory
is allocated as the calls execute. The 3D object isn’t drawn until your software
calls webgldisplay. When this function is called, then webgui.c allocates another
temporary block of memory equal in size to the combined memory usage of all the
stored lines and triangles. For example, if one million lines are submitted and one
million triangles are submitted, then 75 megabytes of memory are allocated. When
webgldisplay is called, another 75 megabytes of memory is allocated (for 150 MB
total). This additional 75 megabytes contains the data in a special format usable
by the GPU on the client’s computer. This 75 MB is then transmitted to the client
and then freed. (Afterward the server is only using the original 75MB) Next, the
web browser of the client’s computer holds the 75 MB of data in memory for one
second and then this data is passed into the client’s GPU and the web browser frees
the 75MB. The entire time that the 3D object is visible on the client’s screen, the
GPU has the 75 MB in its memory and webgui.c has 75 MB in its memory.

These two 75 MB usages of memory are freed when the user clicks Free under
the displayed 3D object, or when another 2D image or 3D object is displayed in
the same display pane. When a new 2D image or 3D object is sent to an already
used display pane, then the data associated with the old image or object is freed
and replaced by the new image or object.

Chapter 6

Example Driver

6.1 Overview
This section contains an example driver written in C, that when compiled and linked
to webgui.c creates a simple program that lets a user draw lines and triangles. By
modifying this example, you can create a program that uses WEBGUI quickly. In
the source code below, it is indicated which variables and functions are general
purpose and which are specific to this application.

After running example.c and opening a web browser, you are presented with
the command buttons shown in Figure 6.1. This figure also shows the drop down
menu for DrawTriangle visible. To draw a triangle, input the coordinates (x1, y1, z1),
(x2, y2, z2), (x3, y3, z3). Input the color as (Red,Green,Blue) where 0 ≤ R,G,B ≤
255. Finally, input the pane and frame.

Figure 6.1. example.c allows a user to draw lines and triangles. This
figure shows the DrawTriangle drop down menu open.

If the ToggleFill button is highlighted then the triangle will be drawn unfilled.
And if the ToggleFill button is not highlighted, the triangle will be filled. Press the
ToggleFill button to toggle it. The rest of the buttons are self explanatory. Figure
6.2 shows the result of drawing 4 unfilled triangles in 3D to create a tetrahedron. The

49

50 WEBGUI USERS’ GUIDE

image shows the tetrahedron after it has been rotated by the user. The 4 vertices are
drawn in frame = 5 and positioned at (0.25, 0.3557, 0.3979), (0.5, 0.7887, 0.3979),
(0.75, 0.3557, 0.3979), (0.5, 0.5, 0.8061). Note that (0.5, 0.5, 0.5) is the center of ro-
tation in frame = 5. In this example, the tetrahedron has edge length 0.5 and is
centered at (0.5, 0.5, 0.5).

Figure 6.2. example.c compiled with webgui.c. Then user draws a skeleton
tetrahedron.

6.2 Example driver source in C
#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<webgui.h>

/* general routines for any program using webgui.c */

void initParameterMap(char* str, int n);

char* extractVal(char* str, char key);

char processCommand(char* str);

void updateParameter(char* str, int index1, int index2);

char arrayGet(char* key);

int ipGet(char* key);

void ipSet(char* key, int value);

double rpGet(char* key);

void rpSet(char* key, double value);

char* spGet(char* key);

6.2. Example driver source in C 51

void spSet(char* key, char* value);

/* general variables */

int ct=0;

char** map_keys;

int* map_indices;

char* map_array;

double *rp_default, *rp;

int *ip_default, *ip;

char *sp_default, *sp;

char buffer[80];

/* program specific routines */

void drawTriangle();

void drawTriangleOutline();

void drawLine(int display);

void drawAllObjects(int pane);

void clearDisplay();

