
User’s Guide for SNCTRL

Philip E. Gill∗ Elizabeth Wong†

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

July 30, 2015

Abstract
SNCTRL is an optimal control interface for the software package SNOPT, writ-

ten in Fortran 2003 and built and tested on version 7.5-2 of SNOPT. The optimal
control problems are solved by discretizing and transforming the problem into a finite-
dimensional nonlinear program (NLP). Several methods exist for discretizing the prob-
lem including single shooting, multiple shooting and collocation; SNCTRL implements
a collocation method. Once the problem has been discretized, SNCTRL sets up the
NLP and the required data structures for SNOPT.

Keywords: optimal control problem, discretization by collocation, large-scale non-
linear programming, nonlinear constraints, SQP methods, Fortran software.

1. Introduction

The goal of an optimal control problem is to determine the optimal set of control variables
that minimizes an objective function and, at the same time, satisfies a set of ordinary
differential equations defining the dynamics of the system.

SNCTRL is an optimal control interface for the software package SNOPT [3], written in
Fortran 2003 and built and tested on version 7.5-2 of SNOPT. The optimal control problems
are solved by discretizing and transforming the problem into a finite-dimensional nonlinear
program (NLP). Several methods exist for discretizing the problem including single shooting,
multiple shooting and collocation; SNCTRL implements a collocation method [1]. Once the
problem has been discretized, SNCTRL sets up the NLP and the required data structures
for SNOPT.

Problems are assumed to be of the form

minimize
y,u,p

J(y(tf ), u(tf ), p)

subject to ẏ = F (y(t), u(t), p)

Clow ≤ C(y(t), u(t), p) ≤ Cupp

y0low ≤ y(t0) ≤ y0upp, yflow ≤ y(tf ) ≤ yfupp
ylow ≤ y(t) ≤ yupp, ulow ≤ u(t) ≤ uupp, plow ≤ p ≤ pupp

where y(t) is an nY-vector of state variables, u(t) is an nU-vector of control variables and p is
an nP-vector of time-independent parameters. F is an nY-vector of functions known as the
state equations. C is an nC-vector of algebraic constraints and Clow and Cupp are the lower
and upper bounds of the constraints. Initial and final conditions on the state variables are
given by the vectors y0low, y0upp, yflow, and yfupp. Bounds on the state and control variables
and the parameters are given by ylow, yupp, ulow, uupp, plow, and pupp.

∗pgill@ucsd.edu (http://www.ccom.ucsd.edu/~peg)
†elwong@math.ucsd.edu (http://www.ccom.ucsd.edu/~elwong)



1. Introduction 2

1.1. Differential equations

SNCTRL discretizes the control problem using a collocation method. The solution of the
control problem is approximated via a collocation formula defined on a grid over the interval
[t0, tf ].

The system of ordinary differential equations (ODEs) is given by

ẏ(t) =
dy

dt
= F (y(t), u(t), p), t ∈ [t0, tf ] (1.1)

where y(t) is an nY-vector of state variables, u(t) is an nU-vector of control variables and p
is an nP-vector of time-independent parameters. F is an nY-vector of functions known as
the state equations.

The interval [t0, tf ] is divided into N subintervals [tk−1, tk] of length h, where tk =
tk−1 + hk for k = 1, . . . , N and tN = tf . At each of these points tk, a quadrature formula is
used to approximate the state and control variables using either the Trapezoid rule or the
Hermite-Simpson rule, both described below.

For ease of notation, we use the subscript k to denote the value of a variable at t = tk,
e.g., yk = y(tk).

1.1.1. Trapezoid method

For the Trapezoid method, the quadrature formula is given by

− yk+1 + yk +
h

2
(F (yk, uk, p) + F (yk+1, uk+1, p)) = 0, k = 0, . . . , N− 1. (1.2)

These equations approximate the values of the state variables at each collocation point tk
for k = 0, . . . , N − 1, creating N × nY equality constraints for the nonlinear program input
to SNOPT. The total number of discretized state and control variables for the nonlinear
program is (N + 1)× (nY + nU).

1.1.2. Hermite-Simpson method

The quadrature formula for the Hermite-Simpson method is Simpson’s rule, defined as

− yk+1 + yk +
h

6
(F (yk, uk, p) + 4F (yk2, uk2, p) + F (yk+1, uk+1, p)) = 0 (1.3)

for k = 0, . . . , N− 1 where tk2 = 1
2 (tk + tk+1).

Since the quadrature formulas require the values of the state and control variables at
the midpoints tk2, additional equations are required to interpolate the states and controls.
Hermite interpolation is used for the state variables so that

yk2 = 1
2 (yk + yk+1) +

h

8
(F (yk, uk, p)− F (yk+1, uk+1, p)),

while controls are interpolated using a simple midpoint rule

uk2 =
1

2
(uk + uk+1).

The quadrature formula defines N× nY equality constraints with an additional N× (nU+ nY)
equality constraints interpolating the variables at the midpoints. The total number of
discretized state and control variables is (2N+ 1)× (nY+nU) for the nonlinear program with
the number of collocation points equal to 2N + 1.



1. Introduction 3

1.2. Objective function

The objective function J(y(tf ), u(tf ), p) in the control problems for SNCTRL may be defined
in Lagrange form or in Mayer form. In Lagrange form, the objective function is given by

J(y(tf ), u(tf ), p) =

∫ tf

t0

ϕ(y(t), u(t), p) dt,

for some function ϕ. An extra state variable yj is defined to represent the objective, i.e.,

ẏj(t) = ϕ(y(t), u(t), p),

which implies J(y(tf ), u(tf ), p) = yj(tf ). The user must indicate to SNCTRL that the jth
state variable represents the objective function.

In Mayer form, an extra control variable and an algebraic constraint are needed to
represent the objective function. Let uj denote the extra control variable. Then define an
algebraic equality constraint

uj(t)− J(y(t), u(t), p) = 0.

The user again must indicate to SNCTRL that the jth control variable represents the ob-
jective, i.e., J(y(tf ), u(tf ), p) = uj(tf ).

In both cases, appropriate bounds and initial conditions need to be set for the extra
variable representing the objective function. Examples of both formats are available in
Section 7.

1.3. Bounds and algebraic constraints

The control problem may contain simple bounds on the state variables, control variables
and parameters as well as initial and terminal conditions on the state variables. General
bounds may be specified in the form

ylow ≤ y(t) ≤ yupp, ulow ≤ u(t) ≤ uupp and plow ≤ p ≤ pupp. (1.4)

In addition, the user may specify initial and terminal conditions on the state variables and
initial values for the parameters

y0low ≤ y(t0) ≤ y0upp, yflow ≤ y(tf ) ≤ yfupp and p = pinit. (1.5)

In the nonlinear program input to SNOPT, the discretized state and control variables yk
and uk must satisfy the bounds of the continuous problem, i.e., for k = 0, . . . , N, yk and uk
must satisfy

ylow(tk) ≤ yk ≤ yupp(tk) and ulow(tk) ≤ uk ≤ uupp(tk)

and the initial and terminal conditions

y0low ≤ y(t0) ≤ y0upp and yflow ≤ y(tf ) ≤ yfupp.

Additionally, the user may define algebraic constraints of the form

Clow ≤ C(y(t), u(t), p) ≤ Cupp, t ∈ [t0, tf ] (1.6)

where C is an nC-vector of algebraic constraints and Clow and Cupp are the lower and upper
bounds of the constraints. If these constraints exist, then the discretized variables and
parameters must also satisfy them in the discretized problem, i.e.,

Clow ≤ C(yk, uk, p) ≤ Cupp

for k = 0, . . . , N, creating (N + 1)× nC constraints for the NLP.



1. Introduction 4

1.4. Features

• Various input problem formats

• Matlab interface

• Adaptive refinement

• Support for multiple-phase problems

• Differentiation of linear equations

1.4.1. Problem Formats

There are three versions of SNCTRL allowing users to specify certain problem data in dif-
ferent formats. The versions are snctrlA, snctrlD and snctrlS. The most important
differences lie in the format of the subroutines evaluating functions and derivatives and in
the structures storing the Jacobian matrices of the state equations and algebraic constraints
(if they exist).

