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Abstract

Stabilized sequential quadratic programming (sSQP) methods for nonlinear optimization
generate a sequence of iterates with fast local convergence regardless of whether or not
the active-constraint gradients are linearly dependent. This paper concerns the local con-
vergence analysis of a sSQP method that uses a line search with a primal-dual augmented
Lagrangian merit function to enforce global convergence (Report CCoM 13-04, Center for
Computational Mathematics, University of California, San Diego, 2013). The method is
provably well-defined and is based on solving a strictly convex quadratic programming sub-
problem at each iteration. It is shown that the method has superlinear local convergence
under assumptions that are no stronger than those required by conventional stabilized
SQP methods. The fast local convergence is obtained by allowing a small relaxation of
the optimality conditions for the quadratic programming subproblem in the neighborhood
of a solution. In the limit, the line search selects the unit step length, which implies that
the method does not suffer from the Maratos effect. The analysis implies that the method
has the same strong first- and second-order global convergence properties that have been
established for augmented Lagrangian methods, yet is able to transition seamlessly to
sSQP with fast local convergence in the neighborhood of a solution. Numerical results on
some degenerate problems are reported.
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1. Introduction

Sequential quadratic programming (SQP) methods are an important class of methods for
minimizing a smooth nonlinear function subject to both equality and inequality constraints.
This paper concerns the local convergence properties of a new stabilized SQP method for the
solution of a nonlinear optimization problem written in the form

(NP) minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0,

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. For problem (NP),
the vector g(x) is used to denote ∇f(x), the gradient of f at x. The matrix J(x) denotes
the m× n constraint Jacobian, which has ith row ∇ci(x)T , the gradient of the ith constraint
function ci at x. The Lagrangian associated with (NP) is L(x, y, z) = f(x) − c(x)Ty − zTx,
where y and z are m- and n-vectors of dual variables associated with the equality constraints
and nonnegativity constraints, respectively. The Hessian of the Lagrangian with respect to x
is denoted by H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x).

At each iteration of a conventional line-search merit-function SQP method, a sufficient
decrease in a merit function is obtained by performing a line search in the direction of a
solution of a quadratic programming (QP) subproblem in which a local quadratic model of
the Lagrangian is minimized subject to the linearized constraints. The merit function is
designed to provide a measure of the quality of a given point as an estimate of a solution
of the nonlinearly constrained problem. (For a recent survey of SQP methods, see Gill and
Wong [18].) Stabilized sequential quadratic programming (sSQP) methods are designed to
improve the poor local convergence rate that can occur when a conventional SQP method is
applied to an ill-posed or degenerate problem. Given an estimate (xk, yk) in the neighborhood
of a primal-dual solution (x∗, y∗) of problem (NP), sSQP methods compute a new solution
estimate based on the properties of a QP subproblem of the form

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µk‖y‖

2

subject to c(xk) + J(xk)(x− xk) + µk(y − yk) = 0, x ≥ 0,
(1.1)

where µk is a positive scalar of the order of the distance of (xk, yk) to the set of solutions
of (NP). The QP subproblem associated with a conventional SQP method corresponds to
the value µk = 0. The terms in the objective and constraints of (1.1) associated with µk
serve to bound the change in the dual variables and provide a sequence of iterates with fast
local convergence regardless of whether or not the active-constraint gradients are linearly
dependent. The first sSQP method was proposed by Wright [34], who established a super-
linear rate of convergence of the solutions {(xk, yk)} of (1.1) under the assumptions of strict
complementarity and the satisfaction of the Mangasarian-Fromovitz constraint qualification.
These assumptions were relaxed in a subsequent analyses by Hager [20], and more recently
by Fernández and Solodov [10], and Solodov and Izmailov [25]. Independently, Fischer [11]
proposed an algorithm in which an auxiliary QP problem is solved for the multiplier estimate
of the conventional QP subproblem. This method also has superlinear convergence under
appropriate assumptions. The analysis of a conventional sSQP method concerns the sequence
{(xk, yk)} of solutions of the QP subproblem (1.1). Other methods related to sSQP identify
an estimate of the optimal active set and then solve an equality constrained or inequality
constrained QP defined in terms of a subset of the constraints. Constraints omitted from the
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estimated active set are allowed to be violated slightly. Wright [35, 36] includes only a sub-
set of the linearized constraints in an inequality constrained sSQP subproblem. Wright [37],
and Oberlin and Wright [33] use an auxiliary inequality constrained subproblem to estimate
the optimal active set and then solve a sSQP subproblem with only equality constraints. Iz-
mailov and Solodov [22] also use an auxiliary subproblem, but solve an unstabilized equality
constrained problem using a rank detection method to treat any linear dependence in the
linearized constraints.

All of these sSQP methods can be shown to exhibit fast local convergence under suitable
assumptions. It should be noted that, with the notable exception of Wright [37], previous
analyses of sSQP methods, while being elegant, do not pertain to a consistent, well-defined
algorithm. They show only that if a specific local solution of a nonconvex QP subproblem
is found, then these solutions converge at a superlinear rate. Unfortunately, in a practical
method, there is no guarantee that a nonconvex QP solver will find the specific solution
required for the theory. This problem is in addition to the well-known difficulties associated
with solving a nonconvex QP, i.e., the potential for multiple and unbounded solutions. (See
Kungurtsev [28, Chapter 5] for a discussion of these issues.)

Although sSQP methods exhibit fast local convergence, they come with little or no global
convergence theory, which implies that stabilized methods must start by solving the QP sub-
problem associated with a conventional (globally convergent) SQP method and switch to the
stabilized QP strategy when it is determined that the iterates are in the proximity of a solu-
tion. Moreover, as mentioned above, many sSQP methods require the solution of an auxiliary
inequality-constrained subproblem at each outer iteration, usually a linear program (LP).

In a companion paper [15], the authors propose a globally convergent sSQP method that
does not require a switch to a conventional SQP method or the solution of an auxiliary
inequality constrained subproblem. The method is based on using a primal-dual augmented
Lagrangian merit function in conjunction with a line search to enforce global convergence.
At each iteration, an estimate of the solution is computed by minimizing a strictly convex
local quadratic model of the augmented Lagrangian subject to simple bound constraints. This
subproblem is formally equivalent to a QP problem that is closely related to the QP subproblem
associated with sSQP. The purpose of this paper is to establish the local convergence properties
of the algorithm proposed in [15].

The principal contributions are the following. (i) A local descent step is proposed that is
based on allowing a small relaxation of the optimality conditions for the bound-constrained
subproblem. It is shown that this step provides iterates that are equivalent to those from a
conventional sSQP method when close to the solution. This equivalence holds under condi-
tions that are no stronger than those required to establish the superlinear convergence of a
conventional sSQP method. (ii) A local convergence analysis is given that does not require
the assumption of a constraint qualification or strict complementarity condition. (iii) It is
shown that the step length of one is selected in the limit, which implies that the method does
not suffer from the Maratos effect (see Maratos [30]). As far as we are aware, this is the only
stabilized SQP method with this property. (iv) Although exact second-derivatives are used,
the method does not require the solution of a nonconvex QP subproblem—a problem that is
known to be NP-hard. In addition, the local convergence theory makes no assumptions about
which local solution of the QP subproblem is computed. (v) Preliminary numerical results
indicate that the method has good global and local convergence properties for degenerate
problems under weak regularity assumptions.
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Overall, the analysis implies that the method of [15] has the same strong first- and second-
order global convergence properties that have been established for augmented Lagrangian
methods, yet is able to transition seamlessly to sSQP with fast local convergence in the neigh-
borhood of a solution.

The remainder of the paper is organized as follows. This section concludes with a summary
of the notation, and the definition of a first- and second-order KKT pair. Section 2 contains a
brief review of the second-order primal-dual sSQP method for which global convergence was
established in [15]. The local convergence properties of the method are established in Section 3.
In Section 4, methods are discussed for solving the sSQP subproblems, and numerical results
are provided.

1.1. Notation

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its induced matrix
norm. Given vectors a and b with the same dimension, the vector with ith component aibi is
denoted by a · b. Similarly, min(a, b) is the vector with components min(ai, bi). The vectors
e and ej denote, respectively, the column vector of ones and the jth column of the identity
matrix I. The dimensions of e, ei and I are defined by the context. The set of integers {1,
2, . . . , n} is denoted by 1 :n. Given vectors x and y, the vector consisting of the elements of
x augmented by elements of y is denoted by (x, y). The value of a scalar-, vector- or matrix-
valued function F with arguments x and y will be written as either F (x, y) or F (v), where v
is the vector (x, y). The ith component of a vector labeled with a subscript will be denoted
by [ · ]i, e.g., [ v ]i is the ith component of the vector v. For a given `-vector u and index set
S, the quantity [u ]S denotes the subvector of components uj such that j ∈ {1, 2, . . . , ` }∩S.
Similarly, if M is a symmetric ` × ` matrix, then [M ]S denotes the symmetric matrix with
elements mij for i, j ∈ {1, 2, . . . , ` } ∩ S. Let {αj}j≥0 be a sequence of scalars, vectors or
matrices and let {βj}j≥0 be a sequence of positive scalars. If there exists a positive constant
γ such that ‖αj‖ ≤ γβj , we write αj = O(βj). If there exists a sequence {γj} → 0 such that
‖αj‖ ≤ γjβj , we say that αj = o(βj). If there exist positive constants γ1 and γ2 such that
γ1βj ≤ ‖αj‖ ≤ γ2βj , we write αj = Θ

(
βj
)
.

1.2. Background

A vector x∗ is a first-order KKT point for problem (NP) if there exists a dual vector y∗ such
that

c(x∗) = 0, x∗ ≥ 0,

x∗ ·
(
g(x∗)− J(x∗)T y∗

)
= 0, g(x∗)− J(x∗)T y∗ ≥ 0.

(1.2)

These conditions may be written in the equivalent form r(x∗, y∗) = 0, where

r(x, y) =
∥∥(c(x),min

(
x, g(x)− J(x)Ty

))∥∥ . (1.3)

Any (x∗, y∗) satisfying (1.2) or, equivalently, r(x∗, y∗) = 0, is called a first-order KKT pair.
For arbitrary vectors x and y of appropriate dimension, the scalar r(x, y) provides a practical
estimate of the distance of (x, y) to a first-order KKT pair of problem (NP). If, in addition,
(x∗, y∗) satisfies the condition pTH(x∗, y∗)p ≥ 0 for all p such that J(x∗)p = 0, with pi = 0
for all i such that x∗i = 0, then (x∗, y∗) is referred to as a second-order KKT pair. In general,
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the Lagrange multiplier associated with a first-order KKT point is not unique, and the set of
Lagrange multiplier vectors is given by

Y(x∗) = {y ∈ Rm : (x∗, y) satisfies r(x∗, y) = 0}. (1.4)

2. The Primal-Dual Stabilized SQP Algorithm

The algorithm is based on replacing problem (NP) by a sequence of problems of the form

minimize
x∈Rn,y∈Rm

M(x, y ; yE
k , µk) subject to x ≥ 0, (2.1)

where M(x, y ; yE
k , µk) is the primal-dual function

M(x, y ; yE
k , µk) = f(x)− c(x)TyE

k +
1

2µk
‖c(x)‖2 +

1

2µk
‖c(x) + µk(y − yE

k )‖2, (2.2)

with µk a positive penalty parameter and yE
k an estimate of a Lagrange multiplier vector

for problem (NP). The method has an inner/outer iteration structure in which each outer
iteration involves the minimization of a quadratic model of M subject to the nonnegativity
constraints. The inner iterations are then those of the active-set method used to find an
approximate bound-constrained minimizer of the quadratic model. If the Hessian of M is not
positive definite, a direction of negative curvature for M is computed. A direction obtained
by solving the QP subproblem is combined with the direction of negative curvature (if one
is computed) to give a search direction for a line search designed to find a step of sufficient
decrease in M(x, y ; yE

k , µk).
Each outer iteration involves the definition of two related QP subproblems associated with

the primal-dual function (2.2). The objective function in both subproblems is defined in terms
of the gradient ∇M and a matrix that approximates the Hessian ∇2M . For given values of yE

and µ, the gradient and Hessian of M at (x, y) may be written in the form

∇M(x, y ; yE , µ) =

(
g(x)− J(x)T

(
π(x ; yE , µ) + (π(x ; yE , µ)− y)

)
µ(y − π(x ; yE , µ))

)
,

and

∇2M(x, y ; yE , µ) =

(
H
(
x, π(x ; yE , µ) + (π(x ; yE , µ)− y)

)
+ 2

µJ(x)TJ(x) J(x)T

J(x) µI

)
,

where π is the vector-valued function π(x ; yE , µ) = yE − c(x)/µ.
Let (xk, yk) be the kth estimate of a primal-dual solution of problem (NP). Let v and vk

denote the (n + m)-vectors of primal and dual variables (x, y) and (xk, yk). Given a second
positive penalty parameter µR

k such that µR
k ≤ µk, the change in M at vk may be approximated

by the quadratic function Qk(v ; yE
k , µ

R
k ), where

Qk(v ; yE , µR) = ∇M(vk ; yE , µR)T(v − vk) + 1
2(v − vk)TB(vk ;µR)(v − vk), (2.3)

and the matrix B(vk ;µR
k ) is obtained by replacing π(xk ; yE

k , µ
R
k ) by yk in the leading block of

the Hessian matrix ∇2M(xk, yk ; yE
k , µ

R
k ), i.e.,

B(xk, yk ;µR
k ) =

(
H(xk, yk) + 2

µRk
J(xk)

TJ(xk) J(xk)
T

J(xk) µR
kI

)
. (2.4)
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The matrix B(xk, yk ;µR
k ) is independent of π and therefore does not involve yE

k . Gill, Kun-
gurtsev and Robinson [15, Corollary A.1] show that if (x∗, y∗) satisfies certain second-order
sufficient conditions for an optimal solution of problem (NP), then, for the values vk = (x∗, y∗)
and yE

k = yk, there exists a positive µ̄ such that for all 0 < µR
k < µ̄, the point (x∗, y∗) satisfies

the second-order sufficient optimality conditions for the QP subproblem

minimize
v

Qk(v ; yE
k , µ

R
k ) subject to [ v ]i ≥ 0, i = 1 :n. (2.5)

The benefit of usingB(xk, yk ;µR
k ) and not∇2M(xk, yk ; yE

k , µ
R
k ) in the definition of the quadratic

function (2.3) is that the QP subproblem (2.5) is formally equivalent to the QP subproblem

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µ

R
k‖y‖2

subject to c(xk) + J(xk)(x− xk) + µR
k (y − yE

k ) = 0, x ≥ 0
(2.6)

(see Gill and Robinson [17]). A comparison of this subproblem and (1.1) indicates that setting
yE
k = yk in the definition of (2.3) and forcing µR

k → 0 as (xk, yk) converges to a primal-dual
solution (x∗, y∗) will induce the method to behave like a sSQP method and thereby inherit
the same fast local convergence rate.

At the outermost level, the method may be regarded as a primal-dual augmented La-
grangian method for which the parameters {yE

k } and {µk} are adjusted to give global con-
vergence. However, the sequence of penalty parameters {µR

k} is chosen in such a way that,
in the neighborhood of a solution, the search direction is equivalent to that defined by a
sSQP method. In this context, µR

k plays the role of a regularization or stabilization parameter
rather than a penalty parameter, thereby providing an O(µR

k ) estimate of the conventional
SQP direction (see Gill and Robinson [17]).

The next four sections provide some additional details of the algorithm, with an emphasis
on those aspects related to the local convergence analysis. A complete description of the
algorithm, including step-by-step details of the main computations, may be found in Gill,
Kungurtsev and Robinson [15]. In Section 2.1 we provide details of how the parameters yE

k ,
µk and µR

k are defined. In Section 2.2 we consider the definition of the QP subproblem and
show that although the QP (2.5) cannot be used directly as a local quadratic model of M , it
forms the basis for two approximate convex QP subproblems, one with inequality constraints,
and the other with only equality constraints. In Section 2.3 we give a brief outline of the
flexible line search. Finally, Section 2.4 provides a brief summary of the algorithm.