/* program specific variables */

char init[60][80]={

"c c=DrawTriangle,k=t",

"c c=ToggleFill, k=f",

"c c=DrawLine,k=l",

"c c=ClearDisplayPane, k=c",

"c c=ResetParameters, k=r",

"c c=Quit, k=q",

"n n=x1, t=r, i=1, d=0.25",

"n n=y1, t=r, i=2, d=0.25",

"n n=z1, t=r, i=3, d=0.5",

"n n=x2, t=r, i=4, d=0.75",

"n n=y2, t=r, i=5, d=0.25",

"n n=z2, t=r, i=6, d=0.5",

"n n=x3, t=r, i=7, d=0.5",

"n n=y3, t=r, i=8, d=0.75",

"n n=z3, t=r, i=9, d=0.5",

"n n=x4, t=r, i=10, d=0.25",

"n n=y4, t=r, i=11, d=0.5",

"n n=z4, t=r, i=12, d=0.5",

"n n=x5, t=r, i=13, d=0.75",

"n n=y5, t=r, i=14, d=0.5",

"n n=z5, t=r, i=15, d=0.5",

"n n=Red, t=i, i=1, d=0",

"n n=Green, t=i, i=2, d=0",

"n n=Blue, t=i, i=3, d=0",

"n n=frame, t=i, i=4, d=5",

"n n=pane, t=i, i=5, d=0",

"r c=DrawTriangle, n=x1",

52 WEBGUI USERS’ GUIDE

"r c=DrawTriangle, n=y1",

"r c=DrawTriangle, n=z1",

"r c=DrawTriangle, n=x2",

"r c=DrawTriangle, n=y2",

"r c=DrawTriangle, n=z2",

"r c=DrawTriangle, n=x3",

"r c=DrawTriangle, n=y3",

"r c=DrawTriangle, n=z3",

"r c=DrawTriangle, n=Red",

"r c=DrawTriangle, n=Green",

"r c=DrawTriangle, n=Blue",

"r c=DrawTriangle, n=frame",

"r c=DrawTriangle, n=pane",

"r c=DrawLine, n=x4",

"r c=DrawLine, n=y4",

"r c=DrawLine, n=z4",

"r c=DrawLine, n=x5",

"r c=DrawLine, n=y5",

"r c=DrawLine, n=z5",

"r c=DrawLine, n=Red",

"r c=DrawLine, n=Green",

"r c=DrawLine, n=Blue",

"r c=DrawLine, n=frame",

"r c=DrawLine, n=pane",

"r c=ClearDisplayPane, n=pane",

"s n=pane, v=0, l=\"0 top right\"",

"s n=pane, v=1, l=\"1 bottom left\"",

"s n=pane, v=2, l=\"2 bottom right\"",

"s n=frame, v=1, l=\"1 all\"",

"s n=frame, v=2, l=\"2 top right\"",

"s n=frame, v=3, l=\"3 bottom right\"",

"s n=frame, v=4, l=\"4 left\"",

"s n=frame, v=5, l=\"5 rotate\""

};

float triangles[3][1000], lines[3][700];

int indexT[3]={0,0,0}, indexL[3]={0,0,0};

double red[3][200], green[3][200], blue[3][200];

int fill=1;

int main(int argc, char *argv[]){

int i, offset=0;

char cmd, str[80];

initParameterMap((char*)init,60);

webinit((char*)init,60);

websettitle("Sample WEBGUI driver");

while (webstart(15000+offset)<0) offset++;

6.2. Example driver source in C 53

while (1){

webreadline(str);

cmd = processCommand(str);

if (cmd==’t’){

if (fill==1){

drawTriangle();

webwriteline("-Triangle drawn with fill.");

}

else{

drawTriangleOutline();

webwriteline("-Triangle drawn without fill.");

}

}

else if (cmd==’f’){

fill *= -1;

if (fill==1){

webwriteline("-Triangles will be filled.");

webbutton(0,"ToggleFill");

}

else {

webwriteline("-Triangles will not be filled.");

webbutton(1,"ToggleFill");

}

}

else if (cmd==’l’){

drawLine(1);

webwriteline("-Line drawn.");

}

else if (cmd==’c’){

clearDisplay();

webwriteline("-Display pane cleared.");

}

else if (cmd==’r’){

webupdate(ip_default,rp_default,sp_default);

for (i=0;i<ct;i++){

ip[i] = ip_default[i];

rp[i] = rp_default[i];

strcpy(sp+80*i, sp_default+80*i);

}

webwriteline("-Parameters reset.");

}

else if (cmd==’q’){

webwriteline("-Quitting.");

webstop();

return 0;

}

54 WEBGUI USERS’ GUIDE

}

return 0;

}

void initParameterMap(char* str, int n){

/* reads array of strings and initializes ip, rp, sp */

/* and creates a map for accessing ip, rp, and sp */

int i, index=0;

for (i=0; i<n; i++) if (str[80*i]==’n’) ct++;

map_keys = (char**)malloc(ct * sizeof(char*));

map_indices = (int*)malloc(ct * sizeof(int));

map_array = (char*)malloc(ct * sizeof(char));

rp_default = (double*)malloc(ct * sizeof(double));

ip_default = (int*)malloc(ct * sizeof(int));

sp_default = (char*)malloc(ct * sizeof(char*) * 80);

rp = (double*)malloc(ct * sizeof(double));

ip = (int*)malloc(ct * sizeof(int));

sp = (char*)malloc(ct * sizeof(char*) * 80);

for (i=0; i<ct; i++) map_keys[i] = (char*)malloc(20 * sizeof(char));

for (i=0; i<n; i++)

if (str[80*i]==’n’){

strcpy(map_keys[index],extractVal(str+80*i,’n’));

map_indices[index] = atoi(extractVal(str+80*i,’i’))-1;

map_array[index] = *extractVal(str+80*i,’t’);

if (map_array[index]==’r’){

rp_default[map_indices[index]] = atof(extractVal(str+80*i,’d’));

rp[map_indices[index]] = rp_default[map_indices[index]];

}

else if (map_array[index]==’i’){

ip_default[map_indices[index]] = atoi(extractVal(str+80*i,’d’));

ip[map_indices[index]] = ip_default[map_indices[index]];

}

else if (map_array[index]==’s’){

strcpy(sp_default+80*map_indices[index],extractVal(str+80*i,’d’));

strcpy(sp+80*map_indices[index],sp_default+80*map_indices[index]);

}

index++;

