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Abstract

Sequential quadratic programming (SQP) methods solve nonlinear optimization problems
by finding an approximate solution of a sequence of quadratic programming (QP) subprob-
lems. Each subproblem involves the minimization of a quadratic model of the objective
function subject to the linearized constraints. Depending on the definition of the quadratic
model, the QP subproblem may be nonconvex, leading to difficulties in the formulation
and analysis of a conventional SQP method.

Convexification is a process for defining a local convex approximation of a nonconvex
problem. We describe three forms of convexification: preconvexification, concurrent con-
vexification, and post-convexification. The methods require only minor changes to the
algorithms used to solve the QP subproblem, and are designed so that modifications to
the original problem are minimized and applied only when necessary.
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1. Introduction

This paper concerns the formulation of a sequential quadratic programming (SQP) method
for the solution of the nonlinear optimization problem:

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. In order to simplify
the notation, it is assumed that the constraints are all inequalities with zero lower bounds.
However, the method to be described can be generalized to treat all forms of linear and nonlin-
ear constraints. No assumptions are made about f and c (other than twice differentiability),
which implies that the problem need not be convex. The vector g(x) denotes the gradient
of f(x), and J(x) denotes the m × n constraint Jacobian, which has ith row ∇ci(x)T , the
gradient of the ith constraint function ci(x). The Lagrangian function associated with (NP)
is L(x, y) = f(x) − c(x)Ty, where y is the m-vector of dual variables associated with the
inequality constraints c(x) ≥ 0. The Hessian of the Lagrangian with respect to x is denoted
by H(x, y) = ∇2f(x)−∑m

i=1 yi∇2ci(x).
Sequential quadratic programming methods find an approximate solution of a sequence

of quadratic programming (QP) subproblems in which a quadratic model of the objective
function is minimized subject to the linearized constraints. In a line-search SQP method,
the QP solution provides a direction of improvement for a merit function that represents a
compromise between the (usually conflicting) aims of minimizing the objective function and
minimizing the constraint violations.

Given the kth estimate (xk, yk) of the primal and dual solution, a conventional SQP method
defines a direction pk = x̂k − xk, where x̂k is a solution of the QP subproblem

minimize
x∈Rn

g(xk)T (x− xk) + 1
2(x− xk)TH(xk, yk)(x− xk)

subject to J(xk)(x− xk) ≥ −c(xk),
(1.1)

where the QP objective function is a quadratic approximation of f(x) restricted to the surface
c(x) = 0. If the QP subproblem (1.1) has a bounded solution, then the first-order optimality
conditions imply the existence of a primal-dual pair (x̂k, ŷk) such that

g(xk) +H(xk, yk)(x̂k − xk) = J(xk)T ŷk, ŷk ≥ 0, (1.2)

r(x̂k) · ŷk = 0, r(x̂k) ≥ 0, (1.3)

where r(x) is the vector of constraint residuals r(x) = c(xk)+J(xk)(x−xk), and a · b denotes
the vector with ith component aibi. At any feasible point x, the active set associated with
the QP subproblem is given by

A(x) = { i : ri(x) = [c(xk) + J(xk)(x− xk)]i = 0 }.

The optimality conditions (1.1) may be characterized in terms of an index set W ⊆ A(x̂k)
such that the rows of J(xk) with indices in W are linearly independent. It can be shown that
the conditions (1.2)–(1.3) may be written in the form

g(xk) +H(xk, yk)(x̂k − xk) = Jw(xk)T ŷw, ŷw ≥ 0,

cw(xk) + Jw(xk)(x̂k − xk) = 0, r(x̂k) ≥ 0,
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where cw(xk) and Jw(xk) denote the rows of c(xk) and J(xk) associated with indices in W.
The vector ŷw is the subvector of ŷk such that [ŷk ]i = 0 for i 6∈ W, and [ŷk ]w = ŷw. These
conditions may be written in matrix form(

H(xk, yk) Jw(xk)T

Jw(xk) 0

)(
pk

−ŷw

)
= −

(
g(xk)

cw(xk)