The “A” version is the simplest version and is recommended for new users. Jacobian
matrices defined by the user are stored in a two-dimensional array. The “D” version is
similar to the “A” version but requires a more efficient coding of the subroutines evaluating
the functions and derivatives. The ”S” version requires Jacobian matrices to be stored in
sparse structures by columns.

A more thorough description is available in Section 2.

1.4.2. Matlab Interface

Matlab m-files and a Fortran mex-file are included in the package for snctrlD, the dense
version of snctrl. Relevant files (in particular, a README file) are located in the direc-
tories matlab and mex in the top directory containing SNCTRL. Matlab scripts for seven
examples are also included.

1.4.3. Adaptive Refinement

When adaptive refinement option is turned on, SNCTRL will solve the control problem using
the Trapezoid rule and re-solve the problem on a finer grid using the previous solution as a
starting point.

Collocation points or nodes are added at the midpoints of [tk, tk+1] for k = 0, . . . , N−1 if
‖yk+1−z‖ > τ , where τ is the refinement tolerance and z is a vector of the values of the state
variables approximated by Simpson’s rule (Hermite-Simpson method) at tk+1. The interface
will attempt to solve the problem until no new nodes are added or until a user-defined limit
has been reached. For more details on adaptive refinement (see Section 6.6).

1.4.4. Phases

SNCTRL suppports optimal control problems with multiple phases. If there are k phases,
then [t0, tf ] = [t0, t1) ∪ [t1, t2) ∪ . . . ∪ [tk−1, tf ]. Each phase can have a different number of
intervals as well as different state equations, algebraic constraints, initial conditions, and
bounds. Continuity of the state variables is assumed at the end of one phase and at the
start of the next. The objective in multiple-phase problems is a function of state or control
variables at the end point of each phase.



1. Introduction 5

t0 t1

Phase 1 Phase 2

t2

Phase 3

ẏ = F 1(y, u, p)

C1
low ≤ C1(y, u, p) ≤ C1

upp

ẏ = F 2(y, u, p)

C2
low ≤ C2(y, u, p) ≤ C2

upp

ẏ = F 3(y, u, p)

C3
low ≤ C3(y, u, p) ≤ C3

upp

tf

Figure 1: An example of a problem with multiple phases.

1.4.5. Linear Equations

SNCTRL tries to take full advantage of the features in SNOPT. Of note is the distinction
between linear and nonlinear constraints. As a result, SNCTRL tries to exploit this feaeture
by allowing the user to specify whether state equations and algebraic constraints are linear
or nonlinear with respect to the states, controls and parameters (see Section 1.5).



1. Introduction 6

1.5. ctProb Type

The control package is comprised of the Fortran modules snctrl, which contains the type
definition of ctProb, a structure that the user must utilize to pass problem data into the
interface.

type ctProb

character(8) :: probName

integer(ip) :: nY, nU, nP, nC, nPhs

integer(ip), pointer :: ytype(:,:), ctype(:,:), objL(:), npInt(:)

real(rp), pointer :: phsPt(:)

integer(ip), pointer :: neJ(:), neG(:)

end type ctProb

Type components:

All values should be specified by the user in the main program. Arrays in the ctProb type
must be allocated by the user and must have the correct dimensions.

probName is a 8-character name for the problem. probName is used in the printed solution.
A blank name may be used.

nY, nU, nP, nC, nPhs are integers specifying the number of states, controls, parameters,
algebraic constraints and phases.

ytype(:,:),ctype(:,:) are pointers to two-dimensional integer arrays specifying the non-
linearity or linearity of the state equations and algebraic constraints in each phase.
Linearity should be indicated with a value of 1, while nonlinearity is indicated by
0. If these arrays are not allocated, then all equations are assumed to be nonlinear.
ytype should be of size nY by nPhs, while ctype should be of size nC by nPhs. For
example, if ytype(2, 1) = 1, then the second state equation in the first phase is
linear.

objL(:) should point to an integer array of size nPhs specifying the location of the objective
in each phase. If 1 ≤ objL(i) ≤ nY, then the objective is one of the state variables.
If nY+1 ≤ objL(i) < nY+nU, then the objective is one of the control variables. If
nY+nU+1 ≤ objL(i) < nY+nU+nP, then the objective is one of the parameters.

npInt(:) is a pointer to an integer array allocated by the user with dimension nPhs. This
array specifies the number of subintervals in each phase.

phsPt(:) is a pointer to a real array allocated by the user with dimension nPhs + 1. This
array specifies the start and end points of each phase.

The components nPhs, npInt(:) and phsPt(:) are best described with an ex-
ample.

Suppose the optimal control problem is to be solved in a single phase on the interval
[0, 1] with 10 subintervals. The relevant components of the ctProb structure need
to be set as follows:

nPhs = 1

npInt(1) = 10

phsPt(1) = 0d+0

phsPt(2) = 1d+0



1. Introduction 7

For multiple phases, we specify the same data for each phase. Consider a two-
phase problem with the interval [0, 1]. The interval is split into two pieces, [0, 0.4]
and [0.4, 1.0] with 6 subintervals in the first phase and 4 subintervals in the second.
The relevant components of the ctProb structure need to be set as follows:

nPhs = 2

npInt(1) = 6

npInt(2) = 4

phsPt(1) = 0d+0

phsPt(2) = 0.4d+0

phsPt(3) = 1d+0

neJ(:) is a pointer to an integer array of size nPhs and should be allocated and defined if
the sparse version of the interface is being used. The array specifies the number
of elements in the Jacobian matrix for the state equations in a particular phase.

neG(:) points to an integer array of size nPhs and should be allocated and defined if the
sparse version of the interface is being used and if algebraic constraints exist in
the problem. Similar to neJ(:), the array specifies the number of elements in the
Jacobian matrix for the algebraic constraint in a particular phase.

y1(t0) y1(t1) . . . y1(tf )
...

...
...

ynY (t0) ynY (t1) . . . ynY (tf )
u1(t0) u1(t1) . . . u1(tf )

...
...

...
u1(t0) unU (t1) . . . unU (tf )

y1(t0) y1(t1,2) y1(t1) . . . y1(tf )
...

...
...

ynY (t0) ynY (t1,2) ynY (t1) . . . ynY (tf )
u1(t0) u1(t1,2) u1(t1) . . . u1(tf )

...
...

...
u1(t0) unU (t1,2) unU (t1) . . . unU (tf )

Table 1: Layout of discretized variables in the TR(top) and HS(bottom) method



1. Introduction 8

1.6. Subroutine sncInit

The module snctrl contains all of the subroutines associated with the control interface
available to the user. The first subroutine that the user needs to call is sncInit. It must be
called before any other snctrl routine. The routine defines the Print and Summary files,
prints a title on both files, and sets all user options to be undefined.

subroutine sncInit &

( iPrint, iSumm, prob, cw, lencw, iw, leniw, rw, lenrw )

intent(ip), intent(in) :: iPrint, iSumm, lencw, leniw, lenrw

intent(ip), intent(inout) :: iw(leniw)

real(rp), intent(inout) :: rw(lenrw)

character(8), intent(inout) :: cw(lencw)

type(ctProb), target : prob

On entry:

iPrint defines a unit number for the Print file. Typically iPrint = 9.

On some systems, the file may need to be opened before snInit is called.
If iPrint ≤ 0, there will be no Print file output.

iSumm defines a unit number for the Summary file. Typically iSumm = 6.
(In an interactive environment, this usually denotes the screen.)

On some systems, the file may need to be opened before snInit is called.
If iSumm ≤ 0, there will be no Summary file output.

cw(lencw), iw(leniw), rw(lenrw) must be the same arrays that are passed to other
snctrl routines. lencw, leniw, lenrw must all be at least 500.

On exit:

Some elements of cw, iw, rw are given values to indicate that most optional parameters are
undefined. Elements of prob are initialized to default values.



2. SNCTRL Interfaces 9

2. SNCTRL Interfaces

SNCTRL contains three interfaces that allow the user-defined subroutines specifying vari-
able bounds (varbds) and the subroutines that evaluate the state equations (odecon) and
algebraic constraints (algcon), as well as their Jacobians, to be defined in different formats.