}

}

char* extractVal(char* str, char key){

/* returns the value associated with key in str */

buffer[0]=0;

int index1 = 0, index2;

while (index1<strlen(str)){

if (str[index1]==’=’){

if (str[index1-1]==key){

index2 = index1;

6.2. Example driver source in C 55

while (index2<strlen(str) && str[index2]!=’,’) index2++;

strncpy(buffer,str+index1+1,index2-index1-1);

buffer[index2-index1-1]=0;

break;

}

}

index1++;

}

return buffer;

}

char processCommand(char* str){

/* returns command char and updates parameters */

int index1 = 1, index2 = 2;

while (str[index2]!=’ ’){

if (str[index2]==’,’){

updateParameter(str,index1,index2);

index1 = index2;

}

index2++;

}

if (index2>2) updateParameter(str,index1,index2);

return str[0];

}

void updateParameter(char* str, int index1, int index2){

/* parses str between index1 and index2 and updates parameter */

int index3 = index1+1;

while (str[index3]!=’=’) index3++;

str[index2]=0; str[index3]=0;

char ch = arrayGet(str+index1+1);

if (ch==’r’) rpSet(str+index1+1,atof(str+index3+1));

else if (ch==’i’) ipSet(str+index1+1,atoi(str+index3+1));

else if (ch==’s’) spSet(str+index1+1,str+index3+1);

str[index2]=’,’; str[index3]=’=’;

}

char arrayGet(char* key){

/* returns which array (ip, rp, sp) key belongs to */

int i;

char value = ’ ’;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

value = map_array[i];

return value;

}

int ipGet(char* key){

int i, value = 0;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

value = ip[map_indices[i]];

56 WEBGUI USERS’ GUIDE

return value;

}

void ipSet(char* key, int value){

int i;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

ip[map_indices[i]] = value;

return;

}

double rpGet(char* key){

int i;

double value = 0;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

value = rp[map_indices[i]];

return value;

}

void rpSet(char* key, double value){

int i;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

rp[map_indices[i]] = value;

return;

}

char* spGet(char* key){

int i;

buffer[0] = 0;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

strcpy(buffer,sp + 80 * map_indices[i]);

return buffer;

}

void spSet(char* key, char* value){

int i;

for (i=0; i<ct; i++) if (strcmp(map_keys[i],key)==0)

strcpy(sp + 80 * map_indices[i],value);

return;

}

void drawTriangle(){

int i, j;

char str[3], var[3]={’x’,’y’,’z’};

int pane = ipGet("pane");

/* save triangle data locally */

triangles[pane][indexT[pane]*10 + 9] = ipGet("frame");

for (int i=1;i<4;i++)

for (int j=0;j<3;j++){

sprintf(str,"%c%d",var[j],i);

triangles[pane][indexT[pane]*10+3*(i-1)+j] = (float)rpGet(str);

}

red[pane][indexT[pane]] = ipGet("Red")/255.0;

6.2. Example driver source in C 57

green[pane][indexT[pane]] = ipGet("Green")/255.0;

blue[pane][indexT[pane]] = ipGet("Blue")/255.0;

indexT[pane]++;

/* draw all triangles and lines to pane */

drawAllObjects(pane);

}

void drawTriangleOutline(){

int i, j;

double x4=rpGet("x4"), y4=rpGet("y4"), z4=rpGet("z4");

double x5=rpGet("x5"), y5=rpGet("y5"), z5=rpGet("z5");

char str[3], str2[3], var[3]={’x’,’y’,’z’};

for (i=4;i<6;i++)

for (j=0;j<3;j++){

sprintf(str,"%c%d",var[j],i);

sprintf(str2,"%c%d",var[j],i-3);

rpSet(str, rpGet(str2));

}

drawLine(0);

for (i=4;i<6;i++)

for (j=0;j<3;j++){

sprintf(str,"%c%d",var[j],i);

sprintf(str2,"%c%d",var[j],i-2);

rpSet(str, rpGet(str2));

}

drawLine(0);

for (j=0;j<3;j++){

sprintf(str,"%c4",var[j]);

sprintf(str2,"%c1",var[j]);

rpSet(str, rpGet(str2));

}

for (j=0;j<3;j++){

sprintf(str,"%c5",var[j]);

sprintf(str2,"%c3",var[j]);

rpSet(str, rpGet(str2));

}

drawLine(1);

rpSet("x4",x4); rpSet("y4",y4); rpSet("z4",z4);

rpSet("x5",x5); rpSet("y5",y5); rpSet("z5",z5);

}

void drawLine(int display){

int i, j;

char str[3], var[3]={’x’,’y’,’z’};

int pane = ipGet("pane");

/* save line data locally */

lines[pane][indexL[pane]*7 + 6] = ipGet("frame");

for (int i=4;i<6;i++)

58 WEBGUI USERS’ GUIDE

for (int j=0;j<3;j++) {

sprintf(str,"%c%d",var[j],i);

lines[pane][indexL[pane]*7+3*(i-4)+j] = (float)rpGet(str);

}

red[pane][100+indexL[pane]] = ipGet("Red")/255.0;

green[pane][100+indexL[pane]] = ipGet("Green")/255.0;

blue[pane][100+indexL[pane]] = ipGet("Blue")/255.0;

indexL[pane]++;