2.1. Definition of the penalty parameters and multiplier estimate

At the start of the kth outer iteration, the primal-dual point (xk, yk) is known, together with
the regularization parameter µR

k−1 and penalty parameter µk−1 from the previous iteration.
The first step is to compute yE

k and µR
k for the new iteration. These parameters are defined

in terms of an estimate of the optimal active set of problem (NP). This estimate involves a
positive scalar ε that reflects the distance of (x, y) to a first-order optimal pair for problem
(NP). The ε-active set is defined as

Aε(x, y, µ) =
{
i : xi ≤ ε, with ε ≡ min

(
εa, max

(
µ, r(x, y)γ

) )}
, (2.7)

where γ and εa are fixed scalars satisfying 0 < γ < 1 and 0 < εa < 1, and r(x, y) is the
nonnegative scalar of (1.3). Similarly, the ε-free set is the complement of Aε in {1, 2, . . . ,
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n+m}, i.e.,
Fε(x, y, µ) = {1, 2, . . . , n+m} \ Aε(x, y, µ). (2.8)

The calculation of yE
k and µR

k also requires the scalar ξk (ξk ≥ 0), which is an estimate of
the magnitude of the “most negative” eigenvalue of BFε (vk ;µR

k−1). The scalar ξk is computed

as part of the scalar-vector pair (ξk, s
(1)
k ) such that

s
(1)T
k B(vk ;µR

k−1)s
(1)
k = −ξk‖u

(1)
k ‖

2, (2.9)

where u
(1)
k is the vector of first n components of s

(1)
k . If ξk = 0, then s

(1)
k = 0. If BFε (vk ;µR

k−1)

is positive definite then (ξk, s
(1)
k ) = 0. (The calculation of ξk is discussed in [15, Algorithm 1]

and Section 2.2.) The values of yE
k and µR

k also depend on the scalars φmax
V,k−1, φmax

O,k−1 and τk−1

defined below. The magnitudes of φmax
V,k−1, φmax

O,k−1 and τk−1 reflect the distance of (xk, vk) to
an optimal point.

The multiplier estimate yE
k is set to yk if (xk, yk) gives an improvement in a measure of the

distance to a primal-dual second-order solution (x∗, y∗). The algorithm uses the feasibility
and optimality measures η(xk) and ω(xk, yk, ξk) such that

η(xk) = ‖c(xk)‖, and

ω(xk, yk, ξk) = max
(∥∥min(xk, g(xk)− J(xk)

Tyk)
∥∥ , ξk) . (2.10)

Given η(xk) and ω(xk, yk, ξk), weighted combinations of the feasibility and optimality mea-
sures are defined as

φV (xk, yk) = η(xk) + βω(xk, yk, ξk), and

φO(xk, yk, ξk) = βη(xk) + ω(xk, yk, ξk),

where β is a fixed scalar such that 0 < β � 1. (With this notation, “V” indicates a measure
of the constraint violations and “O” denotes a measure of the distance to optimality.) The
assignment yE

k = yk is done if

φV (vk) ≤ 1
2φ

max
V,k−1 or φO(vk, ξk) ≤ 1

2φ
max
O,k−1. (2.11)

The point (xk, yk) is called a “V-iterate” if it satisfies the bound on φV (vk), and an “O-
iterate” if it satisfies the bound on φO(vk, ξk). A “V-O iterate” is a point at which one or
both of these conditions holds, and the associated iteration (or iteration index) is called a “V-
O iteration.” For a V-O iteration, new values are given by τk = 1

2τk−1, and φmax
V,k = 1

2φ
max
V,k−1

or φmax
O,k = 1

2φ
max
O,k−1, depending on which of the inequalities (2.11) holds. In addition, the new

regularization parameter is given by

µR
k =

{
min

(
µR

0 , max
(
rk, ξk

)
γ
)

if max
(
rk, ξk

)
> 0;

1
2µ

R
k−1 otherwise,

(2.12)

where rk = r(xk, yk) is defined in (1.3).
If the conditions for a V-O iteration do not hold, a test is made to determine if (xk, yk) is

an approximate second-order solution of the bound-constrained problem

minimize
x,y

M(x, y ; yE
k−1, µ

R
k−1) subject to x ≥ 0. (2.13)
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In particular, (xk, yk) is tested using the conditions:

‖min
(
xk,∇xM(xk, yk ; yE

k−1, µ
R
k−1)

)
‖ ≤ τk−1, (2.14a)

‖∇yM(xk, yk ; yE
k−1, µ

R
k−1)‖ ≤ τk−1µ

R
k−1, and (2.14b)

ξk ≤ τk−1, (2.14c)

where τk−1 is a positive tolerance. If these conditions are satisfied, then (xk, yk) is called
an “M-iterate” and the parameters are updated as in a typical conventional augmented La-
grangian method, with the multiplier estimate yE

k−1 replaced by the safeguarded value

yE
k = max

(
− ymaxe, min( yk, ymaxe )

)
(2.15)

for some large positive scalar constant ymax, and the new regularization parameter is given
by

µR
k =

{
min

(
1
2µ

R
k−1, max

(
rk, ξk

)
γ
)
, if max(rk, ξk) > 0;

1
2µ

R
k−1, otherwise.

(2.16)

In addition, a new tolerance τk is computed such that τk = 1
2τk−1.

Finally, if neither (2.11) nor (2.14) are satisfied, then yE
k = yE

k−1, µR
k = µR

k−1, φmax
V,k = φmax

V,k−1,
φmax
O,k = φmax

O,k−1, and τk = τk−1. As the multiplier estimates and regularization parameter are
fixed at their current values in this case, (xk, yk) is called an “F-iterate”.

2.2. Definition of the quadratic model and line-search direction

The bound-constrained problem (2.5) is not suitable for the calculation of a search direction
because B(vk ;µR

k ) is not positive definite in general. A nonconvex QP can have many local
minima and may be unbounded. In addition, the certification of a second-order solution of
a nonconvex QP is computationally intractable in certain situations. These difficulties are
avoided by approximating subproblem (2.5) by the convex QP

minimize
v

Q̂k(v ; yE
k , µ

R
k ) subject to [ v ]i ≥ 0, i = 1 :n. (2.17)

where Q̂k(v ; yE
k , µ

R
k ) is the strictly convex quadratic model

Q̂k(v ; yE
k , µ

R
k ) = ∇M(vk ; yE

k , µ
R
k )T(v − vk) + 1

2(v − vk)T B̂(vk ;µR
k )(v − vk), (2.18)

with B̂(vk ;µR
k ) a positive-definite approximation of B(vk ;µR

k ). The matrix B̂(vk ;µR
k ) has the

form

B̂(vk ;µR
k ) =

(
Ĥ(xk, yk) + 2

µRk
J(xk)

TJ(xk) J(xk)
T

J(xk) µR
kI

)
, (2.19)

where Ĥ(xk, yk) is defined so that B̂(xk, yk ;µR
k ) is positive definite, and B̂Fε (xk, yk ;µR

k ) is

equal to BFε (xk, yk ;µR
k ) if BFε (xk, yk ;µR

k ) is positive definite. The matrix B̂ is computed by
a process known as “convexification” (see [17, Section 4] for details). If the unique solution of
the subproblem (2.17) is denoted by v̂k, then the associated direction vector starting from vk
is given by dk = v̂k− vk. The vector dk found by solving (2.17) is known as the global descent
direction because of its crucial role in the proof of global convergence.
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An important property of the proposed method is the ability to compute a direction
dk from an alternative QP subproblem that has only equality constraints. The optimality
conditions for the QP subproblem (2.5) at an optimal point v̂k = vk + dk are given by

[∇Qk(vk + dk ; yE
k , µ

R
k ) ]F = 0, [∇Qk(vk + dk ; yE

k , µ
R
k ) ]A ≥ 0, and

[ vk + dk ]i ≥ 0 for i = 1 :n,
(2.20)

where [ · ]A and [ · ]F denote vectors with components from the active and free sets

A(x) = {i : [x ]i = 0} and F(x) = {1 :n+m} \ A(x), (2.21)

at v̂k = vk + dk. If the property of strict complementarity does not hold for problem (NP),
then some of the components of y∗ associated with variables on their bounds may be zero,
in which case some QPs defined at xk near x∗ may have multipliers that are close to zero.
In this situation the QP algorithm may remove active-set indices associated small negative
multipliers at one outer iteration, only to add them again at the next. This inefficiency is
prevented using an approximate QP solution in which small negative multipliers are regarded
as being optimal.

If BFε is positive definite and vk is a V-O iterate (in which case yE
k = yk), the solution of

the equality-constraint QP subproblem

minimize
v

Qk(v ; yE
k , µ

R
k ) subject to [ v ]Aε = 0, (2.22)

is unique. As in the case of a global descent direction, the solution v̂k may be defined in terms
of a step dk from the point vk using the optimality conditions

[ vk + dk ]Aε = 0, [∇Qk(vk + dk ; yE
k , µ

R
k ) ]Fε = 0, (2.23)

with no nonnegativity restriction on the components of [∇Qk(vk+dk ; yE
k , µ

R
k ) ]Aε . The unique

direction satisfying these equations is referred to as the local descent direction. When com-
puted, it is used as the vector dk in the line search only if certain conditions hold. Let tk be
defined such that

tk = r(xk, yk)
λ, where 0 < λ < min{γ, 1− γ} < 1, (2.24)

and γ is the parameter used in the definition (2.7) of the ε-active set. The local descent
direction dk satisfying (2.23) is used in the line search when the following three conditions are
satisfied:

[ vk + dk ]i ≥ 0, i = 1 :n, [∇Qk(vk + dk ; yE
k , µ

R
k ) ]Aε ≥ −tke, and ∇MT

kdk < 0. (2.25)

These conditions may be satisfied at any iterate, but are most likely to be satisfied in the
neighborhood of a solution. If the local descent direction does not satisfy the conditions (2.25)
and is therefore not selected for the line search, it is used to initialize the active-set method for
solving (2.17). In this sense, the equality-constrained subproblem (2.22) is not an auxiliary
subproblem, but one that must be solved anyway as part of the solution of the QP subproblem
(2.17) (for more details, see Section 4.1).

The line-search direction ∆vk is the sum of two vectors dk and sk. The vector dk is either
the global descent direction or local descent direction as computed above. The vector sk, if
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nonzero, is a direction of negative curvature for the quadratic model Qk(v ; yE
k−1, µ

R
k−1). The

vector sk has the form sk = (uk, wk) and is a scalar multiple of the vector s
(1)
k of (2.9) defined

such that

sTkB(vk ;µR
k )sk ≤ 0, ∇M(vk ; yE

k , µ
R
k )Tsk ≤ 0, and [ vk + dk + sk ]i ≥ 0, i = 1 :n. (2.26)

(See [15, Algorithm 3].) The direction sk is zero if no negative curvature is detected, but sk
must be nonzero if ξk > 0 and dk = 0 (see [15, Lemma 2.2]), which ensures that the line-
search direction is nonzero at a first-order stationary point vk at which BFε (xk, yk ;µR

k−1) is
not positive semidefinite.

2.3. Computation of the line-search step

Once the directions dk and sk have been computed, a flexible line search is performed based
on the search direction ∆vk = dk + sk. (The idea of a flexible line search was proposed by
Curtis and Nocedal [5] in the context of minimizing an l1 penalty function, and extended to
the augmented Lagrangian function by Gill and Robinson [17].)

For a given line-search penalty parameter µ, an Armijo condition is used to define a
reduction in the function Ψk(α ;µ) = M(vk + α∆vk ; yE

k , µ) that is at least as good as the
reduction in the line-search model function

ψk(α ;µ, `k) = Ψk(0 ;µ) + αΨ ′k(0 ;µ) + 1
2(`k − 1)α2 min

(
0, ∆vTkB(xk, yk ;µR

k−1)∆vk
)
, (2.27)

where Ψ ′k denotes the derivative with respect to α. The scalar `k is either 1 or 2, depending
on the order of the line-search model function. The value `k = 1 implies that ψk is an affine
function, which gives a first-order line-search model. The value `k = 2 defines a quadratic ψk
and gives a second-order line-search model. The first-order line-search model is used when
dk 6= 0, sk = 0, and (xk, yk) is a V-O iterate. This is crucial for the proof that the line-search
algorithm returns the step length of one in the neighborhood of a second-order solution (see
Theorem 3.2 below).

Given a fixed parameter γS ∈ (0, 1
2), the flexible line search attempts to compute an αk

that satisfies the modified Armijo condition

Ψk(0 ;µF
k )− Ψk(αk ;µF

k ) ≥ γS
(
ψk(0 ;µR

k , `k)− ψk(αk ;µR
k , `k)

)
(2.28)

for some µF
k ∈ [µR

k , µk]. The required step is found by repeatedly reducing αk by a constant
factor until either ρk(αk ;µk, `k) ≥ γS or ρk(αk ;µR

k , `k) ≥ γS, where

ρk(α ;µ, `) =
(
Ψk(0 ;µ)− Ψk(α ;µ)

)
/
(
ψk(0 ;µR

k , `)− ψk(α ;µR
k , `)

)
.

(Just prior to the line search, the line-search penalty parameter µk is increased if necessary
to ensure that µk ≥ µR

k , i.e., µk = max(µR
k , µk).)

The Armijo procedure is not executed in two situations. First, if dk = sk = 0, then the step
length is set at αk = 1. In the second case, αk is set to zero if dk = 0, ∇M(vk ; yE

k , µ
R
k )T sk = 0,

and the magnitude of the curvature of the merit function M(vk ; yE
k , µ

R
k ) in the direction of sk is

not sufficiently large compared to ξk, the magnitude of the curvature of the quadratic model.
The magnitude of the negative curvature is considered to be insufficient if the inequality
−sTk∇2M(vk ; yE

k , µ
R
k )sk/‖uk‖2 ≤ γSξk, holds, where uk the vector of first n components of sk.
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In either case, vk+1 = vk and it must hold that a µR
k such that µR

k < µR
k−1 is used in the next

iteration (see Lemmas 2.3(2) and 2.4(3) of [15]).
Once αk has been found, the penalty parameter for the next iteration is computed as

µk+1 =

µk, if ρk(αk ;µk, `k) ≥ γS, or dk = sk = 0, or αk = 0;

max
(

1
2µk, µ

R
k

)
, otherwise.

(2.29)

The aim is to decrease the penalty parameter only when the merit function computed with
µk is not sufficiently reduced by the trial step.

2.4. Algorithm summary

The computation associated with the kth iteration of the main algorithm may be arranged
into seven principal steps.

1. Given (xk, yk) and the regularization parameter µR
k−1 from the previous iteration, com-

pute Fε(xk, yk, µR
k−1) and B(vk ;µR

k−1). Compute the nonnegative scalar ξk and vector

s
(1)
k such that

s
(1)T
k B(vk ;µR

k−1)s
(1)
k = −ξk‖u

(1)
k ‖

2,

where ξk ≥ 0 and u
(1)
k is the vector of first n components of s

(1)
k . If ξk > 0, then ξk ap-

proximates the magnitude of the “most negative” or “least” eigenvalue of BFε (vk ;µR
k−1).

If ξk = 0, then s
(1)
k = 0. If BFε (vk ;µR

k−1) is positive definite then (ξk, s
(1)
k ) = 0. (See [15,

Algorithm 1].)

2. Terminate if the following conditions hold:

r(xk, yk) ≤ τstop, ξk ≤ τstop, and µR
k−1 ≤ τstop, (2.30)

where τstop is a preassigned stopping criterion. If these conditions are satisfied, xk is an
approximate second-order KKT point.

3. Compute yE
k and µR

k for the kth iteration based on the values ξk, r(xk, yk), y
E
k−1, µR

k−1,
φmax
V,k−1, φmax

O,k−1 and τk−1. Compute new values for φmax
V,k , φmax

O,k , τk. (See Steps 13–24 of
Algorithm 5 [15].)

4. Terminate if xk an M-iterate such that

min
(
‖c(xk)‖, τstop

)
> µR

k , and ‖min
(
xk, J(xk)

Tc(xk)
)
‖ ≤ τstop. (2.31)

If these conditions are satisfied, xk is an approximate infeasible stationary point of the
problem min ‖c(x)‖2 subject to x ≥ 0.