The snctrlA interface is the easiest to use. The user can specify bounds at the starting
and ending points of a phase and general bounds at inner points (see Section 3.2).

State equations and algebraic constraints as well as their Jacobian matrices only need
to be evaluated at one given point (see Sections 3.3, 3.4).

In the snctrlD and snctrlS interfaces, the user has more control over variable bounds.
Different bounds can be specifed on any of the discretized variables at any point (see Sections
4.2,5.2).

State equations, algebraic constraints and Jacobian matrices need to be evaluated at all
points in a given phase. For snctrlD, the Jacobian matrices are assumed to be in dense
form and are stored in a two dimensional array (see Section 4.3). For snctrlS, the user
must store the matrices by columns in sparse structures (see Section 5.3).

All three interfaces have the same parameter list (see Section 2.2). The differences lie in
the user-defined subroutines varbds, odecon, and algcon.

A typical invocation is

call sncInit( iPrint, iSumm, prob, ... )

call sncSpec( ... )

call snctrlX( Start, prob, ... )

with a structure of type ctProb defined and initialized before the call to snctrl.

2.1. Subroutines associated with snctrl

snctrl is accessed via the following structures and subroutines:

ctProb (Section 1.5) is a type definition in the module control used to supply problem
data to the interface.

sncInit (Section 1.6) must be called before any calls to other snctrl routines.

sncSpec (Section 6.3) may be called to input a Specs file (a list of run-time options).

sncSet, sncSeti, sncSetr (Section 6.4) may be called to specify a single option.

sncGet, sncGetc, sncGeti, sncGetr (Section 6.5) may be called to obtain an option’s
current value.

snctrlA, snctrlD, snctrlS (Section 2.2) are the main solvers.

varbds, odecon, algcon are all of the subroutines that the user needs to define. These
subroutines differ depending on which interface is used.

2.2. Subroutine snctrl

This is the main solver for the optimal control problem. The subroutine described here
applies to all three interfaces (just replace snctrl with snctrlS, snctrlD, or snctrlA).

subroutine snctrl ( Start, prob, x, hs, odecon, algcon, varbds, &

INFO, mincw, miniw, minrw, nS, nInf, sInf, &



2. SNCTRL Interfaces 10

cu, lencu, iu, leniu, ru, lenru, &

cw, lencw, iw, leniw, rw, lenrw )

integer(ip), intent(in) :: Start, lencu, leniu, lenru, lencw, leniw, lenrw

integer(ip), intent(inout) :: nS, nInf, iu(leniu), iw(leniw)

real(rp), intent(inout) :: sInf, rw(lenrw), ru(lenru)

character(8),intent(inout) :: cw(lencw), cu(lencu)

integer(ip), intent(inout), pointer :: hs(:)

real(rp), intent(inout), pointer :: x(:)

integer(ip), intent(out) :: INFO, mincw, miniw, minrw

external :: odecon, algcon, varbds

type(ctProb) :: prob

On entry:

Start is an integer that specifies how a starting point is to be obtained.

Start = 0 (Cold start) requests that the CRASH procedure be used.

Start = 2 (Warm start) means that the hs and x components of prob defines a
valid starting point (probably from an earlier call, though not neces-
sarily).

prob is a structure of type ctProb. The components of prob must be defined as described
in Section 1.5.

x is a pointer to a real array containing a set of initial values for the variables. The
user does not need to initialize the pointer if no initial point is provided.

If initialized, x should point to an arroy of dimension (nY + nU)(N + 1) + nP for
the Trapezoid method and (nY+ nU)(2N+ 1) + nP for the Hermite-Simpson method
where N is the total number of intervals in [t0, tf ]. See Table 1 for a diagram of the
variables.

At the end of a call to snctrl, x points to an array containing the final values of
the state variables, control variables and parameters at each time node.

1. For Cold starts (Start = ’Cold’), the elements of hs and x must be defined.
By default, if the user does not allocate the arrays hs and x, then snctrl will
set hs(j) = 0, x(j) = 0.0 for all j. All variables will be eligible for the initial
basis.

Less trivially, to say that the optimal value of variable j will probably be equal
to one of its bounds, set hs(j) = 4 and x(j) to its lower bound or hs(j) = 5
and x(j) to its upper bound as appropriate.

A CRASH procedure is used to select an initial basis. The initial basis matrix
will be triangular (ignoring certain small entries in each column). The values
hs(j) = 0, 1, 2, 3, 4, 5 have the following meaning:

hs(j) State of variable j during CRASH

{0, 1, 3} Eligible for the basis. 3 is given preference

{2, 4, 5} Ignored

After CRASH, variables for which hs(j) = 2 are made superbasic. Other entries
not selected for the basis are made nonbasic at the value x(j) (or the closest
value inside their bounds). See hs (on exit) in the description of snctrl.



2. SNCTRL Interfaces 11

2. For Warm starts, all of hs must be 0, 1, 2 or 3 and all of x must have values
(perhaps from some previous call).

hs is a pointer to an integer array containing the initial states for the variables in x. It
is not necessary for the user to initialize the pointer if no initial point is provided.

hs should be of dimension (nY + nU)(N + 1) + nP for the Trapezoid method and
(nY+nU)(2N+1)+nP for the Hermite-Simpson method where N is the total number
of intervals in [t0, tf ]. See Table 1 for a diagram of the variables and also x below
for a description of state values.

At the end of a call to snctrl, this array will be allocated (if not done by the user)
and will contain the final state of the variables. See hs (on exit) under the snctrl

description for more details.

odecon is the name of a subroutine that evaluates the vector of state equations F (y, u, p) and
(optionally) the Jacobian at some given point. odecon must be declared external

in the routine that calls snctrl. See the sections describing each of the three
interfaces for more information.

algcon is the name of a subroutine that evaluates the vector of algebraic constraint func-
tions C(y, u, p) and (optionally) the Jacobian at some given point. algcon must
be declared external in the routine that calls snctrl. See the sections describing
each of the three interfaces for more information.

varbds is the name of a subroutine that provides upper and lower bounds on the state and
control variables, parameters, and algebraic constraints. varbds must be declared
external in the routine that calls snctrl. See the sections describing each of the
three interfaces for more information.

cu(lencu), iu(leniu), ru(lenru) are 8-character, integer and real arrays of user work-
space. They may be used to pass data or workspace to your function routines
odecon and algcon(which have the same parameters). They are not accessed or
modified by snctrl.

If odecon and algcon don’t reference these parameters, you may use any arrays
of the appropriate type, such as cw, iw, rw (see next paragraph). Conversely, you
should use the cw, iw, rw arrays if odecon needs to access snctrl’s workspace.

cw(lencw), iw(leniw), rw(lenrw) are 8-character, integer and real arrays of workspace
for snctrl. Their lengths lencw, leniw, lenrw must all be at least 500.

On exit:

x points to an array containing the final values of the state and control variables at
each time node and the final values of the parameters. This pointer (and hs) should
be deallocated by the user at the end of the main program.

hs contains the final state of the variables as follows:

hs(j) State of variable j Usual value of x(j)

0 nonbasic Lower bound
1 nonbasic Upper bound
2 superbasic Between lower and upper bounds
3 basic Between lower and upper bounds



2. SNCTRL Interfaces 12

Basic and superbasic variables may be outside their bounds by as much as the Minor
feasibility tolerance. Note that if scaling is specified, the feasibility tolerance
applies to the variables of the scaled problem. In this case, the variables of the
original problem may be as much as 0.1 outside their bounds, but this is unlikely
unless the problem is very badly scaled. Check the “Primal infeasibility” printed
after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Minor feasibility tolerance, and there may be some nonbasics for which
x(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

INFO reports the result of the call to snctrl. See the SNOPT User’s Guide for more info.

mincw, miniw, minrw say how much character, integer, and real storage is needed to solve
the problem. If Print level > 0, these values are printed. If snctrl terminates
because of insufficient storage (INFO = 82, 83 or 84), the values may be used to
define better values of lencw, leniw or lenrw.

If INFO = 82, the work array cw(lencw) is too small. snctrl may be called again
with lencw = mincw.