/* draw all triangles and lines to pane */

if (display==1) drawAllObjects(pane);

}

void drawAllObjects(int pane){

int i, j;

float x[3], y[3], z[3];

websetcolors(200,red[pane],green[pane],blue[pane],pane);

for (i=0;i<indexT[pane];i++){

webframe((int)triangles[pane][i*10+9]);

for (j=0;j<3;j++){

x[j] = triangles[pane][10*i+3*j];

y[j] = triangles[pane][10*i+3*j+1];

z[j] = triangles[pane][10*i+3*j+2];

}

webfillflt(x,y,z,3,i+1);

}

for (i=0;i<indexL[pane];i++){

webframe((int)lines[pane][i*7+6]);

for (j=0;j<2;j++){

x[j] = lines[pane][7*i+3*j];

y[j] = lines[pane][7*i+3*j+1];

z[j] = lines[pane][7*i+3*j+2];

}

weblineflt(x,y,z,2,i+101);

}

webgldisplay(pane);

}

void clearDisplay(){

int pane = ipGet("pane");

indexL[pane]=0;

indexT[pane]=0;

websetcolors(200,red[pane],green[pane],blue[pane],pane);

webgldisplay(pane);

}

6.3 Example driver source in Fortran

Chapter 7

Modifying WEBGUI

7.1 Introduction
This is an advanced section. Most users will never need to read this section. You
do not need to read this section in order to use WEBGUI as a front end for your
software. Everything you need to know about using WEBGUI is contained in
previous sections. Only read this section if you have special needs and would like
to customize or alter WEBGUI ’s normal behavior.

7.2 Overview
WEBGUI is copyrighted by its author. It is ok to modify WEBGUI to your par-
ticular application but please give credit to its author and note your modifications.
This section helps explain how to modify WEBGUI. Since WEBGUI is basically
a web server, modifying WEBGUI requires changing the default index.html file
also. Unlike ordinary web servers where this file is a separate file on the hard drive,
WEBGUI contains this file as data within its C code as an array of strings.

In the distribution of WEBGUI, we provide you with the file index.html as
its own file and this section explains how to modify it and place the contents back
into webgui.c as data. Or alternatively this section shows you how you can run
webgui.c with an external index.html file. Additionally, WEBGUI displays 3 png
images which are contained within the C code as an array of unsigned char.

Also to assist in customizing WEBGUI to your needs, this Chapter explains
three more things; the communication between webgui.c and the web browser, the
private variables and functions of WEBGUI, and how WebGL works in both the
web browser and webgui.c.

7.3 index.html
The main task of WEBGUI is to be the front end for software and must receive input
from the user and display output. WEBGUI accomplishes this by utilizing a web

59

60 WEBGUI USERS’ GUIDE

page in a web browser. It creates a web page by mimicking a web server and then
provides the file index.html to the client’s web browser. On the client’s side, the
file index.html contains instructions to create a web page with buttons to receive
input and display panes to show output. index.html contains JavaScript code to
allow the web page to be interactive and employs AJAX techniques. index.html
also uses HTML, CSS, and WebGL for formatting and display. On the server side,
webgui.c mimics a web server, PHP processing, and a MySQL database. webgui.c
also interacts directly with software during runtime which is written in C or Fortran.

Whenever a web browser requests index.html it is created dynamically and
then communicated as a string of characters. Within webgui.c, the file index.html
is the concatenation of four string variables webpageA, webpageB, webpageC,
and webpageD. Variable webpageA contains the beginning of index.html and
the instructions to create the command buttons and input elements to display and
change parameters. webpageB contains instructions to create drop down menus to
present options for parameters. webpageC contains the overall layout of the web
page and provides all the functionality. webpageC is the majority of index.html
and contains all the JavaScript, CSS, and WebGL. webpageD contains history
information. When you first load index.html, webpageD is mostly blank. If you
reload your browser during your session, then webpageD contains instructions to
recreate the history of your session.

Every time a web browser requests index.html, webpageA is created fresh.
Since webpageA contains input elements to display parameters, webpageA must
be updated at the time of a request to contain the current parameter values. The
portion webpageB is created once when webinit is called and never changed. The
portion webpageC is loaded once when webstart is called and never changed.
Every time a web browser requests index.html, webpageD is created fresh. Since
webpageD contains the session history, webpageD must be updated to contain
the current history. The web browser receives these four strings consecutively and
thinks it is receiving the one file index.html.

If you wish to change the appearance or function of the web page in the web
browser, you must alter index.html. To alter index.html, you must change the
four pieces, webpageA, webpageB, webpageC, and webpageD. To do this, you
must alter the functions that build the pieces. The piece webpageA is created in
the function updatewebpageA within webgui.c. In order for webpageA to cre-
ate command buttons and work with parameters, it references the variables that
contain information about commands and parameters. This information is con-
tained in variables like cmdn, cmda, cmdt and nn, na, nd, etc. These variables
are explained in Section 7.5 below.