)
, (1.4)

where pk = x̂k − xk. The working set W is said to be second-order consistent with respect
to H(xk, yk) if the reduced Hessian ZT

wH(xk, yk)Zw is positive definite, where the columns of
Zw form a basis for the null-space of Jw(xk). If W is second-order consistent with respect to
H(xk, yk), then the equations (1.4) are nonsingular and define unique vectors pk and ŷw that
satisfy

pTkH(xk, yk)pk = −
(
g(xk)− Jw(xk)T ŷw

)
T pk = −gL(xk, ŷk)Tpk,

where gL(x, y) denotes the gradient of the Lagrangian function with respect to x, i.e., gL(x, y) =
g(x)− J(x)T y. If H(xk, yk) is positive definite, then gL(xk, ŷk)Tpk < 0 and the QP search di-
rection is a descent direction for the Lagrangian function defined with multipliers y = ŷk. The
condition pTkH(xk, yk)pk > 0 is sufficient for there to exist a step length that provides a suffi-
cient decrease for several merit functions that have been proposed in the literature; e.g., the `1
penalty function (Han [20] and Powell [22]), and various forms of the augmented Lagrangian
merit function (Han [20], Schittkowski [23], and Gill, Murray, Saunders and Wright [11]).

If the problem (NP) is not convex, the Hessian of the Lagrangian may be indefinite, even
in the neighborhood of a solution. This situation creates a number of difficulties in the
formulation and analysis of a conventional SQP method.

(i) In the nonconvex case, the QP subproblem (1.1) may be nonconvex, which implies that
the objective may be unbounded below in the feasible region, and that there may be
many local solutions. In addition, nonconvex QP is NP-hard—even for the calculation
of a local minimizer [1, 6]. The complexity of the QP subproblem has been a major
impediment to the formulation of second-derivative SQP methods (although methods
based on indefinite QP have been proposed [2, 3]).

(ii) If H(xk, yk) is not positive definite, then pk may not be a descent direction for the merit
function. This implies that an alternative direction must be found or the line search must
allow the merit function to increase on some iterations, see, e.g., Grippo, Lampariello
and Lucidi [17–19], Toint [27], and Zhang and Hager [29]).

Over the years, algorithm developers have avoided these difficulties by solving a convex QP

subproblem defined with a positive semidefinite quasi-Newton approximate Hessian. In this
form, SQP methods have proved reliable and efficient for many such problems. For example,
under mild conditions the general-purpose solvers NLPQL [24], NPSOL [10, 11], DONLP [26],
and SNOPT [9] typically find a (local) optimum from an arbitrary starting point, and they
require relatively few evaluations of the problem functions and gradients.

2. Convexification

Convexification is a process for defining a local convex approximation of a nonconvex problem.
This approximation may be defined on the full space of variables or on just some subset.
Many model-based optimization methods use some form of convexification. For example,
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line-search methods for unconstrained and linearly-constrained optimization define a convex
local quadratic model in which the Hessian H(xk) is replaced by a positive-definite matrix
H(xk) + Ek (see, e.g., Greenstadt [16], Gill and Murray [8], Schnabel and Eskow [25], and
Forsgren and Murray [7]). All of these methods are based on convexifying an unconstrained
or equality-constrained local model. In this paper we consider a method that convexifies the
inequality-constrained subproblem directly. The method extends some approaches proposed
by Gill and Robinson [12, Section 4] and Kungurtsev [21].

In the context of SQP methods, the purpose of the convexification is to find a primal-dual
pair (xk, ŷk) and matrix ∆Hk such that

pTk
(
H(xk, yk) +∆Hk

)
pk ≥ γ̄pTkpk,

where γ̄ is a fixed positive scalar that defines a minimum acceptable value of the curvature of
the Lagrangian. Ideally, any algorithm for computing ∆Hk should satisfy two requirements.
First, the convexification should be “minimally invasive”, i.e., if H(xk, yk) is positive definite
or pTkH(xk, yk)pk ≥ γ̄pTkpk, then ∆Hk should be zero. Second, it must be possible to store the
modification ∆Hk implicitly, without the need to modify the elements of H(xk, yk).

The convexification discussed here can take three forms: preconvexification, concurrent
convexification, and post-convexification. Not all of these forms are needed at a given iteration.