If INFO = 83 or 84, the work arrays iw(leniw) or rw(lenrw) are too small. snctrl
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better because it is not certain how much storage the basis factorization
needs.)

nS is the final number of superbasic variables.

nInf, sInf give the number and the sum of the infeasibilities of constraints that lie outside
one of their bounds by more than the Minor feasibility tolerance before the
solution is unscaled.

If any linear constraints are infeasible, x minimizes the sum of the infeasibilities of
the linear constraints subject to the upper and lower bounds being satisfied. In this
case nInf gives the number of variables and linear constraints lying outside their
bounds. The nonlinear constraints are not evaluated.

Otherwise, x minimizes the sum of the infeasibilities of the nonlinear constraints
subject to the linear constraints and upper and lower bounds being satisfied. In
this case nInf gives the number of components of F (x) lying outside their bounds
by more than the Minor feasibility tolerance. Again this is before the solution
is unscaled.



3. The snctrlA interface 13

3. The snctrlA interface

snctrlA assumes Jacobian matrices for the state equations and (if applicable) the algebraic
constraints are dense. The user also only has to evaluate the functions and Jacobian matrices
at one given point.

The user-defined subroutines are described below.

3.1. Subroutines associated with snctrlA

snctrlA requires the following user-defined subroutines.

varbds (Sections 3.2) specifies variable bounds.

odecon (Sections 3.3) evaluates the state equations and the corresponding Jacobian
matrix at a given point.

algcon (Sections 3.4) evaluates the algebraic constraints and the corresponding Jaco-
bian matrix at a given point (if algebraic constraints exist in the problem).

3.2. Subroutine varbds

This subroutine is where the user specifies the upper and lower bounds on the variables,
parameters, and algebraic constraints.

subroutine varbds ( curPhs, nPhs, nY, nU, nP, nC, y0low, y0upp, &

yflow, yfupp, ylow, yupp, ulow, uupp, &

plow, pupp, p, clow, cupp )

integer(ip), intent(in) :: nPhs, curPhs, nY, nU, nP, nC

real(rp), intent(out) :: y0low(nY), y0upp(nY), &

yflow(nY), yfupp(nY), &

ylow(nY), yupp(nY), &

ulow(nU), uupp(nU), &

plow(nP), pupp(nP), p(nP), &

clow(nC), cupp(nC)

On entry:

curPhs is an integer specifying the current phase that the user needs to define upper and
lower bounds in.

nPhs, nY, nU, nP, nC are integers specifying the number of phases, state variables, con-
trol variables, parameters and algebraic constraints.

On exit:

y0low(nY), y0upp(nY) are real arrays defining lower and upper bounds on the state vari-
ables at the starting point of the current phase.

yflow(nY), yfupp(nY) are real arrays defining lower and upper bounds on the state vari-
ables at the end point of the current phase.

ylow(nY), yupp(nY) are real arrays defining the lower and upper bounds on the state
variables in the entire phase.

ulow(nU), uupp(nU) define the lower and upper on the control variables in the current
phase.



3. The snctrlA interface 14

plow(nP), pupp(nP), p(nP) define the lower and upper bounds on the parameters as well
as the initial values of the parameters.

clow(nC), cupp(nC) define the lower and upper bounds on the algebraic constraints in the
current phase.



3. The snctrlA interface 15

3.3. Subroutine odecon

This subroutine is where the user defines the differential equations as well as the Jacobian
matrix. In general, all derivatives should be specified by the user.

subroutine odecon ( snStat, curPhs, nPhs, nY, nU, nP, F, J, y, u, p, &

needF, needJ, cu, lencu, iu, leniu, ru, lenru )

integer(ip), intent(in) :: snStat, curPhs, nPhs, nY, nU, nP, &

needF, needJ, lencu, leniu, lenru

real(rp), intent(in) :: y(nY), u(nU), p(nP)

integer(ip), intent(inout) :: iu(leniu)

real(rp), intent(inout) :: ru(lenru)

character(8),intent(inout) :: cu(lencu)

real(rp), intent(out) :: F(nY), J(nY, nY+nU+nP)

On entry:

snStat indicates the first and last calls to odecon.

If snStat = 0, there is nothing special about the current call.

If snStat = 1, snctrlA is calling your subroutine for the first time. Some data
may need to be input or computed and saved.

If snStat ≥ 2, snctrlA is calling your subroutine for the last time. You may wish
to perform some additional computations on the final solution.

curPhs is an integer specifying the current phase.

nPhs, nY, nU, nP are integers specifying the number of phases, state and control variables
and parameters.

y(nY), u(nU), p(nP) contain the values of the states, controls, and parameters atwhich
the functions are to be calculated. These should not be altered.

needF, needJ indicate whether or not F and J need to be assigned during this call of
odecon.

If needF = 0, F is not required and is ignored.

If needF > 0, then the components of F need to be calculated and assigned to F.

If needJ = 0, J is not required and is ignored.

If needJ > 0, then the derivatives of F need to be calculated and assigned to J.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snctrlA. They may be used to pass information into the function
routine and to preserve data between calls.

On exit:

F(nY) contains the computed state equations F (y, u, p).

J(nY,nY+nU+nP) contains the computed Jacobian matrix of the functions with respect to
the states, controls, and the parameters.



3. The snctrlA interface 16

3.4. Subroutine algcon

This subroutine is where the user defines the algebraic constraint functions as well as its
Jacobian matrix. In general, all derivatives should be specified by the user.

subroutine algcon ( snStat, curPhs, nPhs, nC, nY, nU, nP, C, G, y, u, p, &

needC, needG, cu, lencu, iu, leniu, ru, lenru)

integer(ip), intent(in) :: snStat, curPhs, nPhs, nC, nY, nU, nP, &

needC, needG, lencu, leniu, lenru

real(rp), intent(in) :: y(nY), u(nU), p(nP)

integer(ip), intent(inout) :: iu(leniu)

real(rp), intent(inout) :: ru(lenru)

character(8),intent(inout) :: cu(lencu)

real(rp), intent(out) :: C(nC), G(nC, nY+nU+nP)

On entry:

snStat indicates the first and last calls to algcon.

If snStat = 0, there is nothing special about the current call.

If snStat = 1, snctrlA is calling your subroutine for the first time. Some data
may need to be input or computed and saved.

If snStat ≥ 2, snctrlA is calling your subroutine for the last time. You may wish
to perform some additional computations on the final solution.

curPhs is an integer specifying the current phase.

nPhs, nC, nY, nU, nP are integers specifying the number of phases, algebraic constraints,
states, controls and parameters.

y(nY), u(nU), p(nP) contain the values of the states, controls, and parameters at which
the functions are to be calculated. These should not be altered.

needC, needG indicate whether or not C and G need to be assigned during this call of
algcon.

If needC = 0, C is not required and is ignored.

If needC > 0, then the components of C need to be calculated and assigned to C.

If needG = 0, G is not required and is ignored.

If needG > 0, then the derivatives of C need to be calculated and assigned to G.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snctrlA. They may be used to pass information into the function
routine and to preserve data between calls.

On exit:

C(nC) contains the computed algebraic constraints C(y, u, p).

G(nC,nY+nU+nP) contains the Jacobian matrix of the algebraic constraints with respect to
the states, controls and the parameters.



4. The snctrlD interface 17

4. The snctrlD interface

snctrlD is a dense version of the control interface. The Jacobian matrices of the state
equations and (if applicable) the algebraic constraints are stored in dense structures. The
user must also evaluate the equations and Jacobian matrices at every point in a phase.

The user-defined subroutines are described below.

4.1. Subroutines associated with snctrlD

snctrlD requires the following user-defined subroutines.

varbds (Section 4.2) specifies variable bounds.

odecon (Section 4.3) evaluates the state equations and the corresponding Jacobian
matrix at all points in a particular phase. The Jacobian is assumed to be dense.

algcon (Section 4.4) evaluates the algebraic constraints and the corresponding Jaco-
bian matrix at all points in a particular phase (if algebraic constraints exist in
the problem). The Jacobian is assumed to be dense.