The piece webpageB is created in the function webinit. The piece web-
pageC doesn’t need to be created. Instead it is loaded from either the hard drive
or data within webgui.c. The next Section 7.4.1 explains this. Finally, the piece
webpageD is created in the function updatewebpageD. Section 4.5.1 explains
how WEBGUI can be used to display output only and not receive user input.
That version of index.html uses a different webpageD which gets created in the
function updatewebpageD2.

Note that the best way to view index.html is to run webgui.c after linked

7.4. External versus internal 61

to your software and then from your web browser choose ”View Source”. (Google
search ”how to view a web page’s source” if you don’t know how to do this). This
will display the entire index.html. The beginning is webpageA. Following that is
webpageB and webpageC. And the ending is webpageD. As a beginning point
of changing WEBGUI, you could save this file to your hard drive and start changing
this file, reloading it, and seeing the consequence. The best way to save WEBGUI ’s
webpage to a file is explained in Section 4.5.2.

7.4 External versus internal

7.4.1 indexC.html

The portion of index.html called webpageC is contained in the data variable char
indexhtml[x][y] located at the end of webgui.c. This is an array of x strings with
each string having a maximum length of y. These strings are the lines of the file
indexC.html which resides on the hard drive. Since this data is within webgui.c,
the file indexC.html is not needed to run WEBGUI. The file indexC.html is
only helpful if you wish to modify WEBGUI.

If you wish to change the function or appearance of WEBGUI ’s web page,
then you can set the variable load webpageC from file equal to 1. Afterward,
make changes to the file indexC.html, and each time you quit and run webgui.c,
it will load the new updated indexC.html from the hard drive. (You do not need
to recompile webgui.c between trials). Once the web page appears and behaves as
you like, you should place the file indexC.html within webgui.c as data. To do
this, you must convert each line into a string by placing quotation marks around
it. And any quotation marks inside the line must have a backslash added before.
Any backslash needs an additional backslash before it. And care must be taken to
convert the carriage returns correctly. The easiest way to convert indexC.html into
the array of strings char indexhtml[x][y] is to run the program convert2str.c. It
reads in indexC.html and writes the array of strings into output.txt. It also tells
you how many strings there are and the maximum length of these strings. Cut and
paste the contents of output.txt into webgui.c. Next, correct the value of clines
in the function updatewebpageC to match [x], the number of strings. Finally,
set the variable load webpageC from file equal to 0.

As an alternative to moving the contents of the file indexC.html within
webgui.c, you can leave the variable load webpageC from file equal to 1 and
leave the file indexC.html in webgui.c local directory.

7.4.2 png images

WEBGUI ’s web page displays 3 png images. A typical web server would have these
images reside on the hard drive. In the case of webgui.c, these images reside within
the code of webgui.c as data. Specifically, they are the variables unsigned char
folderpng[446], unsigned char uppng[472], and unsigned char filepng[402].
In the web page, these images appear when a user opens the drop down menu to
select a file as shown in Figure 7.1.

62 WEBGUI USERS’ GUIDE

Figure 7.1. User is selecting a file. Down the left side are png images.
This figure shows WEBGUI interfaced with PLTMG.

In Figure 7.1, the three png images named up.png, folder.png, file.png are
shown to the left of the blue words. These 3 files are provided with the distribution
of webgui.c as external files. As explained above, they are not needed to run
webgui.c because their data is within webgui.c. These external files are provided
in case a user wishes to modify these images and/or make new ones.

If you wish to change the function or appearance of WEBGUI ’s png images,
then you can set the variable load pngs from file equal to 1. Afterward, make
changes to the files up.png, folder.png, file.png, and each time you quit and run
webgui.c, it will load the new updated files from the hard drive. (You do not need
to recompile webgui.c between trials). Once the web page appears as you like, you
should place the files within webgui.c as data. A png image file is just a sequence
of byes (unsigned char). Therefore to place the data within webgui.c, just write
these bytes as numbers in the declaration of the appropriate variable.

The easiest way to convert up.png, folder.png, file.png into an array of
unsigned char is to run the program convert2int.c. It reads in the png files and
writes an array of unsigned char into output.txt. The usage for convert2int.c is
convert2int source file. After running convert2int.c, cut and paste the contents
of output.txt into webgui.c. Finally, set the variable load pngs from file equal
to 0.

As an alternative to moving the contents of up.png, folder.png, file.png
within webgui.c, you can leave the variable load pngs from file equal to 1 and
leave the files up.png, folder.png, file.png in webgui.c local directory.

7.5. Internal variables 63

7.5 Internal variables
webgui.c has many internal variables and functions. In this section, we will high-
light the variables that may be of interest to the reader wishing to modify WEBGUI.
Important functions are highlighted in other sections when they are relevant.

When software uses webgui.c, the first function that is called is webinit.
This function is explained in Section 2.3.4 and Section 3.2. The purpose of calling
webinit is to add features to WEBGUI ’s web page. Calling webinit can create
command buttons and declare parameters. Declared parameters can be viewed and
modified in the web page.