2.1. Concurrent QP Convexification

The concurrent convexification algorithm is defined in terms of a generic QP of the form

minimize
x∈Rn

ϕ(x) = gT(x− xI) + 1
2(x− xI)

TH(x− xI)

subject to Ax ≥ AxI − b,
(2.1)

where xI , b, A, g, and H are constant. In the SQP context, xI = xk, g = g(xk), b = c(xk),
A = J(xk), and H is the Hessian of the Lagrangian or as an approximation of it. Thus,
the objective is not necessarily convex and the QP subproblem may be indefinite. To avoid
indefinite subproblems, we apply a concurrent convexification method that is designed to
minimize the modifications to the Hessian.

Concurrent convexification is based on applying a modified active-set method to the QP

problem (2.1). The method of Gill and Wong [14] is a two-phase method for general (i.e.,
nonconvex) QP. In the first phase, the objective function is ignored while a conventional
phase-1 linear program is used to find a feasible point x0 for the constraints Ax ≥ AxI − b.
On completion of the first phase, a working set W0 is available that contains the indices of a
linearly independent subset of the constraints that are active at x0. If A0 denotes the m0×n
matrix of rows of A with indices in W0, then

A0x0 = A0xI − b0. (2.2)

In the second phase, a sequence of primal-dual iterates {(xj , yj)}j≥0, and linearly independent
working sets {Wj} are generated such that: (i) {xj}j≥0 is feasible; (ii) ϕ(xj) ≤ ϕ(xj−1); and
(iii) for every j ≥ 1, (xj , yj) is the primal and dual solution of the equality constrained problem
defined by minimizing ϕ(x) on the working setWj . The vector xj associated with the primal-
dual pair (xj , yj) is known as a subspace minimizer with respect to Wj . If Aj denotes the
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mj ×n matrix of rows of A with indices in Wj , then a subspace minimizer is formally defined
as the point xj such that g(xj) = AT

j yj , and the KKT matrix

Kj =

(
H AT

j

Aj 0

)
(2.3)

has mj negative eigenvalues. For any Kj satisfying this property, the working set Wj is said
to be second-order consistent with respect to H.

In general, the first iterate x0 will not minimize ϕ(x) on W0, and one or more preliminary
iterations are needed to find the first subspace minimizer x1. An estimate of x1, is defined by
solving the equality-constrained QP subproblem:

minimize
x

ϕ(x) subject to A0(x− xI) + b0 = 0. (2.4)

If the KKT matrix K0 is second-order consistent, then the solution of this subproblem is given
by x0 + p0, where p0 satisfies the nonsingular equations(

H AT
0

A0 0

)(
p0
−ŷ0

)
= −

(
g(x0)

b0 +A0(x0 − xI)

)
= −

(
g(x0)

0

)
, (2.5)

If x0 + p0 is feasible, then (x1, y1) = (x0 + p0, y0), otherwise one of the constraints violated at
x0 + p0 is added to the working set and the iteration is repeated. Eventually, the working set
will include enough constraints to define an appropriate primal-dual pair (x1, y1).

If the first subspace minimizer x1 is not optimal, then the method proceeds to find the
sequence of subspace minimizers x2, x3, . . . , described above. At any given iteration, not all
the constraints in Wj are necessarily active at xj . If every working-set constraint is active,
then Wj ⊆ A(xj), and xj is called a standard subspace minimizer; otherwise xj is a non-
standard subspace minimizer. The method is formulated so that there is a subsequence of
“standard” iterates intermixed with a finite number of consecutive “nonstandard” iterates. If
the multipliers yj are nonnegative at a standard iterate, then xj is optimal for (2.1) and the
algorithm is terminated. Otherwise, the working set constraint with a negative multiplier is
identified and designated as the nonbinding working-set constraint associated with the subse-
quent consecutive sequence of nonstandard iterates. If the index of the nonbinding constraint
corresponds to row s of A, then [yj ]s < 0. There follows a sequence of “intermediate” itera-
tions in which the constraint aTsx ≥ aTsxI − bs remains in the working set, but its multiplier
is driven to zero. At each of these iterations, a search direction is defined by solving the
equality-constrained subproblem

minimize
p∈Rn

ϕ(xj + p) subject to aTi p =

{
0 if i 6= s, i ∈ Wj ,

1 if i = s.
(2.6)

In order to simplify the discussion it is assumed that H has not been modified in any previous
iteration. In matrix form, the optimality conditions for the subproblem (2.6) are(

H AT
j

Aj 0

)(
pj
−qj

)
=

(
0
es

)
, (2.7)

where yj + qj are the multipliers at the minimizer xj + pj , and es denotes sth column of
the identity matrix. (In order to simplify the notation, it is assumed that the nonbinding
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constraint corresponds to the sth row of A, which implies that aTs is the sth row of both A
and Aj .) Any nonzero step along pj increases the residual of the nonbinding constraint while
maintaining the residuals of the other working-set constraints at zero (i.e., the nonbinding
constraint becomes inactive while the other working-set constraints remain active).