4.2. Subroutine varbds

This subroutine is where the user specifies the upper and lower bounds on the discretized
variables, parameters and algebraic constraints.

subroutine varbds ( curPhs, nPhs, nY, nU, nP, nC, nNodes, lbds, ubds, &

x, plbds, pubds, p, clbds, cubds )

integer(ip), intent(in) :: curPhs, nPhs, nY, nU, nP, nC, nNodes

real(rp), intent(out) :: lbds(nY+nU,nNodes), ubds(nY+nU,nNodes), &

x(nY+nU,nNodes), plbds(nP), pubds(nP), &

p(nP), clbds(nC), cubds(nC)

On entry:

curPhs is an integer specifying the current phase that the interface requires bounds in.

nPhs, nY, nU, nP, nC are integers specifying the total number of phases, states, controls,
parameters, and algebraic constraints in the problem.

nNodes is an integer specifying the total number of nodes in the current phase.

On exit:

lbds(nY+nU,nNodes), ubds(nY+nU,nNodes), x(nY+nU,nNodes) are real two dimensional
arrays that specify the lower bounds, upper bounds and initial values of every
discretized variable in the current phase. Refer to Table 1 for the layout of the
discretized variables.

Note that an initial point can be specified via this subroutine or in the main solver
routine snctrl. If a point is specified in both, the one from snctrl is taken.

plbds(nP), pubds(nP), p(nP) are real arrays that specify the lower bounds, upper bounds,
and initial values for the parameters.

clbds(nC), cubds(nC) are real arrays specifying the lower and upper bounds of the alge-
braic constraints in the current phase.



4. The snctrlD interface 18

4.3. Subroutine odecon

This subroutine is where the user defines the differential equations as well as the dense
Jacobian matrix. In general, all derivatives should be specified by the user.

subroutine odecon ( snStat, curPhs, nPhs, nY, nU, nP, nNodes, &

F, J, dvar, pvar, needF, needJ, &

cu, lencu, iu, leniu, ru, lenru )

integer(ip), intent(in) :: snStat, curPhs, nPhs, nY, nU, nP, nNodes, &

needF, needJ, lencu, leniu, lenru

real(rp), intent(in) :: dvar(nY+nU,nNodes), pvar(nP)

integer(ip), intent(inout) :: iu(leniu)

real(rp), intent(inout) :: ru(lenru)

character(8),intent(inout) :: cu(lencu)

real(rp), intent(out) :: F(nY,nNodes), J(nY,nY+nU+nP,nNodes)

On entry:

snStat indicates the first and last calls to odecon.

If snStat = 0, there is nothing special about the current call.

If snStat = 1, snctrlD is calling your subroutine for the first time. Some data
may need to be input or computed and saved.

If snStat ≥ 2, snctrlD is calling your subroutine for the last time. You may wish
to perform some additional computations on the final solution.

curPhs is an integer specifying the current phase.

nPhs, nY, nU, nP are integers specifying the number of phases, state and control variables
and parameters.

nNodes is an integer specifying the total number of nodes in the current phase.

dvar(nY+nU,nNodes) is a real two dimensional array containing the values of the discretized
variables. These should not be altered. Refer to Table 1 for the layout of the
discretized variables.

pvar(nP) is a real array containing the values of the parameters.

needF, needG indicate whether or not F and G need to be assigned during this call of
odecon.

If needF = 0, F is not required and is ignored.

If needF > 0, then the components of F need to be calculated and assigned to F.

If needG = 0, G is not required and is ignored.

If needG > 0, then the derivatives of F need to be calculated and assigned to G.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snctrlD. They may be used to pass information into the function
routine and to preserve data between calls.



4. The snctrlD interface 19

On exit:

F(nY,nNodes) contains the computed state equations F (y, u, p) at each node.

J(nY,nY+nU+nP,nNodes) is a 3-dimensional real array containing the computed Jacobian
matrix of the functions with respect to the states, controls, and the parameters at
each node in the current phase.



4. The snctrlD interface 20

4.4. Subroutine algcon

This subroutine is where the user defines the algebraic constraint functions as well as the
dense Jacobian matrix. In general, all derivatives should be specified by the user.

subroutine algcon ( snStat, curPhs, nPhs, nC, nY, nU, nP, nNodes, &

C, G, dvar, pvar, needC, needG, &

cu, lencu, iu, leniu, ru, lenru )

integer(ip), intent(in) :: snStat, curPhs, nPhs, nC, nY, nU, nP, &

nNodes, needC, needG, lencu, leniu, lenru

real(rp), intent(in) :: dvar(nY+nU,nNodes), pvar(nP)

integer(ip), intent(inout) :: iu(leniu)

real(rp), intent(inout) :: ru(lenru)

character(8),intent(inout) :: cu(lencu)

real(rp), intent(out) :: C(nC,nNodes), G(nC,nY+nU+nP,nNodes)

On entry:

snStat indicates the first and last calls to algcon.

If snStat = 0, there is nothing special about the current call.

If snStat = 1, snctrlD is calling your subroutine for the first time. Some data
may need to be input or computed and saved.

If snStat ≥ 2, snctrlD is calling your subroutine for the last time. You may wish
to perform some additional computations on the final solution.

curPhs is an integer specifying the current phase.

nPhs, nC, nY, nU, nP are integers specifying the number of phases, algebraic constraints,
states, controls and parameters.

nNodes is an integer specifying the total number of nodes in the current phase.

dvar(nY+nU,nNodes) is a real two dimensional array containing the values of the discretized
variables. These should not be altered. Refer to Table 1 for the layout of the
discretized variables.

pvar(nP) is a real array containing the values of the parameters.

needC, needG indicate whether or not C and Grow, Gval, Gcol need to be assigned during
this call of algcon.

If needC = 0, C is not required and is ignored.

If needC > 0, then the components of C need to be calculated and assigned to C.

If needG = 0, Grow, Gval, Gcol are not required and are ignored.

If needG > 0, then the derivatives of C need to be calculated and assigned to Grow,

Gval, Gcol.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snctrlD. They may be used to pass information into the function
routine and to preserve data between calls.



4. The snctrlD interface 21

On exit:

C(nC,nNodes) contains the computed algebraic constraints C(y, u, p) at each node.

G(nC,nY+nU+nP,nNodes) is a 3-dimensional real array containing the computed Jacobian
matrix of the algebraic constraints with respect to the states, controls, and the
parameters at each node in the current phase.



5. The snctrlS interface 22

5. The snctrlS interface

snctrlS is the sparse version of the control interface. The Jacobian matrices of the state
equations and (if applicable) the algebraic constraints are stored by columns in sparse struc-
tures. The user must also evaluate the equations and Jacobian matrices at every point in a
phase.

The user-defined subroutines are described below. Note the subroutine snctrl is iden-
tical to snctrlS.

5.1. Subroutines associated with snctrlS

snctrlS requires the following user-defined subroutines.

varbds (Section 5.2) specifies variable bounds.

odecon (Section 5.3) evaluates the state equations and the corresponding Jacobian
matrix at all points in a particular phase. The Jacobian is assumed to be sparse.

algcon (Section 5.4) evaluates the algebraic constraints and the corresponding Jaco-
bian matrix at all points in a particular phase (if algebraic constraints exist in
the problem). The Jacobian is assumed to be sparse.

5.2. Subroutine varbds

This subroutine is where the user specifies the upper and lower bounds on the discretized
variables, parameters and algebraic constraints.

subroutine varbds ( curPhs, nPhs, nY, nU, nP, nC, nNodes, &

lbds, ubds, x, plbds, pubds, p, clbds, cubds )

integer(ip), intent(in) :: curPhs, nPhs, nY, nU, nP, nC, nNodes

real(rp), intent(out) :: lbds(nY+nU,nNodes), ubds(nY+nU,nNodes), &

x(nY+nU,nNodes), plbds(nP), pubds(nP), &

p(nP), clbds(nC), cubds(nC)

On entry:

curPhs is an integer specifying the current phase that the interface requires bounds in.

nPhs, nY, nU, nP, nC are integers specifying the total number of phases, states, controls,
parameters, and algebraic constraints in the problem.

nNodes is an integer specifying the total number of nodes in the current phase.