When webgui.c creates the web page, it references the declared parameters
and requested command buttons. Information about commands and parameters
are stored in the following variables

static int cmdct, nct;

static const int maxnamelen=20, maxabbrlen=3, maxdeftlen=40;

static char **cmdn, **cmda, **cmdt;

static char **nn, **na, **nd, *nt;

static int **cmdp, *cmdpct, *cmdc;

static int *no, *nu, *nw, *ni;

The above variables get initialized within the function call to webinit. All
the variables that begin with the letter c reference commands and all variables that
begin with n reference parameters. Below are descriptions.
const int maxnamelen=20, maxabbrlen=3, maxdeftlen=40 is the length of
strings for name, abbreviation, and default values.
int cmdct is the quantity of commands.
char** cmdn is an array of strings equivalent to char cmdn[cmdct][maxnamelen]
containing the full command names.
char** cmda is an array of strings equivalent to char cmda[cmdct][maxabbrlen]
containing the abbreviated command names.
char** cmdt is an array of strings equivalent to char cmdt[cmdct][maxnamelen]
containing the command types. Currently this variable is initialized but unused.
int* cmdpct is an array equivalent to int cmdpct[cmdct] containing the quan-
tities of parameters associated with each command.
int** cmdp is an array equivalent to int cmdp[cmdct][nct] containing the indices
of the parameters associated with each command. Note that nct minus cmdpct
elements are unused for each cmdp[cmdct].
int* cmdc is an array equivalent to int cmdc[cmdct] containing 1 or -1 whether
the respective command button is highlighted or not.
int nct is the quantity of parameters.
char** nn is an array of strings equivalent to char nn[nct][maxnamelen] con-
taining the full parameter names.
char** na is an array of strings equivalent to char na[nct][maxabbrlen] con-
taining the abbreviated parameter names.
char** nd is an array of strings equivalent to char nd[nct][maxdeftlen] con-
taining the default parameter values. Note that integer and real default values are

64 WEBGUI USERS’ GUIDE

stored as strings.
char* nt is an array of chars equivalent to char nt[nct] containing the parameter
types (either i, r, s, l, or f).
int* ni is an array equivalent to int ni[nct] containing each parameter’s index into
their respective type’s array.
int* no is an array equivalent to int no[nct] containing 1 or 0 whether the respec-
tive parameter has an options list.
int* nu is an array equivalent to int nu[nct] containing 1 or 0 whether the respec-
tive parameter is special. Ignore this variable. Most likely your software will not
use it.
int* nw is an array equivalent to int nw[nct] containing 1 or 0 whether the re-
spective parameter is associated with a command or not.

Other important variables are

static const int maxlines = 100, maxhistory=100;

static int indexA = 0, indexB = 0;

static char *bufferA, *bufferB; //maintained as Fortran strings (space padded)

static char **history; //maintained as C strings (null terminated)

static char *webpageA, *webpageB, *webpageC, *webpageD;

static int load_webpageC_from_file = 1;

static int load_pngs_from_file = 1;

static float **colorsGL[3]={NULL,NULL,NULL};

static int ncolorGL[3]={0,0,0};

static float **triangles[3]={NULL,NULL,NULL};

static float **lines[3]={NULL,NULL,NULL};

static int indexT[3]={0,0,0}, indexL[3]={0,0,0};

static char *databuffer=NULL;

The top group are explained in Section 7.6 below. The middle group are
explained in Section 7.3 above. The bottom group are explained in Section 7.8
below.

7.6 Buffers and communication

7.6.1 Overview

The purpose of WEBGUI is to provide a front end for software. On behalf of
software, WEBGUI receives input and displays output. All input is in the form
of command strings of maximum length 80. Output takes three forms. Output
is either text, 2D images, or 3D objects. Output text is in the form of a string
of maximum length 80. This section discusses input and output strings and their
communication. The following Sections 7.7 and 7.8 discuss the output of 2D images
and 3D objects.

7.6. Buffers and communication 65

When a command button is pressed in the web browser of WEBGUI, the
web page creates a command string and transmits it to webgui.c. This command
string waits in a command string buffer until the software requests it with a call to
webreadline. Software outputs text by calling webwriteline(char* str). The
outputted string waits in an output string buffer until the web page requests it
with an AJAX call. Therefore to facilitate input and output, buffers need to be
maintained and strings need to be transmitted between webgui.c (the web server)
and the web page.

Software talks to webgui.c (directly via calls to webreadline and web-
writeline), and webgui.c (the web server) talks to the web browser (via sock-
ets and AJAX). All communication between a web browser and a web server
(webgui.c) must be initiated by the web browser. And, all a web browser knows
to do is request a URL. Whenever the web browser has a command string to
pass on to the web server, the browser makes an AJAX request to the URL =
http://localhost:15000/writeline.php?cmd=’STR’ where STR is replaced by the
command string of maximum length 80. And localhost:15000 is replaced by the
host’s ip address and listening port. In order for the web browser to receive output
text from the web server, it continually asks if any text is available by making an
AJAX request every half second to URL = http://localhost:15000/readline.php .
Each time, the web server responds with either an empty string, or a string of length
80. Every string that the web browser receives from readline.php, is displayed in
the output text display pane with an appended html carriage return (
).

static const int maxlines = 100, maxhistory=100;

static int indexA = 0, indexB = 0;

static char *bufferA, *bufferB; //maintained as Fortran strings (space padded)

static char **history; //maintained as C strings (null terminated)

Above are internal variables within webgui.c. Buffer B contains outputted
text from the software. And buffer A contains command strings from the web
browser. Each buffer is an array of strings equivalent to char buffer[maxlines][80].
The variables indexA and indexB track how many strings are in each queue. The
software reads strings from bufferA and afterward they are removed from the queue.
The web browser reads strings from bufferB and afterward they are removed from
the queue. A record of all strings is maintained in a third array of strings named
char history[maxhistory][90]. This is required in case the user refreshes the web
browser. If the web browser is reloaded and a new index.html is requested, then
the web server must write the history of all previous commands and outputted text
in the web page’s output text display pane.