5. Compute a positive-definite B̂(vk ;µR
k ) such that B̂Fε (xk, yk ;µR

k ) = BFε (xk, yk ;µR
k ) if

the matrix BFε (xk, yk ;µR
k ) is positive definite. Compute dk = v̂k − vk, where v̂k is the

solution of either the equality-constraint QP subproblem (2.22) or the strictly convex
QP subproblem (2.17). In either case, dk has the form dk = (pk, qk), where the primal
components pk satisfy xk + pk ≥ 0. (See [15, Algorithm 2].)
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6. Rescale the direction s
(1)
k to give a feasible direction of negative curvature sk = (uk, wk)

satisfying (2.26). (See [15, Algorithm 3].)

7. Perform a flexible line search along the vector ∆vk = sk + dk = (uk + pk, wk + qk).
(See [15, Algorithm 4].) Update the line-search penalty parameter µk using (2.29).

3. Local Convergence

The local convergence analysis involves second-order sufficient conditions defined in terms of
the sets of strongly-active variables A+ and weakly-active variables A0:

A+(x, y) = {i ∈ A(x) : [ g(x)− J(x)Ty ]i > 0},
A0(x, y) = {i ∈ A(x) : [ g(x)− J(x)Ty ]i = 0}.

(3.1)

Definition 3.1. (Second-order sufficient conditions (SOSC)) A primal-dual pair (x∗, y∗)
satisfies the second-order sufficient optimality conditions for problem (NP) if it is a first-order
KKT pair (i.e., r(x∗, y∗) = 0) and

pTH(x∗, y∗)p > 0 for all p ∈ C(x∗, y∗) \ {0}, (3.2)

where C(x∗, y∗) is the critical cone

C(x∗, y∗) = null
(
J(x∗)

)
∩ {p : pi = 0 for i ∈ A+(x∗, y∗), pi ≥ 0 for i ∈ A0(x

∗, y∗) }.

The analysis of Gill, Kungurtsev and Robinson [15] establishes that the global convergence
behavior of the method falls into one of two cases, depending on whether the set of V-O iterates
is infinite or finite. If there are infinitely many V-O iterates, there exists a subsequence
with limit point x∗ that is either a first-order KKT point, or fails to satisfy the constant
positive generator constraint qualification (CPGCQ)1. Moreover, if the Mangasarian-Fromovitz
constraint qualification (MFCQ) holds at x∗, then the associated subsequence of dual estimates
is bounded with limit point y∗ such that (x∗, y∗) is a first-order KKT pair for problem (NP).
If the weak constant rank condition (WCRC)2 holds in addition to the MFCQ (in which case,
the CPGCQ holds automatically), then (x∗, y∗) is a second-order KKT point. In the case that
the set of V-O iterates is finite, there are infinitely many M-iterates, and every limit point x∗

of this sequence is an infeasible stationary point.
The local convergence analysis given here focuses on sequences that converge to first- or

second-order KKT pair. (An analysis of the rate of convergence associated with sequences
converging to locally infeasible points is beyond the scope of this paper (see, e.g., [4,12,29]).)

The results established in this section require the following three standing assumptions.

Assumption 3.1. The functions f(x) and c(x) are twice Lipschitz-continuously differen-
tiable.

Assumption 3.2. The index set S of V-O iterates, i.e.,

S = { k : (xk, yk) is a V-O iterate },

is infinite, and there exists a subsequence S∗ ⊆ S, such that limk∈S∗(xk, yk) = (x∗, y∗), with
(x∗, y∗) a first-order KKT pair for problem (NP).

1Andreani et al. [1, Definition 3.1]
2Andreani et al. [2, page 532]
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(This assumption requires that the finite termination conditions (2.30) and (2.31) are omitted.)

Assumption 3.3. If (x∗, y∗) is the first-order KKT pair associated with Assumption 3.2, then

(i) there exists a compact set Λ(x∗) ⊆ Y(x∗) such that y∗ belongs to the (nonempty) interior
of Λ(x∗) relative to Y(x∗); and

(ii) (x∗, y) satisfies the SOSC of Definition 3.1 for every y ∈ Λ(x∗).

The key part of Assumption 3.3 is the existence of the compact set Λ(x∗), which guaran-
tees that the closest point in Y(x∗) to every element yk of the subsequence {yk} satisfying
limk→∞ yk = y∗ is also in Λ(x∗) for k sufficiently large. This is equivalent to there being
a set K, open relative to Y(x∗), such that y∗ ∈ K ⊂ Λ(x∗). This, in turn, is equivalent to
the assumption that the affine hulls of Λ(x∗) and Y(x∗) are identical, with y∗ in the rela-
tive interior of Λ(x∗). (For example, if m = 3, and Y(x∗) is a ray of the form y = a + bt
for a, b ∈ R3, t ∈ (−∞,∞), then Λ(x∗) could be a closed interval relative to the ray, e.g.,
Λ(x∗) = {y : y = a+ bt, for t ∈ [t1, t2].) Note that the set of multipliers Y(x∗) need not be
bounded. The second-order sufficient conditions need hold only for multipliers in a compact
subset of Y(x∗).

For any given y, the compactness of the set Λ(x∗) in Assumption 3.3 implies the existence
of a vector y∗P (y) ∈ Λ(x∗) that minimizes the distance from y to the set Λ(x∗), i.e.,

y∗P (y) ∈ Argmin
ȳ∈Λ(x∗)

‖y − ȳ‖. (3.3)

The existence of a vector y∗P (y) implies that the distance δ(x, y) of any primal-dual point (x, y)
to the primal-dual solution set V(x∗) = {x∗} × Λ(x∗) associated with x∗, may be written in
the form

δ(x, y) = min
(x̄,ȳ)∈V(x∗)

‖(x− x̄, y − ȳ)‖ = ‖(x− x∗, y − y∗P (y))‖. (3.4)

The pair
(
x∗, y∗P (y)

)
satisfies the second-order sufficient conditions as a result of Assump-

tion 3.3(ii). The following result shows that the proximity measure r(x, y) may be used as a
surrogate for δ(x, y) near (x∗, y∗).

Lemma 3.1. ( [37, Theorem 3.2]) There exists a positive constant κ ≡ κ(Λ(x∗)) such that
r(xk, yk) ∈

[
δ(xk, yk)/κ, δ(xk, yk)κ

]
for all k ∈ S∗ sufficiently large.

Proof. Under the assumptions used here, the result follows from Theorem 3.2 of Wright [37],
where Results A.2 and A.1 of the Appendix are used to establish that the exact and estimated
distance of (xk, yk) to the primal-dual solution set used in [37] are equivalent (up to a scalar
multiple) to the values δ(xk, yk) and r(xk, yk) given here.

The principal steps of the local convergence analysis are summarized as follows. First, the
properties of iterates with indices k ∈ S∗ ⊆ S are considered. It is shown that for some k ∈ S∗
sufficiently large, the following results hold.

(a) The active set at x∗ is identified correctly by the ε-active set, and the direction sk of
negative curvature is zero.
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(b) A local descent direction dk is computed, and the conditions

[ vk + dk ]i ≥ 0, i = 1 :n, ∇MT
kdk < 0, ∇Qk(vk + dk ; yE

k , µ
R
k )Aε ≥ −tke

are satisfied, i.e., the local descent direction is selected for the line search.

(c) The unit step is accepted by the flexible line-search, and the variables active at x∗ are the
same as those active at xk+1.

Once (a)–(c) are established, the next step is to show that (xk+1, yk+1) is a V-iterate. This
implies that the arguments may be repeated at xk+1, and all iterates must be in S∗ for k
sufficiently large. The final step is to show that the iterates are identical to those generated
by a sSQP method for which superlinear convergence has been established.

The first result shows that for k ∈ S∗ sufficiently large, the set Aε correctly estimates the
active set at the limit point x∗. Moreover, for these iterations, the search direction does not
include a contribution from the direction of negative curvature.

Lemma 3.2. The following results hold for all k ∈ S∗ ⊆ S sufficiently large.

(i) The first-order proximity measure r(x, y) converges to zero, i.e., limk∈S r(xk, yk) = 0.

(ii) The ε-active sets satisfy Aε(xk, yk, µR
k−1) = Aε(xk, yk, µR

k ) = A(x∗).

(iii) The ε-free sets satisfy Fε(xk, yk, µR
k−1) = Fε(xk, yk, µR

k ) = F(x∗).

(iv) If the suffix “F” denotes the components corresponding to the index set F(x∗), then the

matrix BF(vk ;µR
k−1) is positive definite, with s

(1)
k = 0 and ξk = 0.

(v) The matrix BFε(vk ;µR
k ) is positive definite and a local descent direction is computed.

(vi) The feasible direction of negative curvature sk is zero.

Proof. A point (xk, yk) is designated as a V-O iterate if the optimality and feasibility measures
satisfy condition (2.11). In this case yk is set to yE

k , and the values for φmax
V,k or φmax

O,k are
decreased by a fixed factor. If follows that on the infinite set S of V-O iterates, the condition
(2.11) must hold infinitely often and at least one of the functions φV (vk) or φO(vk, ξk) must
go to zero. The definitions of φV (vk) and φO(vk, ξk) in terms of the feasibility and optimality
measures η(xk) and ω(xk, yk, ξk) imply that limk∈S η(xk) = 0 and limk∈S ω(xk, yk, ξk) = 0.
The definition (1.3) of r(xk, yk) implies that limk∈S r(xk, yk) = 0, which proves part (i). Since
r(xk, yk) goes to zero, Theorem 3.2(2) of [15] gives

lim
k∈S

max
(
µR
k−1, r(xk, yk)

γ
)

= lim
k∈S

max
(
µR
k , r(xk, yk)

γ
)

= 0.

If these limits are combined with the definition (2.7) of an ε-active set, we obtain the inclusions
Aε(xk, yk, µR

k−1) ⊆ A(x∗) and Aε(xk, yk, µR
k ) ⊆ A(x∗) for k ∈ S sufficiently large.

For the reverse inclusion, the definition of the ε-active set (2.7) together with the inequal-
ities

max
(
µR
k−1, r(xk, yk)

γ
)
≥ r(xk, yk)γ and max

(
µR
k , r(xk, yk)

γ
)
≥ r(xk, yk)γ ,

imply that the set Aγ(xk, yk) =
{
i : xi ≤ r(xk, yk)

γ
}

satisfies Aγ(xk, yk) ⊆ Aε(xk, yk, µR
k−1)

and Aγ(xk, yk) ⊆ Aε(xk, yk, µR
k ) for k ∈ S sufficiently large. The set Aγ(xk, yk) is an active-set
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estimator that is equivalent (in the sense of Result A.2) to the active-set estimator used by
Wright [37], and Facchinei, Fischer, and Kanzow [9]. This equivalence allows the application
of Theorem 3.3 of [37] to obtain the inclusions

A(x∗) ⊆ Aγ(xk, yk) ⊆ Aε(xk, yk, µR
k−1), and A(x∗) ⊆ Aγ(xk, yk) ⊆ Aε(xk, yk, µR

k ),

which completes the proof of part (ii). Part (iii) follows directly from (ii) and the definition
of the ε-free set in (2.8).

For the proof of (iv) it is assumed that k ∈ S∗ ⊆ S is sufficiently large that (ii) and (iii)
hold. From Assumption 3.3, (x∗, y∗) satisfies the SOSC and consequently, dTH(x∗, y∗)d > 0
for all d 6= 0 such that J(x∗)d = 0 and di = 0 for every i ∈ A(x∗), i.e., dTFHF(x∗, y∗)dF > 0 for
all dF 6= 0 satisfying JF(x∗)dF = 0, where the suffix “F” denotes quantities associated with
indices in F(x∗). Under this assumption, together with the results of part (iii), Lemma 2.2
of [17], Lemma 3 of [20], and [15, part (2) of Theorem 3.2] imply that BF(vk ;µR

k−1) is positive

definite for all k ∈ S∗ sufficiently large. If this matrix is positive definite, then s
(1)
k = 0 and

ξk = 0, as required.
As {µR

k } → 0 (see [15, part (2) of Theorem 3.2]), a similar argument to that used to
establish (iv) shows that BFε(vk ;µR

k ) is positive definite for the same values of k (see Gill
and Robinson [17, Lemma 2.2]). As BFε(vk ;µR

k ) is positive definite for every k ∈ S∗ ⊆ S,
and k is a V-O iterate by definition, the conditions that initiate the solution of the equality
constraint QP (2.22) are satisfied, and a local descent direction is computed. This proves

part (v). Finally, part (iv) implies that s
(1)
k and its scaled counterpart sk is zero, which proves

part (vi).

The next result shows that the direction dk is nonzero for every k ∈ S∗ ⊆ S sufficiently
large.

Lemma 3.3. For all k ∈ S∗ ⊆ S sufficiently large, it must hold that either dk 6= 0 or
(xk, yk) = (x∗, y∗).

Proof. The result holds trivially if dk 6= 0 for all k ∈ S∗ sufficiently large. Assume without
loss of generality that there exists an infinite sequence S2 ⊆ S∗ such that dk = 0 for every
k ∈ S2. Parts (ii) and (vi) of Lemma 3.2 imply that Aε(xk, yk, µR

k ) = A(x∗) and sk = 0 for all
k ∈ S2 sufficiently large. Every k ∈ S2 is a V-O iterate and there must exist an index k2 ∈ S2

sufficiently large that

dk2 = sk2 = 0, (xk2+1, yk2+1) = (xk2 , yk2),

yE
k2 = yk2 , and Aε(xk2 , yk2 , µ

R
k2) = A(x∗).

(3.5)

As dk2 = 0, parts (ia) and (ib) of Lemma 2.3 in [15] give r(xk2 , yk2) = 0, which implies that
(xk2 , yk2) is a first-order KKT point for both problem (NP) and the problem of minimizing
M(x, y ; yE

k2
, µR

k2
) subject to x ≥ 0. From (3.5) it must hold that r(xk2+1, yk2+1) = 0, and

parts (iii) and (iv) of Lemma 3.2 imply that BF(xk2+1, yk2+1 ;µR
k2

) is positive definite, with

ξk2+1 = 0 and s
(1)
k2+1 = 0. It follows that φV (xk2+1, yk2+1) = 0, and k2 + 1 is a V-iterate from

condition (2.11). As a result, yE
k2+1 = yE

k2
and µR

k2+1 = 1
2µ

R
k2

, which implies that the primal-
dual pair (xk2+1, yk2+1) = (xk2 , yk2) is not only a first-order KKT point for problem (NP),
but also a first-order solution of the problem of minimizing M(x, y ; yE

k2+1, µ
R
k2+1) subject to
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x ≥ 0. In particular, it must hold that dk2+1 = 0, and sk2+1 = 0 because ξk2+1 = 0. Similarly,
it must hold that Aε(xk2+1, yk2+1, µ

R
k2+1) = A(x∗).

This argument may be repeated at every (xk, yk) such that k ≥ k2 + 1, and it must hold
that (xk, yk) = (x̄, ȳ) for some (x̄, ȳ), and that Aε(xk, yk, µR

k ) = A(x∗) for every k ≥ k2. It
then follows from Assumption 3.3 that (x̄, ȳ) = (x∗, y∗), which completes the proof.

For a local convergence analysis, Lemma 3.3 implies that there is no loss of generality in
making the following additional standing assumption.

Assumption 3.4. The direction dk is nonzero for all k ∈ S∗ ⊆ S sufficiently large.

Lemma 3.4. It must hold that µR
k = r(xk, yk)

γ > 0 for all k ∈ S∗ ⊆ S sufficiently large.

Proof. Part (iv) of Lemma 3.2 gives ξk = 0 for all k ∈ S∗ ⊆ S sufficiently large. In
addition, r(xk, yk) must be nonzero, otherwise the definition of r(xk, yk) would imply that
c(xk) = 0, yE

k = yk (because k ∈ S), π(xk, y
E
k , µ

R
k ) = yk, ∇yM(xk, yk ; yE

k , µ
R
k ) = 0, and

min
(
xk,∇xM(xk, yk ; yE

k , µ
R
k )
)

= 0. In other words, if r(xk, yk) is zero, then (xk, yk) satisfies
the first-order conditions for a minimizer of M(x, y ; yE

k , µ
R
k ) subject to x ≥ 0. This implies

that there is no nonzero descent direction at (xk, yk), which contradicts Assumption 3.4. It
follows that r(xk, yk) is nonzero. The values ξk = 0 and r(xk, yk) > 0 in the definition of µR

k

in (2.12), and part (i) of Lemma 3.2 imply that µR
k = r(xk, yk)

γ for γ ∈ (0, 1) and k ∈ S∗ ⊆ S
sufficiently large.