On exit:

lbds(nY+nU,nNodes), ubds(nY+nU,nNodes), x(nY+nU,nNodes) are real two dimensional
arrays that specify the lower bounds, upper bounds and initial values of every
discretized variable in the current phase. Refer to Table 1 for the layout of the
discretized variables.

Note that an initial point can be specified via this subroutine or in the main solver
routine snctrl. If a point is specified in both, the one from snctrl is taken.

plbds(nP), pubds(nP), p(nP) are real arrays that specify the lower bounds, upper bounds,
and initial values for the parameters.



5. The snctrlS interface 23

clbds(nC), cubds(nC) are real arrays specifying the lower and upper bounds of the alge-
braic constraints in the current phase.



5. The snctrlS interface 24

5.3. Subroutine odecon

This subroutine is where the user defines the differential equations as well as the sparse
Jacobian matrix. In general, all derivatives should be specified by the user.

subroutine odecon ( snStat, curPhs, nPhs, nY, nU, nP, nNodes, F, &

Jrow, Jval, Jcol, lenJ, dvar, pvar, &

needF, needJ, cu, lencu, iu, leniu, ru, lenru )

integer(ip), intent(in) :: snStat, curPhs, nPhs, nY, nU, nP, &

nNodes, lenJ, needF, needJ, &

lencu, leniu, lenru

real(rp), intent(in) :: dvar(nY+nU,nNodes), pvar(nP)

integer(ip), intent(inout) :: iu(leniu)

real(rp), intent(inout) :: ru(lenru)

character(8),intent(inout) :: cu(lencu)

integer(ip), intent(out) :: Jrow(lenJ), Jcol(nY+nU+nP)

real(rp), intent(out) :: F(nY,nNodes), Jval(lenJ,nNodes)

On entry:

snStat indicates the first and last calls to odecon.

If snStat = 0, there is nothing special about the current call.

If snStat = 1, snctrlS is calling your subroutine for the first time. Some data
may need to be input or computed and saved.

If snStat ≥ 2, snctrlS is calling your subroutine for the last time. You may wish
to perform some additional computations on the final solution.

curPhs is an integer specifying the current phase.

nPhs, nY, nU, nP are integers specifying the number of phases, state and control variables
and parameters.

nNodes is an integer specifying the total number of nodes in the current phase.

dvar(nY+nU,nNodes) is a real two dimensional array containing the values of the discretized
variables. These should not be altered. Refer to Table 1 for the layout of the
discretized variables.

pvar(nP) is a real array containing the values of the parameters.

needF, needG indicate whether or not F and G need to be assigned during this call of
odecon.

If needF = 0, F is not required and is ignored.

If needF > 0, then the components of F need to be calculated and assigned to F.

If needG = 0, G is not required and is ignored.

If needG > 0, then the derivatives of F need to be calculated and assigned to G.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snctrlS. They may be used to pass information into the function
routine and to preserve data between calls.



5. The snctrlS interface 25

On exit:

F(nY,nNodes) contains the computed state equations F (y, u, p) at each node.

Jrow(lenJ),Jval(lenJ,nNodes),Jcol(nY+nU+nP+1) are the sparse data structures con-
taining the computed Jacobian matrix of the functions with respect to the states,
controls, and the parameters at each node in the current phase. In a given phase,
the Jacobian matrix is assumed to have the same structure so Jrow and Jcol should
be the same at each point in a particular phase.



5. The snctrlS interface 26

5.4. Subroutine algcon

This subroutine is where the user defines the algebraic constraint functions as well as the
sparse Jacobian matrix. In general, all derivatives should be specified by the user.

subroutine algcon ( snStat, curPhs, nPhs, nC, nY, nU, nP, nNodes, &

C, Grow, Gval, Gcol, lenG, dvar, pvar, &

needC, needG, cu, lencu, iu, leniu, ru, lenru )

integer(ip), intent(in) :: snStat, curPhs, nPhs, nC, nY, nU, nP, &

nNodes, lenG, needC, needG, &

lencu, leniu, lenru

real(rp), intent(in) :: dvar(nY+nU,nNodes), pvar(nP)

integer(ip), intent(inout) :: iu(leniu)

real(rp), intent(inout) :: ru(lenru)

character(8),intent(inout) :: cu(lencu)

integer(ip), intent(out) :: Grow(lenG), Gcol(nY+nU+nP+1)

real(rp), intent(out) :: C(nC,nNodes), Gval(lenG,nNodes)

On entry:

snStat indicates the first and last calls to algcon.

If snStat = 0, there is nothing special about the current call.

If snStat = 1, snctrlS is calling your subroutine for the first time. Some data
may need to be input or computed and saved.

If snStat ≥ 2, snctrlS is calling your subroutine for the last time. You may wish
to perform some additional computations on the final solution.

curPhs is an integer specifying the current phase.

nPhs, nC, nY, nU, nP are integers specifying the number of phases, algebraic constraints,
states, controls and parameters.

nNodes is an integer specifying the total number of nodes in the current phase.

dvar(nY+nU,nNodes) is a real two dimensional array containing the values of the discretized
variables. These should not be altered. Refer to Table 1 for the layout of the
discretized variables.

pvar(nP) is a real array containing the values of the parameters.

needC, needG indicate whether or not C and Grow, Gval, Gcol need to be assigned during
this call of algcon.

If needC = 0, C is not required and is ignored.

If needC > 0, then the components of C need to be calculated and assigned to C.

If needG = 0, Grow, Gval, Gcol are not required and are ignored.

If needG > 0, then the derivatives of C need to be calculated and assigned to Grow,

Gval, Gcol.

cu(lencu), iu(leniu), ru(lenru) are the character, integer and real arrays of user work-
space provided to snctrlS. They may be used to pass information into the function
routine and to preserve data between calls.



5. The snctrlS interface 27

On exit:

C(nC,nNodes) contains the computed algebraic constraints C(y, u, p) at each node.

Grow(lenG),Gval(lenG,nNodes),Gcol(nY+nU+nP+1) are the sparse data structures con-
taining the computed Jacobian matrix of the algebraic constraints with respect to
the states, controls, and the parameters at each node in the current phase. In a
given phase, the Jacobian is assumed to have the same structure so Grow and Gcol

are the same at each point in a particular phase.



6. Optional parameters 28

6. Optional parameters

Like SNOPT, the performance of SNCTRL is controlled by a number of parameters or “op-
tions”. SNCTRL supports optional parameters for SNOPT (see [3]) in addition to several
SNCTRL-specific parameters (Section 6.6). Each option has a default value that should be
appropriate for most problems. Other values may be specified in two ways:

• By calling subroutine sncSpec to read a Specs file (Section 6.1, 6.3).

• By calling the option-setting routines sncSet, sncSeti, sncSetr (Section 6.4).

The current value of an optional parameter may be examined by calling one of the routines
sncGet, sncGetc, sncGeti, sncGetr (Section 6.5).

6.1. The SPECS file

The Specs file contains a list of options and values in the following general form:

Begin options

Iterations limit 500

Minor feasibility tolerance 1.0e-7

Solution Yes

End options

We call such data a Specs file because it specifies various options. The file starts with the
keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space or new line.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*) anywhere on a line. All subsequent characters on the line are ignored.

The Begin line is echoed to the Summary file.

6.2. Multiple sets of options in the Specs file

The keyword Skip allows you to collect several sets of options within a single Specs file. In
the following example, only the second set of options will be input.

Skip Begin options

Scale all variables

End options

Begin options 2

Scale linear variables

End options 2

The keyword Endrun prevents subroutine sncSpec from reading past that point in the
Specs file while looking for Begin.



6. Optional parameters 29

6.3. Subroutine sncSpec

Subroutine sncSpec may be called to input a Specs file (to specify options for a subsequent
call of SNCTRL).

subroutine sncspec( iSpecs, iExit, cw, lencw, iw, leniw, rw, lenrw )

integer(ip), intent(in) :: iSpecs, lencw, leniw, lenrw

integer(ip), intent(inout) :: iw(leniw)

real(rp), intent(inout) :: rw(lenrw)

character(8), intent(inout) :: cw(lencw)

integer(ip), intent(out) :: iExit

On entry:

iSpecs is a unit number for the Specs file (iSpecs > 0). Typically iSpecs = 4.