7.6.2 Communication protocall

The web browser and webgui.c (web server) pass strings back and forth. Every
time a user clicks a command button, the web browser sends a command string
to the web server. Whenever a user closes a parameter drop down menu after
changing a parameter, the web browser sends a special capital letter command

66 WEBGUI USERS’ GUIDE

string (explained in Section 3.2.2.) Every time software has text to output, it calls
webwriteline and the outputted string gets transmitted to the web browser.

In addition to the above three uses of strings, sometimes the web server needs
to give the web browser special instructions. And sometimes the web browser needs
to give the web server special instructions. Whenever the web server needs to give
the web browser a special instruction, it places a number sign before the string.
Below is an example.

#update,a=2,b=3.5,c=1

Normally, the web browser assumes a received string is output text and displays
it in the output text display pane. Whenever the web browser sees a string that
begins with a number sign, it doesn’t display it. Instead it interprets it as a spe-
cial instruction. The web page’s JavaScript function processcmd(str) (found in
indexC.html) processes all special instructions. The example above instructs the
web browser to update (change) the value of parameters a, b, c to 2, 3.5, and 1 re-
spectively. Other special instructions are image, webgl2, button, pause, start,
unhide, lock, update, files. The first two, instruct the web browser to request
a waiting 2D image or 3D object. The next two highlight a command button and
ask the user to click a continue button. The last one, lists files on the web server’s
hard drive.

The web browser assumes that each received string is length 80. If a special
instruction requires a longer string, it prefaces a string with a number sign followed
by a number to indicate the number of length 80s it requires. For example

#3#update,key1=value1,key2=value2,etc

The above example tells the web browser to expect that a string of length 240 =
80 × 3 is to follow.

Whenever the web browser needs to give the web server a special instruction, it
uses AJAX to contact the URL = http:// localhost:15000/callfunct.php?CMD=VAR
where CMD is replaced with the desired special instruction and VAR is replaced
with the special instruction’s variable(s). Within webgui.c, special instructions
are processed within the routine void *startlisten(void *arg). The special func-
tions that are currently implemented are continue, listfiles, release, updateall,
push, query, firewall, endian.

7.7 2D Images
When software has an 2D image to output, it calls websetcolors and webim-
agedisplay. Afterward, webgui.c notifies the web browser by sending a special
instruction string

#image,WIDTH,HEIGHT,PANE

where WIDTH and HEIGHT are replaced by the image’s width and height. And
PANE is replaced by the desired display pane. Next, the web browser requests the
image by requesting the resource figure0.bmp, figure1.bmp, or figure2.bmp
from the web server in a normal web browser - web server image request.

7.8. 3D Objects (WebGL) 67

7.8 3D Objects (WebGL)
When software has an 3D object to output, it calls websetcolors, webframe,
webline, webfill, webgldisplay. Afterward, webgui.c notifies the web browser
by sending a special instruction string

#webgl2,PANE

where PANE is replaced by the desired display pane. Next, the web browser requests
the 3D object by requesting the resource data0.gpu, data1.gpu, or data2.gpu
from the web server in a normal web browser - web server file request.

The ”file” dataX.gpu is a binary data block. This block of memory is cre-
ated in webgui.c’s function int updatedatabuffer3(int x, int endian), then
transmitted, then the memory is freed. This ”file” can be thought of as a sequence
of numbers further divided into 3 sections; header, vertices, colors.

The first 80 bytes of dataX.gpu is the header which indicates the layout and
length of the next two sections (vertices and colors). The header is a sequence of 20
integers (4 bytes each). The first integer is the number of triangles to draw in frame
5. The next integer is the number of lines to draw in frame 5. The next 3 thru
10 integers are the number of triangles then lines for frames 3, 2, 4, 1 respectively.
Integers 11 thru 20 are the numbers of triangles and lines declaring color information
for frames 5, 3, 2, 4, 1 respectively.

Following the 20 integers (header section) is a sequence of 4 byte single pre-
cision floating point numbers. First come all the coordinates of the vertices for
describing the triangles for frame 5. Each triangle is described by a sequence of 9
floating point numbers (x1, y1, z1), (x2, y2, z2), (x3, y3, z3). Note that 1 triangle is
3 vertices is 9 coordinates. Next come the coordinates of the vertices describing the
lines for frame 5. Each line is described by a sequence of 6 floating point numbers,
(x1, y1, z1), (x2, y2, z2). Then triangles for frame 3, then lines frame 3, etc. Then
frame 2, 4, 1.