Much of the local convergence analysis involves establishing that, in the limit, the algo-
rithm computes and accepts the local descent direction at every iteration. The next result
concerns the properties of the equality-constrained subproblem for the local descent direction.

Lemma 3.5. If vk = (xk, yk) is a point at which the conditions for the calculation of a local
descent direction are satisfied, then the following results hold.

(i) The bound-constrained problem (2.22) for the local descent direction is equivalent to the
stabilized QP subproblem

minimize
x,y

g(xk)
T(x− xk) + 1

2(x− xk)TH(xk, yk)(x− xk) + 1
2µ

R
k‖y‖2

subject to c(xk) + J(xk)(x− xk) + µR
k (y − yk) = 0, ETAεx = 0,

(3.6)

where EAε is the matrix of columns of the identity matrix with indices in the ε-active set
Aε.

(ii) If dk = (pk, qk) denotes the local descent direction, and zk = g(xk)− J(xk)
Tyk, then the

optimal solution to (3.6) may be written in the form (xk+pk, yk+qk, [ zk ]Aε +wk), where
(pk, qk, wk) satisfy the nonsingular equationsH(xk, yk) J(xk)

T EAε
J(xk) −µR

kI 0
ETAε 0 0

 pk
−qk
−wk

 = −

g(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aε

 ,

with zpk = EAεE
T
Aεzk, i.e., zpk is the projection of zk onto the null space of ETAε.
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Proof. Part (i) follows from the specialization of Result 2.1 of Gill and Robinson [16] to
the equality-constraint case. The equations of part (ii) are then the optimality conditions
associated with (3.6). It remains to show that the equations are nonsingular. The vector
(pk, qk) is the unique solution of (3.6) if the primal-dual Hessian of problem (3.6) is positive
definite on the null-space of the constraints, which in this case is the set of vectors satisfying
J(xk)p+ µR

kq = 0 and ETAεp = 0. This corresponds to the requirement that(
pFε
q

)T (
HFε(xk, yk) 0

0 µR
kI

)(
pFε
q

)
= pTFεHFε (xk, yk)pFε +

1

µR
k

pTFεJFε (xk)
TJFε (xk)pFε > 0.

Gill and Robinson [16, Lemma 2.2] establish that HFε (xk, yk) + (1/µR
k )JFε (xk)

TJFε (xk) is
positive definite if BFε is positive definite, which is one of the conditions that must be satisfied
for a local descent direction to be computed.

The next result establishes that two of the three conditions (2.25) for the acceptance of
the local descent direction are satisfied for all k ∈ S∗ sufficiently large.

Lemma 3.6. For all k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk = (pk, qk) is
computed that satisfies the following conditions:

(i) max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
; and

(ii) xk + pk ≥ 0, [∇Qk(vk + dk ; yE
k , µ

R
k ) ]Aε ≥ −tke, where tk is the positive feasibility param-

eter (2.24), and [ · ]Aε denotes the vector of components with indices in the ε-active set
Aε(xk, yk, µR

k ).

Proof. Lemma 3.5 implies that the local descent direction (pk, qk) satisfies the equationsH(xk, yk) J(xk)
T EAε

J(xk) −µR
kI 0

ETAε 0 0

 pk
−qk
−wk

 = −

g(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aε

 , (3.7)

where [ zk ]Aε+wk is the vector of multipliers for the constraints ETAεx = 0 of problem (3.6). Let
µ̃k denote the scalar µ̃(xk, yk, zk) = ‖(g(xk)− J(xk)

Tyk − zpk, c(xk), [xk ]Aε)‖1. The equations
(3.7) constitute a perturbation of the linear systemH(xk, yk) J(xk)

T EAε
J(xk) −µ̃kI 0
ETAε 0 −µ̃kI

 p̃k
−q̃k
−w̃k

 = −

g(xk)− J(xk)
Tyk − zpk

c(xk)
[xk ]Aε

 , (3.8)

which characterize the optimality conditions for the sSQP subproblem associated with the
equality constrained problem

minimize
x

f(x) subject to c(x) = 0, and [x ]Aε = ETAεx = 0. (3.9)

The matrix of (3.8) is nonsingular and the equations have a unique solution (see Izmailov and
Solodov [25, Lemma 2]). In addition, it follows from Wright [37, Lemma 4.1], Result A.3 and
Lemma 3.1 that the unique solution of (3.8) satisfies

‖(p̃k, q̃k)‖ ≤ ‖(p̃k, q̃k, w̃k)‖ = O(µ̃k) = O
(
δ(xk, yk)

)
= O

(
r(xk, yk)

)
. (3.10)
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The underlying quadratic program associated with (3.7) satisfies the second-order sufficient
conditions for optimality. Under this condition, Izmailov [21, Theorem 2.3]) establishes the
Lipschitz error bound for the perturbed solutions as

‖(pk − p̃k, qk − q̃k)‖ ≤ ‖(pk − p̃k, qk − q̃k, wk − w̃k)‖
= O(‖µ̃kw̃k +

(
µR
k − µ̃k

)
(qk − q̃k)‖).

Lemma 3.4 gives µR
k = r(xk, yk)

γ for γ ∈ (0, 1). It then follows from Result A.3, the bound
(3.10) and Lemma 3.1 that

‖(pk − p̃k, qk − q̃k)‖ = O
(
δ(xk, yk) + r(xk, yk)

γ‖qk − q̃k‖
)
. (3.11)

The triangle inequality, (3.11), and (3.10) imply the existence of constants κ1 and κ2 that
satisfy

‖pk‖+ ‖qk‖ ≤ ‖pk − p̃k‖+ ‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖ (3.12)

≤ κ1δ(xk, yk) + κ2r(xk, yk)
γ‖qk − q̃k‖. (3.13)

Part (i) of Lemma 3.2 implies that 1 − κ2r(xk, yk)
γ ≥ 1

2 for k ∈ S∗ sufficiently large. This
inequality may be used to derive the bound

‖pk − p̃k‖+ 1
2‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖

≤ ‖pk − p̃k‖+
(
1− κ2r(xk, yk)

γ
)
‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖.

This upper bound may be simplified using the bound on ‖pk − p̃k‖+ ‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖
from (3.12)–(3.13), giving

‖pk − p̃k‖+ 1
2‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖ ≤ κ1δ(xk, yk).

The quantity 1
2(‖pk‖+‖qk‖) may be bounded using similar arguments used for (3.12). In this

case,
1
2(‖pk‖+ ‖qk‖) ≤ ‖pk − p̃k‖+ 1

2‖qk − q̃k‖+ ‖p̃k‖+ ‖q̃k‖ ≤ κ1δ(xk, yk),

which implies that max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
, and proves part (i).

The second inequality to be established for part (ii) may be written in the equivalent form
[∇Mk + Bkdk ]Aε ≥ −tke, where ∇Mk = ∇M(vk ; yE

k , µ
R
k ) and Bk = B(vk, µ

R
k ). The proof

requires estimates of the components of the vector [∇Mk + Bkdk ]Aε . After simplification,
the substitution of the quantities Bk, ∇Mk and dk = (pk, qk), together with the identity
J(xk)pk + µR

kqk = −c(xk) from (3.7) give

[∇Mk +Bkdk ]Aε =
[
zk +

1

µR
k

J(xk)
Tc(xk) +H(xk, yk)pk +

1

µR
k

J(xk)
TJ(xk)pk

]
Aε
, (3.14)

where zk = g(xk) − J(xk)
T yk. The first part of the proof involves the estimation of a lower

bound on the vector zk + (1/µR
k )J(xk)

T c(xk). The definition of y∗P (·) and the fact that (x∗, y∗)
is a first-order KKT pair for problem (NP) implies that the vector g(x∗) − J(x∗)Ty∗P (yk) is
nonnegative, with

−[ zk ]i = −[ g(xk)− J(xk)
Tyk ]i

≤ −
[
g(xk)− J(xk)

Tyk −
(
g(x∗)− J(x∗)Ty∗P (yk)

)]
i

≤ −[ g(xk)− J(xk)
Tyk + J(xk)

Ty∗P (yk)− J(xk)
Ty∗P (yk)− g(x∗) + J(x∗)Ty∗P (yk) ]i.
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From Assumptions 3.1–3.3, ‖J(xk)‖ is bounded independently of k and the functions g and
J are Lipschitz continuous. It follows that there exist positive constants κ3, κ4, and κ5 such
that

−[ zk ]i ≤ κ3‖xk − x∗‖+ κ4‖yk − y∗P (yk)‖ ≤ κ5δ(xk, yk), (3.15)

where the last inequality follows from the definition (3.4) of δ(xk, yk). As the sequence of
iterates satisfies limk∈S∗(xk.yk) = (x∗, y∗) and limk∈S∗ y

∗
P (yk) = y∗, for k ∈ S∗ sufficiently

large, the assumptions needed for Lemma 3.1 apply, and

−[ zk ]i ≤ κ5δ(xk, yk) ≤ κ6r(xk, yk), (3.16)

for some positive constant κ6. The combination of the inequality (3.16), the definition of
r(xk, yk), and the result µR

k = r(xk, yk)
γ of Lemma 3.4 imply that there exists a positive

constant κ7 such that[
zk +

1

µR
k

J(xk)
Tc(xk)

]
i
≥ −κ6r(xk, yk)−

‖J(xk)‖1r(xk, yk)
r(xk, yk)γ

= −κ6r(xk, yk)− ‖J(xk)‖1r(xk, yk)1−γ

≥ −κ7r(xk, yk)
1−γ ≥ −1

2r(xk, yk)
λ, (3.17)

for all i, and every k ∈ S∗ sufficiently large, where the last inequality follows from the as-
sumption 0 < λ < min{γ, 1− γ} < 1.

The (1/µR
k )pTk J(xk)

TJ(xk)pk term of (3.14) may be bounded in a similar way using the
definition µR

k = r(xk, yk)
γ and the bound on ‖pk‖ from part (i). The assumption thatH(xk, yk)

and J(xk) are bounded, the estimate δ(xk, yk) = O(r(xk, yk)) of Lemma 3.1, and the definition
of Aε(xk, yk, µR

k ) give[
H(xk, yk)pk + (1/µR

k )J(xk)
TJ(xk)pk

]
i

= O
(
r(xk, yk)

1−γ) ≤ 1
2r(xk, yk)

λ, (3.18)

for all k ∈ S∗ sufficiently large. A combination of (3.14), (3.17) and (3.18) yields

[∇Mk +Bkdk ]Aε ≥
[
zk +

1

µR
k

J(xk)
Tc(xk)

]
Aε
−
∥∥∥[H(xk, yk)pk +

1

µR
k

J(xk)
TJ(xk)pk

]
Aε

∥∥∥
∞
e

≥ −r(xk, yk)λe = −tke,

for all k ∈ S∗ sufficiently large, which proves the second result of part (ii).
The first result of Lemma 3.2(iii) implies that F(xk, yk, µ

R
k ) = F(x∗) for k ∈ S∗ sufficiently

large. If the limit limk∈S∗ [xk ]Fε = [x∗ ]F > 0 is used in conjunction with the definition
[xk + pk ]Aε = 0, and the estimate ‖[ pk ]Fε‖ = ‖[ pk ]F‖ = O

(
δ(xk, yk)

)
of part (i), it follows

that xk + pk ≥ 0 for k ∈ S∗ sufficiently large, as required.

Part (ii) of Lemma 3.6 implies that two of the three conditions needed for the acceptance of
the local descent direction are satisfied. It remains to show that the third condition ∇MT

k dk <
0 holds. Two technical results, Lemmas 3.7 and 3.8 below, are required.

Lemma 3.7. For all k ∈ S∗ ⊆ S sufficiently large, a local descent direction dk = (pk, qk) is
computed such that (x̂k, ŷk) = (xk + pk, yk + qk) satisfies

δ(x̂k, ŷk) = ‖x̂k − x∗‖+ ‖ŷk − y∗P (ŷk)‖ = O
(
δ(xk, yk)

1+γ
)
, (3.19)

with y∗P (·) defined in (3.3).
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Proof. The proof utilizes a result of Izmailov [21, Theorem 2.3] that provides a bound on the
change in the solution of a problem perturbed by a quantity ε. If the second-order sufficient
conditions hold at a primal-dual solution (x∗, y∗) of a problem P , then the primal-dual solution
(x̃, ỹ) of a perturbed problem P (ε) satisfies

‖x̃− x∗‖+ inf
y∈Y(x∗)

‖ỹ − y‖ = O(‖ε‖). (3.20)

For the purposes of this theorem, the unperturbed problem is an equality-constrained variant
of problem (NP) for which the optimal active set has been identified. Parts (ii) and (iii)
of Lemma 3.2 imply that A(x∗) = Aε(xk, yk, µR

k ), and F(x∗) = Fε(xk, yk, µR
k ) for k ∈ S∗

sufficiently large. Let EA denote the matrix of columns of the identity matrix with indices in
A(x∗). At any iteration with k ∈ S∗, consider the perturbed problem

minimize
x

f(x) + xTε
(1)
k subject to c(x) + ε

(2)
k = 0, ETAx = 0, (3.21)

where ε
(1)
k and ε

(2)
k are perturbation vectors such that εk =

(
ε

(1)
k , ε

(2)
k

)
with(

ε
(1)
k

ε
(2)
k

)
=

(
g(xk)− J(xk)

T ŷk − (g(x̂k)− J(x̂k)
T ŷk) +H(xk, yk)(x̂k − xk)

c(xk) + J(xk)(x̂k − xk)− c(x̂k) + µR
k (ŷk − yE

k )

)
. (3.22)

The following simple argument shows that the perturbations go to zero as k →∞ for k ∈ S∗.
Part (i) of Lemma 3.6 implies that limk∈S∗(x̂k − xk, ŷk − yk) = limk∈S∗(pk, qk) = 0 for k ∈ S∗
sufficiently large. Moreover, because limk∈S∗(xk, yk) = (x∗, y∗) and yE

k = yk for k ∈ S∗, it
must be the case that limk∈S∗ εk = 0.

The proof of (3.19) is based on applying the bound (3.20) for the values (x̃, ỹ) = (x̂k, ŷk).
In this case, under Assumption 3.3, it holds that

δ(x̂k, ŷk) = ‖x̂k − x∗‖+ ‖ŷk − y∗P (ŷk)‖ = ‖x̂k − x∗‖+ inf
y∈Λ(x∗)

‖ŷk − y‖ = O(‖εk‖).

Three results must be established in order to apply this result. First, (x∗, y∗) must satisfy
the second-order sufficient conditions for the equality-constrained problem (3.21) with εk = 0.
Second, (x̂k, ŷk) must be an optimal solution for the perturbed problem (3.21) with pertur-
bation (3.22). Third, the perturbation (3.22) must be bounded in terms of δ(xk, yk).

For the first part it must be shown that (x∗, y∗) satisfies the second-order sufficient condi-
tions for problem (3.21) with no perturbation. The first-order KKT conditions for (3.21) are

g(x)− J(x)Ty + ε
(1)
k − EAzA = 0, c(x) + ε

(2)
k = 0, and ETAx = 0. (3.23)

If εk = 0 then (x∗, y∗) satisfies these conditions, which implies that the primal-dual pair
(x∗, y∗) is a first-order KKT point. The second-order conditions for problem (NP) imply that
pTH(x∗, y∗)p > 0 for all p such that J(x∗)p = 0 and pi = 0 for every i ∈ A(x∗). These
conditions also apply for problem (3.21) when εk = 0, which imply that (x∗, y∗) satisfies the
second-order sufficient conditions for the unperturbed problem.