On some systems, the file may need to be opened before sncSpec is called.

On exit:

cw(lencw), iw(leniw), rw(lenrw) contain the specified options.

INFO reports the result of calling sncSpec. Here is a summary of possible values.

Finished successfully

101 Specs file read.

Errors while reading Specs file

131 No Specs file specified (iSpecs ≤ 0 or iSpecs > 99).

132 End-of-file encountered while looking for Specs file. sncSpec encountered
end-of-file or Endrun before finding Begin (see Section 6.2). The Specs file
may not be properly assigned.

133 End-of-file encountered before finding End. Lines containing Skip or Endrun
may imply that all options should be ignored.

134 Endrun found before any valid sets of options.

> 134 There were i = INFO− 134 errors while reading the Specs file.



6. Optional parameters 30

6.4. Subroutines sncSet, sncSeti, sncSetr

These routines specify an option that might otherwise be defined in one line of a Specs file.

subroutine sncset &

( buffer, iPrint, iSumm, Errors, &

cw, lencw, iw, leniw, rw, lenrw )

subroutine sncseti &

( buffer, ivalue, iPrint, iSumm, Errors, &

cw, lencw, iw, leniw, rw, lenrw )

subroutine sncsetr &

( buffer, rvalue, iPrint, iSumm, Errors, &

cw, lencw, iw, leniw, rw, lenrw )

character*(*) :: &

buffer

integer(ip) :: &

Errors, ivalue, iPrint, iSumm, lencw, leniw, lenrw, iw(leniw)

real(rp) :: &

rvalue, rw(lenrw)

character :: &

cw(lencw)*8

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72 (sncSet) or ≤ 55
(sncSeti, sncSetr). Use sncSet if the string contains all relevant data. For
example,

call sncset ( ’Iterations 1000’, iPrint, iSumm, Errors, ... )

ivalue is an integer value associated with the keyword in buffer. Use sncSeti if it is
convenient to define the value at run time. For example,

itnlim = 1000

if (m .gt. 500) itnlim = 8000

call sncseti( ’Iterations’, itnlim, iPrint, iSumm, Errors, ... )

rvalue is a real value associated with the keyword in buffer. For example,

factol = 100.0d+0

if ( illcon ) factol = 5.0d+0

call sncsetr( ’LU factor tol’, factol, iPrint, iSumm, Errors, ... )

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to the option-setting routines.

On exit:

cw(lencw), iw(leniw), rw(lenrw) hold the specified option.

Errors is the number of errors encountered so far.



6. Optional parameters 31

6.5. Subroutines sncGet, sncGetc, sncGeti, sncGetr

These routines obtain the current value of a single option or indicate if an option has been
set.

integer function sncget &

( buffer, Errors, cw, lencw, iw, leniw, rw, lenrw )

subroutine sncgetc &

( buffer, cvalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

subroutine sncgeti &

( buffer, ivalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

subroutine sncgetr &

( buffer, rvalue, Errors, cw, lencw, iw, leniw, rw, lenrw )

character*(*) :: &

buffer

integer(ip) :: &

Errors, ivalue, lencw, leniw, lenrw, iw(leniw)

character(8) :: &

cvalue, cw(lencw)

real(rp) :: &

rvalue, rw(lenrw)

On entry:

buffer is a string to be decoded. Restriction: len(buffer) ≤ 72.

Errors is the cumulative number of errors, so it should be 0 before the first call in a group
of calls to option-getting routines.

cw(lencw), iw(leniw), rw(lenrw) contain the current options data.

On exit:

sncget is 1 if the option contained in buffer has been set, otherwise 0. Use sncGet to find
if a particular optional parameter has been set. For example: if

i = sncget( ’Hessian limited memory’, Errors, ... )

then i will be 1 if SNOPT is using a limited-memory approximate Hessian.

cvalue is a string associated with the keyword in buffer. Use sncGetc to obtain the names
associated with an MPS file. For example, for the name of the bounds section use

call sncgetc( ’Bounds’, MyBounds, Errors, ... )

ivalue is an integer value associated with the keyword in buffer. Example:

call sncgeti( ’Iterations limit’, itnlim, Errors, ... )

rvalue is a real value associated with the keyword in buffer. Example:

call sncgetr( ’LU factor tol’, factol, Errors, ... )

Errors is the number of errors encountered so far.



6. Optional parameters 32

6.6. Description of Optional Parameters

The following shows all valid keywords specific to the SNCTRL interface and their default
values.

BEGIN checklist of SPECS file parameters and their default values

Discretization TR * Trapezoid method

Control Solution No * No control solution in the Print file

Refinement No * No refinement

Refinement Limit ## * No limit

Refinement Tolerance 1d-2 * Default value

End of SPECS file checklist

The following is an alphabetical list of the options specific to SNCTRL that may appear
in the Specs file, and a description of their effect. For more keywords, see the SNOPT User’s
Guide [3].

Discretization TR Default
Discretization HS

This option allows the user to choose the collocation method used to discretize the
differential system. TR and HS indicate the Trapezoid method and the Hermite-Simpson
method, respectively.

Control Solution No Default
Control Solution Yes

This option specifies whether a brief summary of the problem run and the final state,
control and parameter values will be printed to the Print file. The control output is appended
to the end of the file below the usual SNOPT output.

Refinement No Default
Refinement Yes

Adaptive refinement will first solve the optimal control problem using the Trapezoid
method on a coarse grid. A finer grid is generated based on a refinement tolerance (see
below) and the problem is resolved on the new grid. By default, the SNCTRL interface will
continue to refine the grid until no new nodes are added.

Refinement Limit i Default = ∞
This option allows the user to specify how many times the problem will be refined and
resolved. By default, the adaptive refinement option will refine and resolve the problem
until no new nodes are added to the grid.

Refinement Tolerance τ Default = 1.0d-2

This option allows the user to specify the tolerance in the adaptive refinement run. A
new node is added at the midpoint of the interval [tk, tk+1] if ‖yk+1− z‖ > τ where z is the
vector of state variables with values given by Simpson’s rule. The problem is then rerun on
the finer grid. This process continues until no new nodes are added to the grid.



7. Examples 33

7. Examples

We provide examples demonstrating how to use the optimal control interface.

7.1. Breakwell

Consider the Breakwell problem in its original form:

minimize
y,u

1

2

∫ 1

0

u2 dt

subject to ẏ1 = y2

ẏ2 = u

y1(0) = 0 y2(0) = 1

y1(1) = 0 y2(1) = −1

y1 ≤ 0.1

We add an extra state variable to represent the objective and set appropriate bounds.

minimize
y,u

J(tf ) = y1(1)

subject to ẏ1 = 1
2u

2

ẏ2 = y3

ẏ3 = u1

y1(0) = 0 y2(0) = 0 y3(0) = 1

y2(1) = 0 y3(1) = −1

y2 ≤ 0.1



7. Examples 34

7.2. Brachistochrone

This example is the classic brachistochrone problem formulated as in [2]. The equations
describe the motion of a bead sliding down a frictionless wire in a constant gravitational
field. The problem finds the optimal trajectory of a bead sliding down a frictionless wire
between two specified points in minimal time.

minimize
y,u

∫ 1

0

√
1 + u2

1− y
dt

subject to ẏ = u

y(0) = 0

y(1) = − 1
2

We add an extra state variable to represent the objective to fit the format required by
snctrl.

minimize
y,u

J(tf ) = y1(1)

subject to ẏ1 =

√
1 + u2

1− y2
ẏ2 = u

y1(0) = 0 y2(0) = 0

y2(1) = − 1
2



7. Examples 35

7.3. Catalyst mixing

The catalyst mixing problem in its original form:

minimize
y,u

y1(1) + y2(1)− 1

subject to ẏ1 = u1(10y2 − y1)

ẏ2 = u1(y1 = 10y2)− (1− u1)y2

y1(0) = 1 y2(0) = 0

0 ≤ u1 ≤ 1

We add an extra control variable to represent the algebraic objective function and set the
appropriate bounds.

minimize
y,u

J(tf ) = u2(1)

subject to ẏ1 = u1(10y2 − y1)