Following the many coordinate floating point numbers (vertices section) is
a sequence of 1 byte unsigned chars. Each vertex has its own color and col-
ors are 3 bytes, one unsigned char for each red, green, blue. Thus, if there are
10 triangles for frame 5 that require color declaration, then 90 unsigned chars
are needed to describe the associated colors. For example, a triangle’s coordi-
nates are 36 bytes as 9 floating point numbers, (x1, y1, z1), (x2, y2, z2), (x3, y3, z3)
and if that triangle declares colors then 9 bytes are needed as 9 unsigned chars,
(R1, G1, B1), (R2, G2, B2), (R3, G3, B3).

Therefore if data[0] is the first integer in dataX.gpu and data[1] is the sec-
ond integer, then the size of dataX.gpu in bytes equals the sum of the sizes of its
three sections, (header) + (vertices) + (colors) which equals(

80

)
+

(
36

4∑
k=0

data[2k]+24

4∑
k=0

data[2k+1]

)
+

(
9

9∑
k=5

data[2k]+6

9∑
k=5

data[2k+1]

)
.

This block of data is communicated to the web browser from the web server. Then
the web browser transmits this block of data (unaltered) into the client’s GPU to
display as WebGL.

68 WEBGUI USERS’ GUIDE

For a given frame, usually the number of objects that declare colors (in colors
section) is the same as the number of objects to be drawn (in vertices section) as
in data[k] = data[k+ 10] for 0 ≤ k ≤ 9. However, whenever all line colors are black
for a particular frame then the associated data[2k + 1] for 5 ≤ k ≤ 9 will equal 0
and the web browser and GPU know how to deal with that. (This saves bandwidth
and memory.)

7.8.1 Internal variables

The ”file” dataX.gpu only exists in webgui.c’s memory for a few seconds. When
the software requests to display a 3D object by calling webgldisplay, this tem-
porary ”file” is created in the variable char *databuffer, transmitted to the web
browser, and then the memory is freed. This procedure is explained in Section 5.4.

The permanent storage of a 3D object is stored in the following internal we-
bgui.c variables:

static float **colorsGL[3]={NULL,NULL,NULL};

static int ncolorGL[3]={0,0,0};

static float **triangles[3]={NULL,NULL,NULL};

static float **lines[3]={NULL,NULL,NULL};

static int indexT[3]={0,0,0}, indexL[3]={0,0,0};

Each time software calls webline, a new entry is added to float **lines[3].
In this triple array, lines[0], lines[1], lines[2] are the lines for display panes 0,
1, 2 respectively. For display pane 0, lines[0] is equivalent to lines[indexL[0]][8]
where indexL[0] is the quantity of lines in display pane 0. Each line is represented
by 8 floating point numbers. The first 6 are the 6 coordinates of the 2 line segment
endpoints, (x0, y0, z0) and (x1, y1, z1). The 7th float is the color (as an index
reference to the color palette) and the 8th is the frame the line belongs to.

Each time software calls webfill, a new entry is added to float **triangles[3].
In this triple array, triangles[0], triangles[1], triangles[2] are the triangles for
display panes 0, 1, 2 respectively. For display pane 0, triangles[0] is equivalent to
triangles[indexT[0]][11] where indexT[0] is the quantity of triangles in display
pane 0. Each triangle is represented by 11 floating point numbers. The first 9 are
the 9 coordinates of the 3 triangle vertices, (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2).
The 10th float is the color (as an index reference to the color palette) and the 11th
is the frame the triangle belongs to.

The color palette is stored in the variables float **colorsGL[3] and int ncol-
orGL[3]. The color palette for display pane 0 is stored in the variable colorsGL[0]
and is equivalent to colorsGL[ncolorGL[0]][3]. The variable ncolorGL[0] is the
quantity of colors in the palette of display pane 0, and each color is stored as 3
floating point numbers referring to the quantities of red, green, blue pigment.

	Preface
	Introduction
	Description
	Overview
	Installation

	WebGUI API
	Overview
	Compiling and linking
	Basic control
	webstart
	webwriteline
	webreadline
	webinit
	webupdate
	websettitle
	webstop

	2D Image display
	websetcolors
	webimagedisplay

	3D Object display
	websetcolors
	webframe
	weblineflt
	webfillflt
	weblinedbl
	webfilldbl
	webgldisplay

	Miscellaneous
	webquery
	webbutton
	webpause
	websetmode

	GUI Command Buttons and Parameters
	Introduction
	Calling webinit
	Command buttons
	Parameters
	Associate parameters with commands
	Options for parameters

	GUI Features
	Basic layout
	Display panes
	Quaternion rotation
	Control keys
	Miscelleanous
	Display without controls
	Save and view webpage offline

	WEBGUI Memory Usage
	Overview
	Basic
	2D Images
	3D Objects

	Example Driver
	Overview
	Example driver source in C
	Example driver source in Fortran

	Modifying WEBGUI
	Introduction
	Overview
	index.html
	External versus internal
	indexC.html
	png images

	Internal variables
	Buffers and communication
	Overview
	Communication protocall

	2D Images
	3D Objects (WebGL)
	Internal variables