Once the direction (pj , qj) has been computed, the computation of the next iterate xj+1

depends on the value of pTj Hpj , the curvature of ϕ along pj . There are two cases to consider.

Case 1: pTj Hpj > 0. If the curvature is positive along pj , then the QP iteration is completed
without modification. This will always be the outcome when ϕ is convex. In this case, the
step to the minimizer of ϕ along the search direction pj is given by

α∗j = −g(xj)
Tpj/p

T
jHpj = −[yj ]s/p

T
jHpj . (2.8)

The definition of α∗j implies that the multiplier [yj + α∗jqj ]s associated with the nonbinding
constraint at xj + α∗jpj is zero. This implies that if xj + α∗jpj is feasible with respect to
the constraints that are not in the working set, then the nonbinding constraint index can be
removed fromWj without changing the multiplier associated with the other (active) working-
set constraints. This gives a new standard iterate xj+1 = xj +α∗jpj , with working setWj+1 =
Wj \ {s}. Either xj+1 is optimal or a new nonbinding constraint is identified and the process
is repeated. If xj + α∗jpj is not feasible, then xj+1 is defined as xj + αjpj , where αj is the
smallest step that gives a feasible xj +αjpj . The point xj+1 must have at least one constraint
that is active but not in Wj . If t is the index of this constraint, and at and the vectors
{ai}i∈Wj are linearly independent, then t is added to the working set to give Wj+1. At the
next iteration, a new value of (pj , qj) is computed using the equations (2.7) defined with
Aj+1. If at and {ai}i∈Wj are linearly dependent, then it is shown in [14] that the working set
Wj+1 = {Wj \{s}}∪{t} defined by replacing the index t with index s, is linearly independent.
Moreover, xj+1 = xj + αjpj is a subspace minimizer with respect to Wj+1.

Case 2: pTj Hpj ≤ 0. In this case H is not positive definite and the QP Hessian is modified

so that it has sufficiently large positive curvature along pj . If pTj Hpj ≤ 0, then ϕ(xj +αpj) is
unbounded below for positive values of α. In this case, either the unmodified QP is unbounded,
or there exists a constraint index t and a nonnegative step α̂j such that the constraint residuals
satisfy rt(xj+α̂jpj) = 0, r(xj+α̂jpj) ≥ 0, and α̂j minimizes ϕ(xj+αpj) for all feasible xj+αpj .

If pTj Hpj < 0, a positive semidefinite rank-one matrix σasa
T
s is added to H implicitly.

This modifies the quadratic program that is being solved, but the current iterate xj remains a
subspace minimizer for the modified problem. The only computed quantities that are altered
by the modification are the curvature and the multiplier ys associated with the nonbinding
working-set constraint. The modified Hessian is defined as H(σ̄) = H+ σ̄asa

T
s for some σ̄ > 0.

Gill and Wong [14] show that the curvature pTjHpj is nondecreasing during a sequence of
nonstandard iterations associated with a nonbinding index s. This implies that a modification
of the Hessian will occur only at the first nonstandard iterate.

For an arbitrary σ, the gradient of the modified objective at xj is

g +H(σ)(xj − xI) = g + (H + σasa
T
s )(xj − xI).

As (xj , yj) is a standard subspace minimizer for the unmodified problem, the identities g(xj) =
g+H(xj−xI) = AT

j yj and aTs(xj−xI) = −bs hold, and the gradient of the modified objective
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is given by

g +H(σ)(xj − xI) = g +H(xj − xI) + σasa
T
s (xj − xI)

= g(xj) + σaTs (xj − xI)as

= AT
j

(
yj − σbses

)
= AT

j y(σ), with y(σ) = yj − σbses.