Next, it must be shown that (x̂k, ŷk) is an optimal solution for the problem (3.21) with
perturbation (3.22). By definition, the point (x̂k, ŷk) satisfies the optimality conditions for
the equality-constrained problem (2.22). If yE

k = yk, then these conditions are

g(xk) +H(xk, yk)(x̂k − xk)− J(xk)
Tyk − EAzA = 0,

c(xk) + J(xk)(x̂k − xk) + µR
k (ŷk − yk) = 0, and ETA x̂k = 0,

(3.24)
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where zA = [ zk ]A with zk = g(xk) − J(xk)
T yk (cf. (3.7)). These identities may be used to

show that (x̂k, ŷk) satisfies the optimality conditions (3.23) with εk defined as in (3.22).
It remains to bound the perturbation norm ‖εk‖ from (3.22). The Taylor-series expan-

sions of g(x̂k) = g(xk + pk) and J(x̂k) = J(xk + pk), together with the assumption that
{∇2ci(xk)}k∈S∗ is bounded, give

g(xk)− g(xk + pk) +H(xk, yk)pk − (J(xk)− J(xk + pk))
T ŷk

=

m∑
i=1

[ ŷk − yk ]i∇2ci(xk)pk +O(‖pk‖2) = O
(
‖pk‖‖ŷk − yk‖) +O(‖pk‖2

)
, (3.25)

which bounds the norm of the first block of (3.22).
Three properties of the iterates are needed to bound the norm of the second block. First,

a Taylor-series expansion of c(xk+pk) gives c(xk)−c(xk+pk)+J(xk)pk = O(‖pk‖2). Second,
as S∗ contains only V-O iteration indices, the rule for updating yE

k described in Section 2.1
gives yE

k = yk for all k ∈ S∗. Third, Lemma 3.4 gives µR
k = r(xk, yk)

γ , which implies that
µR
k‖ŷk − yk‖ = r(xk, yk)

γ‖ŷk − yk‖. The combination of these results gives

‖εk‖ = O(‖pk‖2) +O(‖pk‖‖ŷk − yk‖) +O(r(xk, yk)
γ‖ŷk − yk‖).

Writing qk = ŷk − yk, using the results that r(xk, yk) = O(δ(xk, yk)) (from Lemma 3.1) and
that max{‖pk‖, ‖qk‖} = O

(
δ(xk, yk)

)
(from Lemma 3.6(i)), and the definition 0 < γ < 1,

gives
‖εk‖ = O

(
δ(xk, yk)

2 + δ(xk, yk)
1+γ
)

= O
(
δ(xk, yk)

1+γ
)
,

which gives the required bound (3.19).

The second technical lemma concerns the properties of the vector of approximate multi-
pliers π(xk ; yE

k , µ
R
k ).

Lemma 3.8. Let πk denote the vector π(xk ; yE
k , µ

R
k ). For every k ∈ S∗ ⊆ S it holds that

(i) ‖yk − πk‖ = O
(
‖c(xk)‖/µR

k

)
and

(ii) ‖∇2M(vk ; yE
k , µ

R
k )−Bk‖ = O

(
‖c(xk)‖/µR

k

)
.

Moreover, it follows that limk∈S∗ ‖yk − πk‖ = 0 and limk∈S∗ ‖∇2M(vk ; yE
k , µ

R
k )−Bk‖ = 0.

Proof. As yk = yE
k for all k ∈ S∗ ⊆ S, the definition of πk gives ‖yk−πk‖ = ‖c(xk)‖/µR

k . This
estimate in conjunction with the definitions of ∇2M and B imply that part (ii) also holds.

Lemma 3.4 and part (i) of Lemma 3.2 give limk∈S∗ r(xk, yk) = 0, with µR
k = r(xk, yk)

γ and
1− γ > 0 for all k ∈ S∗ ⊆ S sufficiently large. These results may be combined to give

0 ≤ lim
k∈S∗

‖c(xk)‖
µR
k

≤ lim
k∈S∗

r(xk, yk)

µR
k

= lim
k∈S∗

r(xk, yk)

r(xk, yk)γ
= lim

k∈S∗
r(xk, yk)

1−γ = 0.

It follows from (i) that limk∈S∗ ‖yk − πk‖ = 0. Moreover, as {∇2ci(xk)}k∈S∗ is bounded, it
must hold that limk∈S∗ ‖∇2M(vk ; yE

k , µ
R
k )−Bk‖ = 0, as required.

Given Lemmas 3.7 and 3.8, we show that the last of the conditions in (2.25) required for
the acceptance of the local descent direction is satisfied, i.e., that the local descent direction
is a descent direction for the merit function.
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Lemma 3.9. For any σ̄ satisfying 0 < σ̄ < 1, and all k ∈ S∗ ⊆ S sufficiently large, a local
descent direction dk = (pk, qk) is computed that satisfies

∇M(vk ; yE
k , µ

R
k )Tdk ≤ −σ̄dTkBkdk − c̄‖dk‖2 and ∇M(vk ; yE

k , µ
R
k )Tdk < 0, (3.26)

for some positive constant c̄. In particular, dk is a strict descent direction for M(v ; yE
k , µ

R
k )

at vk.

Proof. Throughout the proof, the gradient ∇M(xk, yk ; yE
k , µ

R
k ) and approximate Hessian

B(xk, yk ;µR
k ) are denoted by ∇Mk and Bk, respectively. In addition, it is assumed that

k ∈ S∗ ⊆ S is sufficiently large that parts (ii) and (iii) of Lemma 3.2 hold; i.e., Aε(xk, yk, µR
k ) =

A(x∗), and Fε(xk, yk, µR
k ) = F(x∗). With this assumption, [Bk ]A, [Bk ]F and [Bk ]A,F denote

the rows and columns of the matrix Bk associated with the index sets A(x∗) and F(x∗).
The definition of dk from (2.23) gives [∇Mk +Bkdk ]F = 0, which, in partitioned form, is

[Bk ]F [ dk ]F + [Bk ]TA,F [ dk ]A = −[∇Mk ]F . (3.27)

Similarly, the scalar dTkBkdk may be written in the form

dTkBkdk = [ dk ]TF [Bk ]F [ dk ]F + (2[Bk ]A,F [ dk ]F + [Bk ]A[ dk ]A)T [ dk ]A. (3.28)

Combining (3.27) and (3.28) yields

−[∇Mk ]TF [ dk ]F = dTkBkdk − ([Bk ]A,F [ dk ]F + [Bk ]A[ dk ]A)T [ dk ]A

= dTkBkdk − [Bkdk ]TA[ dk ]A, (3.29)

which implies that, for any σ̄ satisfying 0 < σ̄ < 1, it must hold that

∇MT
kdk + σ̄dTkBkdk = (σ̄ − 1)dTkBkdk + [Bkdk ]TA[ dk ]A + [∇Mk ]TA[ dk ]A. (3.30)

The proof involves constructing a bound on each of the terms of the right-hand side of this
identity. These bounds are characterized in terms of the index sets A+(x∗, y∗) and A0(x

∗, y∗)
defined in (3.1), together with the set F0(x∗, y∗) = A0(x

∗, y∗) ∪ F(x∗, y∗). In what follows,
[Bk ]A+

and [Bk ]F0 denote the matrices of rows and columns of Bk associated with the index
sets A+ and F0, with similar definitions for [Bk ]A0

and [Bk ]A+,F0 , etc. The index sets F0

and A+ define a partition of {1, 2, . . . , n+m}, and dTkBkdk may be partitioned analogous to
(3.28) as

dTkBkdk = [ dk ]TF0 [Bk ]F0 [ dk ]F0 + ([Bk ]A+
[ dk ]A+

+ 2[Bk ]A+,F0 [ dk ]F0)T [ dk ]A+
. (3.31)

The second-order sufficient conditions given in Definition 3.1, [15, Theorem 1.3 and part 2
of Theorem 3.2], together with a continuity argument imply that, for all k ∈ S∗ sufficiently
large, Bk is uniformly positive definite when restricted to the set C = {(p, q) ∈ Rn+m : pA+

=

0 and pA0
≥ 0}. The relation (−d)TBk(−d) = dTBkd implies that if d satisfies dA0

≤ 0 and
dA+

= 0, then dTBkd > 0. For the particular vector d = (0, [ dk ]A0
, [ dk ]F) = (0, [ dk ]F0) for

which [ dk ]A0
≤ 0, it follows that

[ dk ]TF0 [Bk ]F0 [ dk ]F0 ≥ κ8‖[ dk ]F0‖
2, for some κ8 ∈ (0, 1), (3.32)
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and all k ∈ S∗ sufficiently large. This inequality provides a bound on the first term on the
right-hand side of (3.31). An estimate of the second and third terms may be determined using
a bound on the magnitude of the components of [Bkdk ]A, where, by definition,

[Bkdk ]A+
=
[(
H(xk, yk) +

2

µR
k

J(xk)
TJ(xk)

)
pk + J(xk)

Tqk

]
A+

.

For k ∈ S∗ sufficiently large, Lemma 3.4 implies that µR
k = r(xk, yk)

γ . In addition, as
‖H(xk, yk)‖ and ‖J(xk)‖ are bounded on S, it follows from the bounds on ‖pk‖ and ‖qk‖
given by Lemma 3.6(i), and the equivalence r(xk, yk) = Θ

(
δ(xk, yk)

)
of Lemma 3.1, that the

magnitude of the components of [Bkdk ]A+
are estimated by

‖[Bkdk ]A+
‖ = O(r(xk, yk)

1−γ) = O(δ(xk, yk)
1−γ). (3.33)

A similar argument gives the bound∣∣([Bk ]A+
[ dk ]A+

+ 2[Bk ]A+,F0 [ dk ]F0
)
T [ dk ]A+

∣∣ = O(δ(xk, yk)
1−γ ‖[ dk ]A+

‖). (3.34)

The application of the bound (3.32) and estimate (3.34) to (3.31) gives

−dTkBkdk ≤ −κ8‖[ dk ]F0‖
2 + κ9δ(xk, yk)

1−γ‖[ dk ]A+
‖, (3.35)

for some positive κ9 independent of k, which serves to bound (σ̄− 1)dTkBkdk, the first term of
the right-hand side of (3.30).

The second and third terms of (3.30) are estimated by bounding components from the
index set A+. The estimate (3.33) gives

[Bkdk ]TA+
[ dk ]A+

≤ κ10δ(xk, yk)
1−γ‖[ dk ]A+

‖, for some κ10 ∈ (0, 1). (3.36)

A Taylor-series expansion of ∇M(vk ; yE , µR
k ) at yE = yE

k (= yk) gives

∇Mk = ∇M(vk ; y∗ + (yk − y∗), µR
k ) = ∇M(vk ; y∗, µR

k ) +O(‖yk − y∗‖). (3.37)

A Taylor-series expansion of the inner product [∇M(v ; y∗, µR
k ) ]TA+

[ dk ]A+
at v = v∗ gives

[∇M(vk ; y∗, µR
k ) ]TA+

[ dk ]A+
= [ dk ]TA+

[∇M(v∗ + (vk − v∗) ; y∗, µR
k ) ]A+

= [ dk ]TA+
[∇M(v∗ ; y∗, µR

k ) ]A+
+O

( 1

µR
k

‖[ dk ]A+
‖ ‖vk − v∗‖

)
.

In order to bound the last term on the right-hand side, we substitute the value µR
k = r(xk, yk)

γ

implied by Lemma 3.4, and apply the estimate r(xk, yk) = Θ
(
δ(xk, yk)

)
from Lemma 3.1. If

the resulting value is used with the value ‖[ dk ]A+
‖ = O(‖dk‖) = O(δ(xk, yk)) of Lemma 3.6(i),

then

[∇M(vk ; y∗, µR
k ) ]TA+

[ dk ]A+
= [ dk ]TA+

[∇M(v∗ ; y∗, µR
k ) ]A+

+O
(
δ(xk, yk)

1−γ‖vk − v∗‖
)
.

This estimate can be combined with (3.37) to obtain

[∇Mk ]TA+
[ dk ]A+

= [ dk ]TA+
[∇M(v∗ ; y∗, µR

k ) ]A+
+O(δ(xk, yk)

1−γ‖vk − v∗‖)

+O(‖[ dk ]A+
‖ ‖yk − y∗‖). (3.38)
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As v∗ = (x∗, y∗) is a primal-dual KKT pair for problem (NP), it follows from the definition of
A+ that [∇M(v∗ ; y∗, µR

k ) ]A+
= [ g(x∗) − J(x∗)Ty∗ ]A+ > 0. Combining this with [ dk ]A+

≤ 0
from the first equality of (2.23) yields

[∇M(v∗ ; y∗, µR
k ) ]TA+

[ dk ]A+
≤ −κ11‖[ dk ]A+

‖ for some positive κ11. (3.39)

As γ < 1, the limit δ(xk, yk)→ 0 and estimates (3.38)–(3.39) imply that

[∇Mk ]TA+
[ dk ]A+

≤ −1
2κ11‖[ dk ]A+

‖ for k ∈ S∗ sufficiently large.

The combination of this inequality with (3.36) gives

[Bkdk ]TA+
[ dk ]A+

+ [∇Mk ]TA+
[ dk ]A+

≤ κ10δ(xk, yk)
1−γ‖[ dk ]A+

‖ − 1
2κ11‖[ dk ]A+

‖, (3.40)

for all k ∈ S∗ sufficiently large.
Finally, consider the last two terms of (3.30) associated with the set A0. As k ∈ S,

it holds that yE
k = yk and πk = π(xk ; yE

k , µ
R
k ) = yk − c(xk)/µR

k . Let ỹk denote the vector
ỹk = πk + (πk − yk) = yk − 2c(xk)/µ

R
k . The definitions of ∇Mk and Bk, together with the

definition dk = (pk, qk) and the identity c(xk) + J(xk)pk + µR
kqk = 0 from (3.6) give

[∇Mk +Bkdk ]A0

= [ g(xk)− J(xk)
T ỹk +H(xk, yk)pk +

2

µR
k

J(xk)
TJ(xk)pk + J(xk)

Tqk ]A0

= [ g(xk)− J(xk)
T ỹk +H(xk, yk)pk −

2

µR
k

J(xk)
Tc(xk)− J(xk)

Tqk ]A0

= [ g(xk)− J(xk)
T yk +H(xk, yk)pk − J(xk)

Tqk ]A0
.

(3.41)

It follows from (3.41) and a Taylor-series expansion with respect to x of g(x)−J(x)T(yk + qk)
that

[∇Mk +Bkdk ]A0
=
[
g(xk + pk)− J(xk + pk)

T(yk + qk) + o(‖(pk, qk)‖)
]
A0

=
[
g(x̂k)− J(x̂k)

T ŷk + o(‖(pk, qk)‖)
]
A0
, (3.42)

where (x̂k, ŷk) = (xk + pk, yk + qk). The definition of r(x, y) and part (ii) of Lemma 3.6 give

r(x̂k, ŷk) ≥
∣∣min

(
[ x̂k ]i, [ g(x̂k)− J(x̂k)

T ŷk ]i
)∣∣

=
∣∣min(0, [ g(x̂k)− J(x̂k)

T ŷk ]i)
∣∣, for all i ∈ A0. (3.43)

There are two possible cases for each i ∈ A0, depending on the sign of [ g(x̂k) − J(x̂k)
T ŷk ]i.

If [ g(x̂k) − J(x̂k)
T ŷk ]i ≥ 0, then the property that [ dk ]i ≤ 0 for every i ∈ A implies that

[ g(x̂k) − J(x̂k)
T ŷk ]i[ dk ]i ≤ 0. The expression for [∇Mk + Bkdk ]i[ dk ]i from (3.42), and the

result that ‖(pk, qk)‖ = O
(
δ(xk, yk)

)
from Lemma 3.6(i) gives

[∇Mk +Bkdk ]i[ dk ]i =
[
g(x̂k)− J(x̂k)

T ŷk
]
i
[ dk ]i + o(‖(pk, qk)‖)[ dk ]i

= o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣.
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Alternatively, if i ∈ A0 and [ g(x̂k)− J(x̂k)
T ŷk ]i < 0, then [∇Mk +Bkdk ]i[ dk ]i satisfies

[∇Mk +Bkdk ]i[ dk ]i

= [ g(x̂k)− J(x̂k)
T ŷk + o(‖(pk, qk)‖) ]i[ dk ]i

≤ r(x̂k, ŷk)
∣∣[ dk ]i

∣∣+ o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣ (

(3.43) and Lemma 3.6(i)
)

≤ κδ(x̂k, ŷk)
∣∣[ dk ]i

∣∣+ o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣ (

Lemma 3.1
)

= O
(
δ(xk, yk)

1+γ
)
|[ dk ]i|+ o

(
δ(xk, yk)

)∣∣[ dk ]i
∣∣ (

Lemma 3.7
)

= o
(
δ(xk, yk)

)∣∣[ dk ]i
∣∣.