ẏ2 = u1(y1 − 10y2)− (1− u1)y2

y1(0) = 1 y2(0) = 0

0 ≤ u1 ≤ 1

u2 − y1 − y2 = −1



7. Examples 36

7.4. Double-integrator plant

The double integrator plant problem was formulated in [4].

minimize
y,u

tf

subject to ẏ1 = y2

ẏ2 = u

y1(0) = 1
2 y2(0) = 1

− 1
2 ≤ y1(tf ) ≤ 1

2

y2(tf ) = 0

− 1 ≤ u ≤ 1

For this variable-time problem, we add the extra parameter p1, to represent tf . The time
interval is then scaled so that the optimization is performed over the fixed interval [0, 1].

minimize
y,u

J(tf ) = p1

subject to ẏ1 = y2 ∗ p1
ẏ2 = u1 ∗ p1
y1(0) = 1

2 y2(0) = 1 y3(0) = 0

− 1
2 ≤ y1(tf ) ≤ 1

2

y2(tf ) = 0

− 1 ≤ u1 ≤ 1

p1 ≥ 0



7. Examples 37

7.5. Pendulum

This is a parameter estimation problem that estimates the gravitational constant g [5]. We
consider a pendulum moving in a vertical plane.

minimize
y,u

1
2 ((y1(tf )− xf )2 + (y2(tf )− yf )2)

subject to ẏ1 = y3

ẏ2 = y4

ẏ3 = u1y1/m

ẏ4 = u1y2/m

y1(0) = 0.4 y2(0) = −0.3

y3(0) = 0 y4(0) = 0

y23 + y24 + u1`
2/m− y2p1 = 0

1
100 ≤ p1 ≤ 100

where xf , yf , `, andm are constants. ` andm represent the length and mass of the pendulum
respectively. For this problem, we set ` = 1

2 , m = 0.3, xf = −.231625 and yf = −.443109.
The parameter p1 represents the unknown gravitational constant to be estimated. y1

and y2 represent the coordinates of the pendulum.
We add an extra control variable to represent the objective function and set the appro-

priate bounds.

minimize
y,u

J(tf ) = u2(tf )

subject to ẏ1 = y3

ẏ2 = y4

ẏ3 = u1y1/m

ẏ4 = u1y2/m

y1(0) = 0.4 y2(0) = −0.3

y3(0) = 0 y4(0) = 0

y23 + y24 + u1`
2/m− y2p1 = 0

u2 − 1
2

(
(y1 − xf )2 + (y2 − yf )2

)
= 0

1
100 ≤ p1 ≤ 100



7. Examples 38

7.6. Rocket

Here we solve the one-dimensional rocket problem as formulated in [5]. The objective of the
problem is to minimize the amount of fuel consumed by the rocket to get to a particular
altitude xf .

Given [t0, tf ], we split the interval into two phases so that [t0, tf ] = [t0, t1] ∪ (t1, t2],
where t2 = tf . In the first phase, the rocket has constant thrust while in the second phase,
the rocket has no thrust. Assuming fuel consumption is directly proportional to time, we
therefore want to minimize t1.

minimize
y,u

t1

subject to ẏ1 = y2

ẏ2 = u1a− g
y1(0) = 0 y2(0) = v0

y1(tf ) = xf

u1 = 1 for t ∈ [t0, t1]

u1 = 0 for t ∈ (t1, tf ]

Here, we let a = 2, g = 1, v0 = 0, and xf = 100. We add an extra state variable and
parameter to represent time.

minimize
y,u

p1

subject to ẏ1 = y2p1

ẏ2 = (2u1 − 1)p1

y1(0) = 0 y2(0) = 0 y3(0) = 0

y1(tf ) = 100

u1 = 1 for t ∈ [t0, t1]

u1 = 0 for t ∈ (t1, tf ]

p1 ≥ 0



7. Examples 39

7.7. Vanderpol

The Vanderpol problem in its original form:

minimize
y,u

1
2

∫ 5

0

y21 + y22 + u2 dt

subject to ẏ1 = y2

ẏ2 = −y1 + (1− y1)2y2 + u

y1(0) = 1 y2(0) = 0

y1(5) = −1 y2(5) = 0

u ≤ 0.75

We add an extra state variable to represent the objective function and set the appropriate
bounds.

minimize
y,u

J(tf ) = y1(5)

subject to ẏ1 = 1
2 (y22 + y23 + u21)

ẏ2 = −y3 + (1− y3)2y2 + u1

ẏ3 = y2

y1(0) = 0 y2(0) = 0 y3(0) = 1

y2(5) = 0 y3(5) = −1

u1 ≤ 0.75



7. Examples 40

7.8. Variable time brachistochrone

The following is the different formulation of the brachistochrone problem [4]. Here, y1
represents the horizontal distance, y2 the vertical distance, and u the path angle to the
horizontal. Again, we want to find the optimal trajectory of a bead sliding down a frictionless
wire between two specified points in minimal time.

minimize
y,u

tf

subject to ẏ1 = y3 cosu

ẏ2 = y3 cosu

ẏ3 = sinu

y1(0) = 0 y2(0) = 0 y3(0) = 0

y1(tf ) = 1

0 ≤ y2(tf ) ≤ 2

y2 − 1
2y2 ≤ 0.2

For this variable time problem, we add an extra parameter, say p, to represents tf . Accord-
ingly, the time interval is set so that [t0, tf ] = [0, 1] in snctrl.

minimize
y,u

J(tf ) = p1

subject to ẏ1 = y3 cosu1 ∗ p1
ẏ2 = y3 cosu1 ∗ p1
ẏ3 = sinu1 ∗ p1
y1(0) = 0 y2(0) = 0 y3(0) = 0 y4(0) = 0

y1(tf ) = 1

0 ≤ y2(tf ) ≤ 2

y2 − 1
2y1 ≤ 0.2

0 ≤ p1



References 41

References
[1] A. Barclay, P. E. Gill, and J. B. Rosen. SQP methods in optimal control. In R. Bulirsch, L. Bittner,

W. H. Schmidt, and K. Heier, editors, Variational Calculus, Optimal Control and Applications, volume
124 of International Series of Numerical Mathematics, pages 207–222, Basel, Boston and Berlin, 1998.
Birkhäuser. 1

[2] P. Dyer and S. R. McReynolds. The Computation and Theory of Optimal Control. Academic Press,
New York, 1970. 34

[3] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for SNOPT Version 7: Software for large-scale
nonlinear programming. Numerical Analysis Report 06-2, Department of Mathematics, University of
California, San Diego, La Jolla, CA, 2006. 1, 28, 32

[4] A. Y. Lee. Dynamic optimization problems with bounded terminal conditions. J. Optim. Theory Appl.,
52(1):151–162, 1987. 36, 40

[5] O. von Stryk. User’s guide for DIRCOL: A direct collocation method for the numerical solution of
optimal control problems. Technical report, Fachgebiet Simulation und Systemoptimierung, Technische
Universität Darmstadt, 2002. 37, 38


	Introduction
	Differential equations
	Trapezoid method
	Hermite-Simpson method

	Objective function
	Bounds and algebraic constraints
	Features
	Problem Formats
	Matlab Interface
	Adaptive Refinement
	Phases
	Linear Equations

	ctProb Type
	Subroutine sncInit

	SNCTRL Interfaces
	Subroutines associated with snctrl
	Subroutine snctrl

	The snctrlA interface
	Subroutines associated with snctrlA
	Subroutine varbds
	Subroutine odecon
	Subroutine algcon

	The snctrlD interface
	Subroutines associated with snctrlD
	Subroutine varbds
	Subroutine odecon
	Subroutine algcon

	The snctrlS interface
	Subroutines associated with snctrlS
	Subroutine varbds
	Subroutine odecon
	Subroutine algcon

	Optional parameters
	The SPECS file
	Multiple sets of options in the Specs file
	Subroutine sncSpec
	Subroutines sncSet, sncSeti, sncSetr
	Subroutines sncGet, sncGetc, sncGeti, sncGetr
	Description of Optional Parameters

	Examples
	Breakwell
	Brachistochrone
	Catalyst mixing
	Double-integrator plant
	Pendulum
	Rocket
	Vanderpol
	Variable time brachistochrone