This implies that xj is a subspace minimizer of the modified problem for all σ ≥ 0. Moreover,
the multipliers of the modified problem are the same as those of the unmodified problem
except for the multiplier ys associated with the nonbinding constraint, which is shifted by
−σbs.

Once the Hessian is modified, the equations (2.7) for the primal-dual direction become(
H + σ̄asa

T
s AT

j

Aj 0

)(
p̄j
−q̄j

)
=

(
0
es

)
,

which are equivalent to (
H AT

j

Aj 0

)(
pj

−(q̄j − σ̄es)

)
=

(
0
es

)
.

A comparison with (2.7) yields

p̄j = pj and q̄j = qj + σ̄es.

which implies that the QP direction is not changed by the modification.
For any σ ≥ 0, let αj(σ) denote the step associated with the search direction for the

modified QP. The identities aTs pj = 1 and aTs(xj − xI) = −bs imply that

αj(σ) = −
(
g + (H + σasa

T
s )(xj − xI)

)T
pj

pTj (H + σasa
T
s )pj

= −g(xj)
Tpj + σaTs (xj − xI)

pTjHpj + σ

= −g(xj)
Tpj − σbs

pTjHpj + σ
= − ys − σbs

pTjHpj + σ
= − ys(σ)

pTjHpj + σ
. (2.9)

This implies that σ̄ must satisfy

σ̄ > σmin = −pTjHpj .

The derivative of αj(σ) with respect to σ is given by

α′j(σ) =
1

(pTj Hpj + σ)2

(
ys + bsp

T
j Hpj

)
=

ys(σmin)

(pTj Hpj + σ)2
. (2.10)

The choice of σ̄ depends on two scalar parameters ytol and dmax. The scalar dmax defines
the maximum change in x at each QP iteration. The scalar ytol is the dual optimality
tolerance and is used to define what is meant by a “nonoptimal” multiplier. In particular, the
nonbinding multiplier must satisfy ys < −ytol in order to qualify as being nonoptimal.

There are two cases to consider for the choice of σ̄.
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Case (i): bs < 0. In this case, ys(σ) is an increasing function of σ, which implies that there
exists σopt = (ys − ytol)/bs > 0 such that ys(σopt) = ytol > 0. This modification changes the
multiplier associated with the nonbinding constraint from nonoptimal to optimal. However,
if σopt < σmin, then the curvature is not sufficiently positive and σ must be increased so that
it is larger than σopt. The definition

σ̄ =

{
σopt if σopt ≥ 2σmin;

2σmin if σopt < 2σmin,

guarantees that the curvature along pj is sufficiently positive with an optimal modified multi-
plier ys(σ̄). In either case, the QP algorithm proceeds by selecting an alternative nonbinding
constraint without taking a step along pj .

If bs < 0 and ys(σmin) < 0, then ys(σ) increases from the negative value of ys(σmin) to
−ytol as σ increases from σmin to the positive value σnonopt = (ys + ytol)/bs. This implies
that if σ is chosen in the range σmin < σ ≤ σnonopt, then the multiplier for the nonbinding
constraint remains nonoptimal, and it is possible to both convexify and keep the current
nonbinding constraint. However, in the SQP context it is unusual for a nonbinding constraint
to have a negative value of bs when xk is far from a solution. For an SQP subproblem, b is the
vector c(xk), and a negative value of bs implies that the sth nonlinear constraint is violated at
xk. The linearization of a violated nonlinear constraint is likely to be retained in the working
set because the SQP step is designed to reduce the nonlinear constraint violations. The picture
changes when xk is close a solution and the violations of the nonlinear constraints in the QP

working set are small. In this case, if strict complementarity does not hold at the solution of
the nonlinear problem and xk is converging to a point that satisfies the second-order necessary
conditions, but not the second-order sufficient conditions, then both bs and ys may be small
and negative. It is for this reason that even if ys(σmin) is negative, σ̄ is chosen large enough
that the multiplier changes sign and the nonbinding constraint is retained in the QP working
set.