A combination of the two cases provides the estimate

[∇Mk +Bkdk ]TA0
[ dk ]A0

≤ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖. (3.44)

It now follows from (3.30), (3.35), (3.40), (3.44), and limk∈S∗ dk = 0 that there exist positive
constants κ12, κ13, and κ14 such that

∇MT
kdk + σ̄dTkBkdk ≤ −κ12‖[ dk ]F0‖

2 + κ13δ(xk, yk)
1−γ‖[ dk ]A+

‖
− κ14‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖.

As limk∈S∗ δ(xk, yk) = 0, it must hold that κ13δ(xk, yk)
1−γ ≤ 1

2κ14 for all k ∈ S∗ sufficiently
large, which gives

∇MT
kdk + σ̄dTkBkdk ≤ −κ12‖[ dk ]F0‖

2 − 1
2κ14‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖. (3.45)

The next step of the proof is to show that the right-hand side of the inequality (3.45) is
bounded above by a positive multiple of −‖dk‖2. Consider the sequence vpk =

(
x∗, y∗P (ŷk)

)
,

where y∗P (·) is given by (3.3) and satisfies the second-order sufficient conditions for all k. The
triangle inequality and substitution of v̂k for vk + dk yields

‖vk − v
p
k‖ = ‖vk + dk − v

p
k − dk‖ = ‖v̂k − v

p
k − dk‖ ≤ ‖v̂k − v

p
k‖+ ‖dk‖. (3.46)

By definition, ‖v̂k − vpk‖ = δ(x̂k, ŷk), and the estimate δ(x̂k, ŷk) = o
(
δ(xk, yk)

)
given by

Lemma 3.7 implies that δ(x̂k, ŷk) ≤ 1
2δ(xk, yk) for k sufficiently large. In addition, the defini-

tion of δ(xk, yk) is such that δ(xk, yk) ≤ ‖vk − v
p
k‖. If these inequalities are used to estimate

‖dk‖ in (3.46), then

−‖dk‖ ≤ ‖v̂k − v
p
k‖ − ‖vk − v

p
k‖ ≤ −

1
2δ(xk, yk). (3.47)

Consider the inequality (3.45). Suppose that k is large enough that the bound κ12‖[ dk ]F0‖ ≤
1
4κ14 holds. Standard norm inequalities applied in conjunction with the estimates ‖dk‖ ≤
‖[ dk ]F0‖+ ‖[ dk ]A+

‖, ‖[ dk ]A0
‖ ≤ ‖[ dk ]F0‖, and ‖dk‖ ≥

1
2δ(xk, yk) from (3.47), give

− κ12‖[ dk ]F0‖
2 − 1

2κ14‖[ dk ]A+
‖+ o

(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −κ12‖[ dk ]F0‖

2 − 1
4κ14‖[ dk ]A+

‖ − 1
2κ12‖[ dk ]F0‖ ‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

2κ12‖[ dk ]F0‖
2 − 1

4κ14‖[ dk ]A+
‖ − 1

2κ12‖dk‖ ‖[ dk ]F0‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

4κ14‖[ dk ]A+
‖ − 1

2κ12‖[ dk ]F0‖
2 − 1

4κ12δ(xk, yk) ‖[ dk ]F0‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

4κ14‖[ dk ]A+
‖ − 1

2κ12‖[ dk ]F0‖
2 − 1

4κ12δ(xk, yk) ‖[ dk ]A0
‖+ o

(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −1

4κ14‖[ dk ]A+
‖ − 1

2κ12‖[ dk ]F0‖
2

≤ −1
4κ14‖[ dk ]A+

‖2 − 1
2κ12‖[ dk ]F0‖

2.
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These inequalities, when used with (3.45), imply that

∇MT
kdk + σ̄dTkBkdk ≤ −κ12‖[ dk ]F0‖

2 − 1
2κ14‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
≤ −c̄ ‖dk‖2, (3.48)

with c̄ = min{1
4κ14,

1
2κ12}. This establishes the first part of (3.26).

To prove the second part of (3.26), the bounds on ∇MT
kdk + σ̄dTkBkdk and dTkBkdk given

by (3.45) and (3.35) imply that

∇MT
kdk = ∇MT

kdk + σ̄dTkBkdk − σ̄dTkBkdk
≤ −κ12‖[ dk ]F0‖

2 − 1
2κ14‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖
− σ̄κ8‖[ dk ]F0‖

2 + σ̄κ9δ(xk, yk)
1−γ‖[ dk ]A+

‖. (3.49)

As limk∈S∗ dk = 0, there is an index k sufficiently large that σ̄κ9δ(xk, yk)
1−γ ≤ 1

4κ14, and the
bound (3.49) may be written in the form

∇MT
kdk ≤ −(κ12 + σ̄κ8)‖[ dk ]F0‖

2 − 1
4κ14‖[ dk ]A+

‖+ o
(
δ(xk, yk)

)
‖[ dk ]A0

‖, (3.50)

which is the inequality (3.45) with different positive constants. If the argument used to derive
(3.48) is repeated for the inequality (3.50), it follows that there is a positive constant ĉ such
that ∇MT

kdk ≤ −ĉ ‖dk‖2. From Assumption 3.4, dk is nonzero, which implies that dk is a
strict descent direction for M(v ; yE

k , µ
R
k ) at vk.

Lemma 3.9 establishes that the last of the three conditions in (2.25) needed for the accep-
tance of the local descent direction dk holds for all k ∈ S∗ sufficiently large.

Theorem 3.1. For all k ∈ S∗ ⊆ S sufficiently large, it holds that:

(i) a local descent direction dk = (pk, qk) is computed;

(ii) vk + dk is feasible, [∇Qk(vk + dk ; yE
k , µ

R
k ) ]Aε ≥ −tke, and ∇MT

kdk < 0, i.e., all three
conditions (2.25) are satisfied; and

(iii) Aε(xk, yk, µR
k ) = A(x∗) = A(xk + pk).

Proof. Part (i) follows from Lemma 3.6. Part (ii) follows from Lemmas 3.6(ii) and 3.9. It re-
mains to prove part (iii). The equality Aε(xk, yk, µR

k ) = A(x∗) is established in Lemma 3.2(ii).
Suppose that i ∈ A(x∗) = Aε(xk, yk, µR

k ). The definition of the local descent direction dk in
(2.23) implies that [xk + pk ]i = 0, which gives i ∈ A(xk + pk). For the reverse inclusion,
suppose that i /∈ A(x∗), i.e., x∗i > 0. In this case, the assumption that limk∈S∗ xk = x∗

implies that [xk ]i ≥ 1
2x
∗
i for all k ∈ S∗ sufficiently large. Part (i) of Lemma 3.6 gives

max{‖pk‖, ‖qk‖} = O
(
δ(xk, yk)

)
, and the assumption limk∈S∗(xk, yk) = (x∗, y∗) implies that

limk∈S∗ δ(xk, yk) = 0. It follows that limk∈S∗ pk = 0, with [xk + pk ]i ≥ 1
2x
∗
i + [ pk ]i ≥ 1

3x
∗
i > 0

for all k ∈ S∗ sufficiently large, which means that i /∈ A(xk + pk).

The next result shows that the flexible line search returns the unit step length for all
k ∈ S∗ sufficiently large. Lemma 3.2(vi) and Theorem 3.1 imply that sk = 0 and the line-
search direction ∆vk = dk is a nonzero local descent direction for every k ∈ S∗ sufficiently
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large. In this case the modified Armijo procedure is executed at every vk with `k = 1, and
reduces to finding an αk that satisfies the condition

M(vk ; yE
k , µ

R
k )−M(vk + αkvk ; yE

k , µ
R
k ) ≥ −γSαk∇M(vk ; yE

k , µ
R
k )Tdk, (3.51)

for either µ = µk or µ = µR
k .

Theorem 3.2. The line search computes αk = 1 for all k ∈ S∗ ⊆ S sufficiently large.

Proof. Throughout the proof, the quantitiesM(v ; yE
k , µ

R
k ),∇M(v ; yE

k , µ
R
k ), and∇2M(vk ; yE

k , µ
R
k )

are denoted by M(v), ∇M(v), and ∇2Mk. Assumption 3.4 and part (vi) of Lemma 3.2 imply
that the first-order line-search model is used for all k ∈ S∗ ⊆ S sufficiently large, i.e., the
quantity `k is set to one. A Taylor-series expansion of M(vk + dk) gives

M(vk + dk) = M(vk) +∇M(vk)
Tdk + 1

2d
T
k∇2Mkdk +O

( 1

µR
k

‖dk‖3
)

= M(vk) +∇M(vk)
Tdk + 1

2d
T
k∇2Mkdk +O

(
δ(xk, yk)

1−γ‖dk‖2
)
,

where the bound on the last term follows from the sequence of estimates

(1/µR
k )‖dk‖ = r(xk, yk)

−γ‖dk‖ = O
(
δ(xk, yk)

−γ)‖dk‖ = O
(
δ(xk, yk)

1−γ)
derived in Lemmas 3.4, 3.1, and 3.6(i).

Let the scalar σ̄ of Lemma 3.9 be defined so that (1− γS)σ̄ = 1
2 , where γS (0 < γS <

1
2) is

the parameter used for the modified Armijo condition (2.28) defined with `k = 1. With this
definition, σ̄ satisfies 0 < σ̄ < 1, and Lemma 3.9 with the particular value σ̄ = 1

2(1 − γS)−1

gives

M(vk + dk)−M(vk)− γS∇M(vk)
Tdk

= (1− γS)∇M(vk)
Tdk + 1

2d
T
k∇2Mkdk +O

(
δ(xk, yk)

1−γ‖dk‖2
)

≤ [1
2 − (1− γS)σ̄]dTkBkdk − (1− γS)c̄ ‖dk‖2

+ 1
2‖∇

2Mk −Bk‖ ‖dk‖2 +O
(
δ(xk, yk)

1−γ‖dk‖2
)

= −(1− γS)c̄ ‖dk‖2 + 1
2‖∇

2Mk −Bk‖ ‖dk‖2 +O
(
δ(xk, yk)

1−γ‖dk‖2
)
,

for all k ∈ S∗ sufficiently large. The global convergence property of Assumption 3.3(3.2)
implies that limk∈S∗ δ(xk, yk) = 0, which gives limk∈S∗ dk = 0 from part (i) of Lemma 3.6. In
addition, Lemma 3.8 implies that limk∈S∗ ‖∇2Mk−Bk‖ = 0. The combination of these results
gives the estimate

M(vk + dk)−M(vk)− γS∇M(vk)
Tdk ≤ −(1− γS)c̄ ‖dk‖2 + o(‖dk‖2) < 0,

for all k ∈ S∗ sufficiently large. As limk∈S∗ dk = 0 (see Lemma 3.6(i)), the computation of
αk = 1 follows from the previous displayed inequality and the Armijo condition (3.51).

The next theorem shows that, for k sufficiently large, the properties established in Lem-
mas 3.1–3.9 and Theorems 3.1–3.2 hold for every k, not just those in the set S∗ ⊆ S.

Theorem 3.3. For any positive ε sufficiently small, and any ρ such that 1 < ρ < 1+γ, there
exists a V-iteration index kV = kV (ε) such that the following results hold for every k ≥ kV :
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(i) ‖(xk − x∗, yk − y∗)‖ ≤ ε;

(ii) δ(xk+1, yk+1) ≤ δ(xk, yk)ρ;

(iii) k is a V-iterate; and

(iv) the results of Lemmas 3.1–3.9 and Theorems 3.1–3.2 hold.

Proof. Let the positive scalar ε be sufficiently small that the results of Lemmas 3.1–3.9 and
Theorems 3.1–3.2 hold for every V-O iterate (xk, yk) satisfying ‖(xk − x∗, yk − y∗)‖ ≤ ε. (The
proof of (iv) establishes that these results hold for every k sufficiently large.)

Let (xk, yk) be a primal-dual iterate with k ∈ S∗. Theorem 3.1 implies that the unit
step is accepted in the line search, in which case (xk+1, yk+1) = (xk + pk, yk + qk). Let κ be
the positive scalar defined in Lemma 3.1. Similarly, let c1 (c1 > 0) and c2 (c2 ≥ 1) denote
constants such that

max{‖xk+1 − xk‖, ‖yk+1 − yk‖} ≤ c1δ(xk, yk), and

δ(xk+1, yk+1) ≤ c2δ(xk, yk)
1+γ .

(3.52)

(The existence of c1 and c2 is implied by the results of Lemmas 3.6(i) and 3.7.)
If ρ is any scalar satisfying 1 < ρ < 1 + γ, let kV = kV (ε) be an index in S∗ ⊆ S that is

sufficiently large that (xkV , ykV ) is a V-iterate and satisfies the conditions

max { ‖xkV − x
∗‖, ‖ykV − y

∗‖, 2c1δV , 2c1δ
ρ
V /(1− δρV ) } ≤ 1

4ε, and (3.53)

max
{

2κρ+2δρ−1
V /β, c2δ

1+γ−ρ
V , δρV

}
≤ 1, (3.54)

where δV = δ(xkV , ykV ), and β (0 < β < 1) is the weight used in the definitions of φV (x, y) and
φV (x, y). The following argument shows that an index κV satisfying these conditions must
exist. As limk∈S∗(xk, yk) = (x∗, y∗), it must hold that the optimality and feasibility measures
(2.10) give limk∈S∗ φV (xk, yk) = 0 and limk∈S∗ φO(xk, yk) = 0. As Assumption 3.3(3.2) implies
that there are infinitely many V-O iterates, and the condition φV (vk) ≤ 1

2φ
max
V,k for a V-

iteration is checked before the condition for an O-iteration, then there must be infinitely
many V -iterates. In addition, as limk∈S∗ δ(xk, yk) = 0, there must be an index k = kV such
that δV = δ(xk, yk) is sufficiently small to give (3.53) and (3.54).

An inductive argument is used to prove that parts (i)–(iv) hold for all k ≥ kV . The base
case is k = kV . The definition of kV implies that k = kV is a V-iteration index, and it follows
trivially that part (iii) holds. Moreover, the assumption (3.53) and standard norm inequalities
yield

‖(xkV − x
∗, ykV − y

∗)‖ ≤ ‖xkV − x
∗‖+ ‖ykV − y

∗‖ ≤ 1
4ε+ 1

4ε < ε, (3.55)

which establishes part (i) for k = kV . It follows immediately from (3.55) and the choice of
ε that part (iv) holds for k = kV . As part (iv) holds for k = kV , (3.52), and (3.54) may be
combined to give

δ(xkV +1, ykV +1) ≤ c2δ
1+γ
V = c2δ

1+γ−ρ
V δρV ≤ δρV ,

which establishes part (ii) for k = kV . This completes the base case k = kV .
The inductive hypothesis is that (i)–(iv) hold for every iterate k such that kV ≤ k ≤

kV + j − 1. Under this hypothesis, it must be shown that (i)–(iv) hold for k = kV + j. For
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part (i), standard norm inequalities give∥∥∥∥(xkV +j − x∗
ykV +j − y∗

)∥∥∥∥ ≤ ‖xkV +j − x∗‖+ ‖ykV +j − y∗‖

=
∥∥∥ j−1∑
l=0

(xkV +l+1 − xkV +l) + xkV − x
∗
∥∥∥+

∥∥∥ j−1∑
l=0

(ykV +l+1 − ykV +l) + ykV − y
∗
∥∥∥

≤
j−1∑
l=0

(
‖xkV +l+1 − xkV +l‖+ ‖ykV +l+1 − ykV +l‖

)
+ ‖xkV − x

∗‖+ ‖ykV − y
∗‖

≤ 2c1

j−1∑
l=0

δ(xkV +l, ykV +l) + 1
2ε,

where the first inequality of (3.52) has been used to bound each of the terms in the summation,
and the term ‖xkV − x∗‖ + ‖ykV − y∗‖ is estimated by (3.55). It follows from the inductive
hypothesis for part (ii) and (3.53) that∥∥∥∥(xkV +j − x∗

ykV +j − y∗
)∥∥∥∥ = 2c1

[
δV +

j−1∑
i=1

δiρV

]
+ 1

2ε < 2c1

[
δV +

δρV
1− δρV

]
+ 1

2ε ≤ ε,

which establishes that part (i) holds for k = kV + j.
The next stage of the proof involves establishing that part (iii) holds for k = kV + j. For

all k ≥ kV , it holds that ξk = 0 and the feasibility measure φV satisfies

βr(xk, yk) ≤ φV (xk, yk) = η(xk) + βω(xk, yk, ξk) ≤ 2r(xk, yk) ≤ 2κδ(xk, yk),

where the last inequality follows from Lemma 3.1. Applying these inequalities at (xkV +j , ykV +j),
together with Lemma 3.1 and the induction assumption (ii) at (xkV +j−1, ykV +j−1), gives

φV (xkV +j , ykV +j) ≤ 2κδ(xkV +j , ykV +j) ≤ 2κδ(xkV +j−1, ykV +j−1)ρ

≤ 2κρ+1r(xkV +j−1, ykV +j−1)ρ

= 2κρ+1r(xkV +j−1, ykV +j−1)ρ−1r(xkV +j−1, ykV +j−1)

≤ (2κρ+1/β)r(xkV +j−1, ykV +j−1)ρ−1φV (xkV +j−1, ykV +j−1). (3.56)

If φmax
V,k−1 denotes the parameter used in the condition (2.11) to test for a V-iterate, then

the assumption that (xkV +j−1, ykV +j−1) is a V-iterate implies that φV (xkV +j−1, ykV +j−1) ≤
1
2φ

max
V,kV +j−1. This allows the bound (3.56) to be extended so that

φV (xkV +j , ykV +j) ≤ (κρ+1/β)r(xkV +j−1, ykV +j−1)ρ−1φmax
V,kV +j−1

≤ (κρ+2/β)δ(xkV +j−1, ykV +j−1)ρ−1φmax
V,kV +j−1

≤ (κρ+2δρ−1
V /β)φmax

V,kV +j−1 ≤ 1
2φ

max
V,kV +j−1.