Case (ii): bs ≥ 0. In this case, ys(σmin) = ys− bsσmin < 0 and ys(σmin) decreases monoton-
ically for all increasing σ > σmin. The step-length function αj(σ) has a pole at σ = −pTjHpj
and decreases monotonically, with αj(σ) → bs ≥ 0 as σ → +∞. The behavior of x(σ) is
depicted in Figure 1 for a two-variable QP with constraints aT(x − xI) ≥ −b, x1 ≥ 0, and
x2 ≥ 0. The next iterate of the QP algorithm lies on the ray x(σ) = xj +αj(σ)pj . As σ →∞,
x(σ) moves closer to the point xj + bspj on the hyperplane aT(x− xI) = 0.

A preliminary value of σ̄ is chosen to provide a change of variables such that

‖xj+1 − xj‖2 ≤ dmax,

where dmax is the preassigned maximum change in x at each QP iteration. If αT = dmax/‖pj‖2,
then the substitution of αj(σ̄) = αT in (2.9) gives σ̄ = −(ys +αTp

T
j Hpj)/(αT − bs). However,

the limit αj(σ) → bs ≥ 0 as σ → +∞, implies that this value of σ̄ may be large if αj(σ̄) is
close to bs. In order to avoid this difficulty, the value of σ̄ is used as long as the associated
value of αj(σ̄) is sufficiently larger than bs, i.e.,

αj(σ̄) =

{
αT if αT ≥ 2bs;

2bs if αT < 2bs,
so that σ̄ =


−
ys + αTp

T
j Hpj

αT − bs
if αT ≥ 2bs,

−
ys + 2bsp

T
j Hpj

bs
if αT < 2bs.
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x2

x1

aT (x− xI) ≥ −b

xI

aTx = aTxI

aT (x− xI) = −b

xj

limσ→∞ x(σ) = xj + bspj

limσ→σmin
x(σ)

x(σ) = xj + α(σ)pj

Case (ii): b > 0

Figure 1: The figures depict a QP with constraints aT(x − xI) ≥ −b, x1 ≥ 0, and x2 ≥ 0. The
point xj is a standard subspace minimizer with working-set constraint aT(x−xI) ≥ −b. The surface
of the hyperplane aT(x − xI) = 0 is marked in green. The QP base point xI is feasible for b ≥ 0.
The QP search direction is the red dotted line. The next iterate of the QP algorithm lies on the
ray x(σ) = xj + αj(σ)pj . As σ increases from its initial value of σmin, the new iterate x(σ) moves
closer to the point xj + bspj on the hyperplane aT(x− xI) = 0.

Overall, if this algorithm is applied to a nonconvex QP of the form (2.1), then a solution
is found for the convexified QP,

minimize
x∈Rn

ϕ(x) = gT(x− xI) + 1
2(x− xI)

T(H + E)(x− xI)

subject to Ax ≥ AxI − b,
(2.11)

where E is a positive-semidefinite matrix of the form E = AT Σ̄A, with Σ̄ a positive semidefi-
nite diagonal matrix. In general, most of the diagonal elements of Σ̄ are zero. The modification
E may be reconstructed from A and a sparse representation of Σ̄.

2.2. Preconvexification

The concurrent convexification method of Section 2.1 has the property that if x0 is a subspace
minimizer, then all subsequent iterates are subspace minimizers. Methods for finding an
initial subspace minimizer utilize an initial estimate x0 of the solution together with an initial
working setW0 of linearly independent constraints. These estimates are often available from a
phase-one linear program or, in the SQP context, the solution of the previous QP subproblem.
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If a potential KKT matrix K0 has too many negative or zero eigenvalues, then W0 is not
a second-order consistent working set. In this case, an appropriate K0 may be obtained by
imposing temporary constraints that are deleted during the course of the subsequent QP it-
erations. For example, if n variables are temporarily fixed at their current values, then A0

is the identity matrix and K0 necessarily has exactly n negative eigenvalues regardless of
the eigenvalues of H(xk, yk). The form of the temporary constraints depends on the method
used to solve the KKT equations, see, e.g., Gill and Wong [14, Section 6]. Once the tempo-
rary constraints are imposed, concurrent convexification can proceed as in Section 2.1 as the
temporary constraints are removed from the working set during subsequent iterations.