The last of these inequalities follows from (3.54) and implies that kV + j is a V-iterate. This
establishes that part (iii) holds for k = kV + j, as required. Part (iv) then follows immediately
from the choice of ε and the fact that (i) and (iii) hold at k = kV + j.
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It remains to show that (ii) holds for k = kV + j. It follows from the bound (3.54) and
definition of ρ (ρ > 1), that

c2(δjρV )1+γ−ρ ≤ c2δ
ρ(1+γ−ρ)
V ≤ c2δ

1+γ−ρ
V ≤ 1. (3.57)

This inequality, the induction hypotheses of parts (ii) and (iv), and Lemma 3.7, together give

δ(xkV +j+1, ykV +j+1) ≤ c2δ(xkV +j , ykV +j)
1+γ

= c2δ(xkV +j , ykV +j)
1+γ−ρδ(xkV +j , ykV +j)

ρ

≤ c2(δjρV )1+γ−ρδ(xkV +j , ykV +j)
ρ ≤ δ(xkV +j , ykV +j)

ρ,

which shows that part (ii) holds for k = kV + j. This completes the induction proof.

It remains to establish the rate of convergence of the primal-dual iterates to (x∗, y∗). The
proof is based on showing that the iterates are equivalent to those of a sSQP method for which
superlinear convergence has been established.

Theorem 3.4. The iterates satisfy limk→∞(xk, yk) = (x∗, y∗) and the convergence rate is
superlinear.

Proof. As ε > 0 was arbitrary in Theorem 3.3, it follows that limk→∞(xk, yk) = (x∗, y∗). It
remains to show that the convergence rate is superlinear. Theorem 3.3(iii) shows that the
iterates generated by the algorithm are all V-iterates for k sufficiently large. Moreover, Theo-
rem 3.3(iv) implies that Lemmas 3.1–3.9 and Theorems 3.1–3.2 hold for all k sufficiently large
(not just for k ∈ S∗ ⊆ S). It follows that for all k sufficiently large: (a) µR

k = r(xk, yk)
γ

(from Lemma 3.4); (b) A(x∗) = A(xk) = Aε(xk, yk, µR
k ) (from Lemma 3.2(ii)); and (c)

(xk+1, yk+1) = (xk + pk, yk + qk) with every direction (pk, qk) a local descent direction (from
Theorems 3.2 and 3.1(i)–(iii)). The combination of these results gives [xk ]A = 0 for all k
sufficiently large, where the suffix “A” denotes the components with indices in the optimal
active set A(x∗). It follows that the sequence (xk, yk) is identical to the sequence generated by
a conventional sSQP method applied to the equality-constrained problem (3.9), i.e., the iter-
ates correspond to performing a conventional sSQP method on problem (NP) having correctly
estimated the active set (the associated stabilized QP subproblem is defined in the statement
of Lemma 3.5). The superlinear rate convergence of the iterates now follows, for example,
from [25, Theorem 1].

4. Numerical Experiments

This section describes an implementation of the algorithm described in Section 2 and in-
cludes the results of some numerical experiments that are designed to validate the algorithm.
Section 4.1 provides the details of a preliminary MATLAB implementation. Sections 4.2–4.5
evaluate the performance of the method on problems that exhibit various forms of degeneracy.

All the results included in this paper are from a variant of the method that does not test
for a direction of negative curvature until a first-order stationary point is located. Both the
global and local convergence analysis remain valid for this version.
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4.1. Implementation details

From a numerical stability perspective, it is important that every computation be performed
without forming the matrix B(vk ;µ) given by (2.4) explicitly. All the relevant properties of
the matrix B may be determined from the matrix(

H(x, y) J(x)T

J(x) −µI

)
,

which is said to have “regularized KKT form.” In particular, each iteration involves the
factorization of a matrix of the form

KFε =

(
HFε(x, y) JFε(x)T

JFε(x) −µR
kI

)
. (4.1)

The (implicitly defined) positive-definite matrix B̂(vk ;µR
k ) (2.19) associated with the bound-

constrained QP problem (2.17) is obtained by using a pre-convexification scheme. Specifically,
the positive-definite matrix Ĥ of (2.19) has the form Ĥ(xk, yk) = H(xk, yk)+Ek+Dk for some
positive-semidefinite matrix Ek and positive-semidefinite diagonal matrix Dk, as described
in [17, Section 4]. If the matrix formed from the ε-free rows and columns of B is positive
definite (see (2.4)), then Ek is zero, in which case, the (implicit) B̂Fε (xk, yk ;µR

k ) is equal to
BFε (xk, yk ;µR

k ) and the regularized KKT equations remain unmodified (see the equations (4.8)
below). The calculation of the matrix Ek is based on an LBLT factorization of a matrix in the

form (4.1). The factorization also provides the direction of negative curvature s
(1)
k (2.9) used

to compute ξk (see, e.g., Forsgren [13], Forsgren and Gill [14], and Kungurtsev [28, Chapter
9]).

Solution of the QP subproblem. Let Q̂k(v) denote the convex QP objective (2.18)

defined with parameters yE
k and µR

k . Given an initial feasible point v̂
(0)
k for problem (2.17)

(i.e., a point such that [ v̂
(0)
k ]i ≥ 0, i = 1 :n), a typical active-set method generates a feasible

sequence {v̂(j)
k }j>0 such that Q̂k(v̂

(j)
k ) ≤ Q̂k(v̂

(j−1)
k ) and v̂

(j)
k minimizes Q̂k(v) on a “working

set”Wj of variables fixed at their bounds. An iterate v̂
(j)
k is optimal for (2.17) if the Lagrange

multipliers for the bound constraints in the working set are nonnegative, i.e.,

[∇Q̂k(v̂
(j)
k ) ]Wj = [∇M(vk ; yE

k , µ
R
k ) + B̂(vk ;µR

k )(v̂
(j)
k − vk) ]Wj ≥ 0, (4.2)

where the suffix “Wj” denotes the vector of components with indices in the working set Wj .
The initial working set W0 is defined as the ε-active set Aε(xk, yk, µR

k ). The first step is to
move the current iterate vk onto the bounds in the working set. This gives the first feasible

point v̂
(0)
k such that

[ v̂
(0)
k ]Aε = 0, and [ v̂

(0)
k ]Fε = [ vk ]Fε , (4.3)

where the suffices “Aε” and “Fε” refer to the components associated with the ε-active and

ε-free sets at (xk, yk). In general, v̂
(0)
k will not minimize Q̂k(v) on W0, and an estimate of the

next QP iterate v̂
(1)
k is computed by solving the subproblem

minimize
v

Q̂k(v) subject to [ v ]W0
= 0. (4.4)

If the primal components of this solution are feasible for the bounds x ≥ 0, then the solution

is used to define v̂
(1)
k . Otherwise one of the violated bounds is added to the working set and
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the iteration is repeated. Eventually, the working set will include enough bounds to define

an appropriate minimizer v̂
(1)
k . If v̂

(1)
k does not satisfy the gradient condition (4.2) then the

index of a variable with a negative gradient is selected for deletion fromW1 and the iterations
continue.

Computation of the local descent direction. In this case, vk + dk is a solution of the
equality-constrained subproblem (2.22) and must satisfy the optimality conditions (2.23). Let
Qk(v) denote the QP objective (2.3) defined with parameters yE

k and µR
k . The vector dk is

computed in the form dk = v̂
(0)
k +∆v̂

(0)
k − vk, where v̂

(0)
k is the feasible point (4.3) and ∆v̂

(0)
k

is defined uniquely by the equations

[∆v̂
(0)
k ]Aε = 0, and BFε [∆v̂

(0)
k ]Fε = −[∇Qk(v̂

(0)
k ) ]Fε . (4.5)

The definition of v̂
(0)
k from (4.3) together with the form of the ε-free and ε-active components

of dk yields

[ dk ]Fε = [∆v̂
(0)
k ]Fε and [ dk ]Aε = −[ vk ]Aε = −[xk ]Aε ≤ 0, (4.6)

where the last inequality follows from the feasibility of xk with respect to the bounds. The

benefit of computing dk in this form is that the vector v̂
(0)
k + ∆v̂

(0)
k is an initial estimate of

v̂
(1)
k used in the active-set method for solving the inequality constrained QP (2.17). (The

conditions necessary for the computation of the local descent direction include the fact that
BFε must be positive definite, which implies that B̂Fε = BFε .) It follows that if the local
descent direction does not satisfy the conditions (2.25) and is not suitable for the line search,
it may be used to initialize the active-set method for solving (2.17).

The system of equations for [∆v̂
(0)
k ]Fε in (4.5) may be written in regularized KKT form

as follows. Consider the matrix

UFε =

(
I − 2

µRk
JFε(xk)

T

0 I

)
,

where JFε(xk) denotes the matrix of ε-free columns of J(xk). The matrix UFε is nonsingular
and can be applied to both sides of (4.5) without changing the solution. Using the definitions
(4.6) and performing some simplification yields(

HFε(xk, yk) JFε(xk)
T

JFε(xk) −µR
kI

)(
[ pk ]Fε

−qk

)

= −

(
[ g(xk) +H(xk, yk)(x̂

(0)
k − xk)− J(xk)

Tyk ]Fε

c(xk) + J(xk)(x̂
(0)
k − xk) + µR

k (yk − yE
k )

)
, (4.7)

where pk and qk are the vectors of primal and dual components of dk, and HFε(xk, yk) is the
matrix of ε-free rows and columns of H(xk, yk).

The local convergence analysis of Section 3 implies that for k sufficiently large, it must

hold that Aε(xk, yk, µR
k ) = A(x∗), [xk ]Aε = 0, and yE

k = yk. It follows that x̂
(0)
k = xk and the

equations (4.7) become(
HFε(xk, yk) JFε(xk)

T

JFε(xk) −µR
kI

)(
[ pk ]Fε

−qk

)
= −

(
[ g(xk)− J(xk)

Tyk ]Fε
c(xk)

)
, (4.8)
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which represent the dual-regularized Newton equations for minimizing M on the ε-active set.

Parameter definitions. The numerical experiments were performed using pdSQP, a prelim-
inary implementation of the method written in MATLAB [31]. The control parameter values
and their initial values are specified in Table 1. If pdSQP did not converge within kmax = 1000
iterations, then it was considered to have failed. The tests used to terminate the algorithm
at an approximate solution or an infeasible stationary point are given by (2.30) and (2.31),
respectively.

Table 1: Control parameter and initial values required by Algorithm pdSQP.

Parameter Value Parameter Value Parameter Value

φmax
V,0 , φ

max
O,0 1.0e+3 µR

0 1.0e-4 τstop 1.0e-6

εa 1.0e-6 µ1 1.0 β 1.0e-5

γ 0.5 γS 1.0e-3 λ 0.2

ymax 1.0e+6 θ 1.0e-5 τ0 1.0

4.2. Degenerate CUTEst problems

The local rate of convergence of algorithm pdSQP was investigated for a set of degenerate
problems from the CUTEst test set [19]. In particular, 84 problems were identified for which
the active-constraint Jacobian is numerically rank deficient at the computed solution. In
addition, 56 problems have at least one negligible multiplier associated with a variable on
its bound. In this case, a multiplier is considered as being negligible if it is less than τstop

in absolute value. A zero multiplier associated with an active constraint implies that the
property of strict complementarity does not hold. A total of 26 problems were identified that
fail both the linear independence constraint qualification (LICQ) and strict complementarity.

For these degenerate problems, the order of convergence was estimated by the quantity

EOC = log r(xkf , ykf )/ log r(xkf−1, ykf−1), (4.9)

where kf denotes the final computed iterate. The results are given in Table 2. The column
with heading “Last is global” contains the statistics for problems for which the final search
direction is a global descent direction. The column marked “Last is local” gives the statistics
for problems for which the final direction is a local descent direction. Column headed “Last
two are local” contains the statistics for problems for which the final two descent steps are
local descent directions. The values in parentheses indicate the number of problems that sat-
isfy the weak second-order sufficient optimality conditions, i.e., the Hessian of the Lagrangian
is positive definite on the null space of the active constraint Jacobian matrix. In the imple-
mentation considered here, this property is considered to hold if the smallest eigenvalue of
ZTHFεZ is greater than τstop, where the columns of Z form a basis for the null space of JFε .

Table 2 shows that if the LICQ does not hold, but strict complementarity does, then local
descent steps are computed in the final stages and they contribute to the superlinear rate of
convergence. Moreover, superlinear convergence is typical even when the local descent step is
not computed. This observation is consistent with [28, Chapter 8], which shows that the iter-
ates generated by the algorithm pdSQP of Gill and Robinson [16] converge superlinearly when
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Table 2: The estimated order of convergence (EOC) for algorithm pdSQP on the degenerate CUTEst
test problems

Last is global Last is local Last two are local Total

Problems not satisfying the LICQ

1.25 < EOC 20 (7) 16 (12) 33 (31) 69 (50)

1.1 < EOC ≤ 1.25 3 (3) 1 (1) 6 (6) 10 (10)

EOC ≤ 1.1 3 (2) 0 (0) 2 (2) 5 (4)

Problems not satisfying strict complementarity

1.25 < EOC 17 (6) 4 (2) 16 (16) 37 (24)

1.1 < EOC ≤ 1.25 4 (4) 0 (0) 3 (3) 7 (7)

EOC ≤ 1.1 9 (7) 1 (0) 2 (1) 12 (8)

Problems not satisfying strict complementarity and the LICQ

1.25 < EOC 11 (3) 4 (2) 6 (6) 21 (11)

1.1 < EOC ≤ 1.25 2 (2) 0 (0) 2 (2) 4 (4)

EOC ≤ 1.1 1 (1) 0 (0) 0 (0) 1 (1)

the second-order sufficient conditions for optimality hold in conjunction with the property
of strict complementarity. The results are more mixed on those problems for which pdSQP

converges to a solution at which strict complementarity fails.

4.3. The degenerate problems of Mostafa, Vicente, and Wright

In [32], Mostafa, Vicente and Wright analyze the performance of a sSQP algorithm proposed
by Wright [36] that estimates the weakly and strongly active multipliers. The authors demon-
strate that the algorithm is robust in general and converges rapidly on a specified collection of
12 degenerate problems that includes some of the original Hock-Schittkowski problems; several
Hock-Schittkowski problems modified to include redundant constraints; and several problems
drawn from the literature (see the reference [32] for additional details). All 12 problems have
either a rank-deficient Jacobian or at least one weakly active multiplier at the solution.

Algorithm pdSQP was tested on ten of the twelve problems that could be coded directly
or obtained from other sources. Of the ten cases, pdSQP converges superlinearly on seven
problems, converges linearly on two problems, and fails to converge on one problem. These
results appear to be similar to those obtained by Mostafa, Vicente and Wright using their
code sSQPa [32].

4.4. Degenerate MPECs

Mathematical programs with equilibium constraints (MPECs) are optimization problems that
have variational inequalities as constraints. Various reformulations of MPECs as nonlinear
programs (see, e.g., Baumrucker, Renfro and Biegler [3]) include complementarity constraints
that do not satisfy either the LICQ or the MFCQ. This feature is generally recognized as the
main source of difficulty for conventional nonlinear solvers. In the case of pdSQP, the violation
of the MFCQ implies that Theorem 3.6 of [15] cannot be used to guarantee the existence of
limit points of the sequence of dual variables. As a consequence, the primal-dual iterates
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computed by pdSQP may never enter a region of superlinear convergence. Nonetheless, as
MPECs constitute an important and challenging class of problems, this section includes results
from pdSQP on a large set of MPECs.

We evaluated pdSQP on a set of 86 MPECs obtained from Sven Leyffer at the Argonne
National Laboratory. Many of these problems are included in the MPECLib library [6], which
is a large and varied collection of MPECs from both theoretical and practical test models.
pdSQP was able to solve 78 of the 86 problems.

As discussed above, the theoretical results of Section 3 do not guarantee that the primal-
dual iterates will enter a region in which local descent steps are used. In order to study this
possibility, Table 3 gives the EOC rates defined in (4.9) for all of the MPEC problems. The
results indicate that, as predicted by the theory, the last search direction is a global descent
direction in 23 cases. Nonetheless, 20 of these cases still converge at a superlinear rate.
By comparison, of the 55 problems for which the last direction is a local descent direction,
superlinear convergence occurs in 52 cases.

Table 3: The estimated order of convergence (EOC) for pdSQP on the MPEC test set.

Last is global Last is local Last two are local Total

1.25 < EOC 18 (9) 17 (17) 31 (31) 66 (57)

1.1 < EOC ≤ 1.25 2 (2) 1 (1) 3 (3) 6 (6)

EOC ≤ 1.1 3 (2) 2 (2) 1 (1) 6 (5)

4.5. Degenerate problems from the DEGEN test set

In a series of numerical tests, Izmailov and Solodov [23,24,26] demonstrate that Newton-like
algorithms such as SQP or inexact SQP methods tend to generate dual iterates that converge
to critical multipliers, when they exist. (Critical multipliers are those multipliers y ∈ Y(x∗)
for which the regularized KKT matrix (4.1) is singular at x∗). This is significant because dual
convergence to critical multipliers will result in a linear rate of convergence [24]. However,
Izmailov [24] shows that an implementation of a conventional sSQP algorithm is less likely to
exhibit this behavior, although poor performance can still occur in a small number of cases.
This has motivated the use of sSQP subproblems as a way of accelerating local convergence
in the presence of critical multipliers. However, such algorithms have had mixed results in
practice (see, e.g., Izmailov [27]). The purpose of this section is to use a subset of the DEGEN

test set to investigate the performance of pdSQP on problems with critical multipliers. The
subset of problems consists of those considered by Izmailov [23], and Izmailov and Solodov [24].

The estimated order of convergence (EOC) (cf. (4.9)) for these problems are given in
Table 4. The results are separated based on the following properties: (i) no critical multipliers
exist; (ii) critical multipliers exist but the limit point y∗ is not critical; and (iii) the limit point
y∗ is critical. The problem summaries indicate which optimal multipliers (if any) are critical. If
the final multiplier estimate is within 10−3 of a critical multiplier, the multiplier is designated
as critical. As can be seen in Table 4, empirically, pdSQP converges superlinearly on 45 of
the 51 problems that do not have critical multipliers. For the 58 problems that have critical
multipliers, pdSQP converges to a critical multiplier for 46 problems, and for those 46 problems
the rate of convergence was typically slower. The slower rate-of-convergence supports the
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theory in [24], but the results indicate that on this test set, pdSQP often converges to critical
multipliers when they are present.

Table 4: The estimated order of convergence (EOC) of algorithm pdSQP on the DEGEN test set.

Critical multipliers? y∗ critical? EOC > 1.25 1.25 ≥ EOC > 1.1 EOC ≤ 1.1

No – 36 9 6

Yes No 9 1 2

Yes Yes 6 29 11

5. Conclusions

This paper considers the local convergence analysis and numerical performance of a sSQP

method introduced by Gill, Kungurtsev and Robinson [15]. The method appears to con-
stitute the first algorithm with provable convergence to second-order points as well as a
superlinear rate of convergence. The method is formulated as a stabilized SQP method with
an implicit safeguarding strategy based on minimizing a bound-constrained primal-dual aug-
mented Lagrangian. The method involves a flexible line search along a direction formed from
an approximate solution of a regularized quadratic programming subproblem and, when one
exists, a direction of negative curvature for the primal-dual augmented Lagrangian. With
an appropriate choice of termination condition, the method terminates in a finite number of
iterations under weak assumptions on the problem functions. Safeguarding becomes relevant
only when the iterates are converging to an infeasible stationary point of the norm of the
constraint violations. Otherwise, the method terminates with a point that either satisfies
the second-order necessary conditions for optimality, or fails to satisfy a weak second-order
constraint qualification. In the former case, superlinear local convergence is established by
using an approximate solution of the stabilized QP subproblem that guarantees that the op-
timal active set, once correctly identified, remains active regardless of the presence of weakly
active multipliers. It is shown that the method has superlinear local convergence under the
assumption that limit points become close to a solution set containing multipliers satisfying
the second-order sufficient conditions for optimality. This rate of convergence is obtained
without the need to solve a nonconvex QP subproblem, or impose restrictions on which local
minimizer of the QP is found. For example, it is not necessary to compute the QP solution
closest to the current solution estimate.

Numerical results on a variety of problems indicate that the method performs relatively
well compared to a state-of-the-art SQP method. Superlinear convergence is typical, even for
problems that do not satisfy standard constraint qualifications. Results are more mixed for
problems that do not satisfy the property of strict complementarity.

The proposed method is based on the beneficial properties of dual regularization, which
implies that it is necessary to assume a second-order sufficient condition that rules out the pos-
sibility of critical multipliers at the solution. Future research will focus on the development of
primal regularization techniques that allow superlinear convergence when critical multipliers
are present. For a local algorithm framework based on primal regularization, see Facchinei,
Fischer and Herrich [7, 8].
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A. Properties of Problem Perturbations

Several of the theorems discussed in Section 3 involve the relationship between the proximity
measure r(x, y), and the quantities η(x, y) and η̄(x, y) defined by Wright [37] (and also defined
below). Throughout the discussion, the scaled closed interval [αα`, α αu] defined in terms of
the positive scalars α`, αu and scale factor α, will denoted by [α`, αu] · α.

A.1. Inequality-constraint form

The original results apply to an optimization problem with all inequality constraints. The
all-inequality form of problem (NP) is

minimize
x∈Rn

f(x)

subject to c(x) ≥ 0, −c(x) ≥ 0, x ≥ 0.
(A.1)

Given multipliers y for problem (NP), the multipliers for the nonnegativity constraints x ≥ 0
are g(x)− J(x)Ty and are denoted by z(x, y).

Consider the primal-dual solution set Vz(x∗) for problem (A.1). It follows that Vz(x∗) =
V(x∗)×Z(x∗), where

V(x∗) = {x∗} × Λ(x∗) and Z(x∗) = {z : g(x∗)− J(x∗)T y, for some y ∈ Λ(x∗)}

The distance to optimality for the problem (A.1) is

dist
(
(x, y, z),Vz(x∗)

)
= min

(x̄,ȳ,z̄)∈Vz(x∗)
‖(x− x̄, y − ȳ, z − z̄)‖

= min
(x̄,ȳ)∈V(x∗)

‖
(
x− x̄, y − ȳ, z(x, y)− (g(x̄)− J(x̄)T ȳ)

)
‖.

Result A.1. If dist
(
(x, y, z),Vz(x∗)

)
denotes the distance to optimality for the problem (NP)

written in all-inequality form, then δ(x, y) = Θ
(

dist((x, y, z),Vz(x∗))
)
.

Proof. Let y∗P (y) denote the vector that minimizes the distance from y to the compact set
Λ(x∗) (see (3.3)). Consider the quantity

δ(x, y) =
∥∥(x− x∗, y − y∗P (y), z(x, y)− z(x∗, y∗P (y))

)∥∥.
The components of the vector

(
x− x∗, y − y∗P (y)

)
used to define δ(x, y) form the first n+m

components of δ(x, y), which implies that δ(x, y) ≤ δ(x, y). For the upper bound, the Lipschitz
continuity of J and g, together with the boundedness of y∗P (y) and J(x) imply that

‖z(x, y)− z(x∗, y∗P (y))‖ = ‖g(x)− J(x)Ty − g(x∗) + J(x∗)Ty∗P (y)‖
≤ Lg‖x− x∗‖+ ‖J(x)T(y − y∗P (y))‖+ ‖(J(x)− J(x∗))Ty∗P (y)‖
≤ Lg‖x− x∗‖+ CJ‖y − y∗P (y)‖+ L2Cy‖x− x∗‖
≤ Caδ(x, y).

(A.2)

It follows that δ(x, y) ≤ δ(x, y) +‖z(x, y)− z(x∗, y∗P (y))‖ ≤ (1 +Ca)δ(x, y), which implies that
δ(x, y) = Θ

(
δ(x, y)

)
, and, equivalently, δ(x, y) = Θ

(
δ(x, y)

)
.
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The proof is complete if it can be shown that δ(x, y) = Θ
(

dist((x, y, z),Vz(x∗))
)
. The

definitions of dist((x, y, z),Vz) and δ(x, y) imply that dist((x, y, z),Vz(x∗)) ≤ δ(x, y). More-
over, δ(x, y) = dist((x, y),V(x∗)) ≤ dist((x, y, z),Vz(x∗)) because there is no third com-
ponent in the definition of δ(x, y). As δ(x, y) = Θ

(
δ(x, y)

)
, it must hold that δ(x, y) =

Θ
(

dist((x, y, z),Vz(x∗))
)
, as required.

Let η̄(x, y, zA) be the practical estimate of dist
(
(x, y, z),Vz(x∗)

)
given by

η(x, y) = ‖(v1, v2, v3, v4)‖1,

where v1 = g(x) − J(x)Ty − z(x, y), v2 = min(x, z(x, y)), v3 = min(c(x),max(y, 0)), and
v4 = min(−c(x),max(−y, 0)). Wright [37] shows that

η(x, y) ∈ [1/κ, κ] · dist
(
(x, y, z),Vz(x∗)

)
for all (x, y) sufficiently close to (x∗, y∗).

Result A.2. Consider the function η(x, y) = ‖(v1, v2, v3, v4)‖1, where v1 = g(x) − J(x)Ty −
z(x, y), v2 = min(x, z(x, y)), v3 = min(c(x),max(y, 0)), and v4 = min(−c(x),max(−y, 0)).
The quantity η(x, y) defines a measure of the quality of (x, y) as an approximate solution of
problem (NP) defined in all-inequality form and satisfies r(x, y) = Θ

(
η(x, y)

)
.

Proof. It will be established that η(x, y) = Θ
(
r(x, y)

)
. The vector v1 is zero by definition.

The vector v2 is min(x, g(x)− J(x)Ty), which is the second part of r(x, y).
If ci(x) < 0 and yi ≥ 0 then min(ci(x),max(yi, 0)) = ci(x) and min(−ci(x),max(−yi, 0)) =

0. If ci(x) < 0 and yi ≤ 0 then min(ci(x),max(yi, 0)) = ci(x) and min(−ci(x),max(−yi, 0)) =
min(|ci(x)|, |yi|). If ci(x) > 0 and yi ≥ 0 then min(ci(x),max(yi, 0)) = min(|ci(x)|, |yi|) and
min(−ci(x),max(−yi, 0)) = −ci(x). If ci(x) > 0 and yi ≤ 0 then min(ci(x),max(yi, 0)) = 0
and min(−ci(x),max(−yi, 0)) = −ci(x).

It follows that for every i, one or the other of the vectors v3 or v4 has a component
equal to |ci(x)| and hence η(x, y) ≥ r(x, y). In addition, v3 or v4 may have a term that is
min(|ci(x)|, |yi|) ≤ |ci(x)|, and so η(x, y) ≤ 2r(x, y). It follows that η(x, y) = Θ

(
r(x, y)

)
, as

required.

A.2. Equality-constraint form

Any solution x∗ of problem (NP) is also a solution of the problem

minimize
x

f(x) subject to c(x) = 0, and [x ]A = ETAx = 0. (A.3)

Furthermore, any primal-dual solution (x∗, y∗) of problem (NP) must satisfy the SOSC for
(A.3) because the conditions for problem (NP) imply that pTH(x∗, y∗)p > 0 for all p such that
J(x∗)p = 0 and pi = 0 for every i ∈ A(x∗). The primal-dual solution set Uz(x∗) for problem
(A.3) has the form Uz(x∗) = U(x∗)×Z(x∗), where

U(x∗) = {x∗} × Λ(x∗) and Z(x∗) = {zA : zA = [ g(x∗)− J(x∗)Ty ]A, for some y ∈ Λ(x∗)}.
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Let y and zA denote estimates of the multipliers for the constraints c(x) = 0 and ETAx = 0.
Let δ̄(x, y, zA) be the distance of (x, y, zA) to a solution of (A.3), i.e.,

dist(x, y, zA,Uz(x∗)) = min
(x̄,ȳ,z̄A)∈Uz(x∗)

‖(x− x̄, y − ȳ, zA − z̄A)‖

= min
(x̄,ȳ)∈U(x∗)

‖(x− x̄, y − ȳ, [ g(x)− J(x)Ty − (g(x̄)− J(x̄)Tȳ) ]A)‖

= min
ȳ∈Λ(x∗)

‖(x− x∗, y − ȳ, [ g(x)− J(x)Ty − (g(x∗)− J(x∗)Tȳ) ]A)‖,

where Λ(x∗) is the compact subset of the set of optimal multipliers corresponding to x∗ for
problem (NP).

Let µ̃(x, y, zA) be the estimate of dist(x, y, zA,Uz(x∗)) given by

µ̃(x, y, zA) =

∥∥∥∥∥∥
g(x)− J(x)Ty − EAzA

c(x)
xA

∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


[ g(x)− J(x)Ty ]A − zA
[ g(x)− J(x)Ty ]F

c(x)
xA


∥∥∥∥∥∥∥∥

1

. (A.4)

Wright [37] uses the notation η̄(x, y, zA) = µ̃(x, y, zA) and shows that for all (x, y) sufficiently
close to (x∗, y∗), the estimate µ̃(x, y, zA) satisfies

µ̃(x, y, zA) ∈ [1/κ, κ] · dist(x, y, zA,Uz(x∗)), (A.5)

where κ = κ(Uz(x∗)) is a constant.

Result A.3. For all (x, y) sufficiently close to (x∗, y∗), the estimate µ̃(x, y, zA) = ‖(g(x) −
J(x)Ty − EAzA, c(x), xA)‖1 satisfies µ̃(x, y, zA) = O(δ(x, y)).

Proof. For all (x, y) sufficiently close to (x∗, y∗), the definition of dist(x, y, zA,Uz(x∗)) and
the Lipschitz continuity of g and J imply that

dist(x, y, zA,Uz(x∗)) ≤ δ(x, y) + ‖[ g(x)− J(x)Ty − (g(x∗)− J(x∗)Ty∗P (y)) ]A‖
≤ δ(x, y) + ‖g(x)− J(x)Ty − (g(x∗)− J(x∗)Ty∗P (y))‖
≤ δ(x, y) + Caδ(x, y),

for some bounded constant Ca (cf. (A.2)). The result now follows from (A.5).
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