A disadvantage of using temporary constraints is that it may be necessary to factor two
KKT matrices if the initial working set is not second-order consistent. An alternative approach
is to utilize the given working set W0 without modification and use preconvexification, which
involves the definition of a positive-semidefinite E0 such that the matrix

K0 =

(
H + E0 AT

0

A0 0

)
(2.12)

is second-order consistent. A suitable modification E0 may be based on some variant of the
symmetric indefinite or block-triangular factorizations of K0. Appropriate methods include:
(i) the inertia controlling LBLT factorization (Forsgren [4], Forsgren and Gill [5]); (ii) an LBLT

factorization with pivot modification (Gould [15]); and (iii) a conventional LBLT factorization
of (2.12) with E0 = σI for some nonnegative scalar σ (Wächter and Biegler [28]). In each
case, the modification E0 is zero if W0 is already second-order consistent.

2.3. Post-convexification

As concurrent convexification generates a sequence of second-order-consistent working sets,
the SQP search direction pk = x̂k − xk must satisfy the second-order-consistent KKT system(

Hk + Ek Jw(xk)T

Jw(xk) 0

)(
pk

−ŷw

)
= −

(
g(xk)

cw(xk)

)
, (2.13)

where Hk = H(xk, yk), Ek is the matrix defined by the pre- and/or concurrent convexification,
and cw(xk) and Jw(xk) are the rows of c(xk) and J(xk) associated with indices in the final
QP working set W (cf. (1.4)). In most cases, concurrent convexification is sufficient to give
pTk(Hk + Ek)pk > 0, but it may hold that pTk(Hk + Ek)pk ≤ 0. In this case, pk is not a
descent direction for gL(xk, ŷk), and an additional post-convexification step is necessary. In the
following discussion, there is no loss of generality in assuming that Ek = 0, i.e., it is assumed
that Hk has not been modified during the preconvexification or concurrent convexification
stages. Post-convexification is based on the following result.

Result 2.1. If Jw is a second-order-consistent working-set matrix associated with a symmet-
ric H, then there exists a nonnegative σ̄ such that the matrix H̄ = H + σ̄JT

wJw is positive
definite. In addition, the solution of the equations(

H JT
w

Jw 0

)(
p

−ŷw

)
= −

(
g
cw

)
and

(
H̄ JT

w

Jw 0

)(
p̄

−ȳw

)
= −

(
g
cw

)
are related by the identities p̄ = p and ȳw = ŷw − σ̄cw.
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If the solution (x̂k, ŷk) of the QP subproblem does not satisfy the descent condition, then
pk = x̂k − xk is such that

pTkH(xk, yk)pk = −gL(xk, ŷk)Tpk < γ̄pTk pk,

for some positive γ̄. The result implies that multipliers ȳk such that [ȳk ]i = 0, for i 6∈ W, and
[ȳk ]w = ŷw − σ̄cw(xk), provide the required curvature

pTk H̄(xk, yk)pk = −gL(xk, ȳk)Tpk = γpTk pk,

where σ̄ =
(
γpTk pk−pTkH(xk, yk)pk

)
/‖cw(xk)‖2 with γ chosen such that γ ≥ γ̄. The extension

of this result to the situation where (x̂k, ŷk) satisfy the modified KKT equations (2.13) is
obvious.

3. Summary

Convexification algorithms are proposed for the QP subproblem in an SQP method for nonlin-
early constrained optimization. Three forms of convexification are defined: preconvexification,
concurrent convexification, and post-convexification. The methods require only minor changes
to the algorithms used to solve the QP subproblem, and are designed so that modifications to
the original problem are minimized and applied only when necessary.

It should be noted that the post-convexification Result 2.1 holds even if a conventional
general QP method is used to solve the QP subproblem (provided that the method gives a final
working set that is second-order consistent). It follows that post-convexification will define a
descent direction regardless of whether or not concurrent convexification is used. The purpose
of concurrent convexification is to reduce the probability of needing post-convexification, and
to avoid the difficulties associated with solving an indefinite QP problem.

The methods defined here are the basis of the second-derivative solver in the dense SQP

package DNOPT of Gill, Saunders and Wong [13]. All of the methods may be extended
to problems in which the constraints are written in so-called standard form: c(x) = 0 and
x ≥ 0 (see Gill and Wong [14, Section 4]). In this case, the inequality constraints for the QP

subproblem are simple bounds x ≥ 0, and all the modification matrices are diagonal.
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