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Preface

Many people have made contributions to the development of this version of PLTMG;
I am indebted to them all for their help. The original grid refinement algorithms
used in PLTMG were derived in 1976 as joint work with Todd Dupont of the
University of Chicago. The approximate Newton strategies incorporated in the
present version of PLTMG represent joint work with Donald J. Rose of Duke Uni-
versity. The gradient recovery and a posteriori error estimation procedures are joint
work with Jinchao Xu and Bin Zheng of Pennsylvania State University. The algo-
rithms used in the pseudo-arclength continuation procedures are joint work with
Tony Chan of the University of California at Los Angeles and Hans Mittelmann of
Arizona State University. The interior point algorithms used in the optimization
problems treated in this version are joint work with Philip Gill of University of Cal-
ifornia at San Diego. The adaptive mesh smoothing algorithms are joint work with
R. Kent Smith. The X-Windows interface and many of the graphics enhancements
were jointly developed with Michael Holst of the University of California at San
Diego. The parallel adaptive paradigm is joint work with Michael Holst. The par-
allel domain decomposition solver is joint work with Shaoying Lu of the University
of Illinois and Panayot Vassilevski of Lawrence Livermore National Laboratory. The
dual function used for parallel adaptive meshing is joint work with Jeffrey Ovall of
the California Institute of Technology. Many people made contributions to the test
problems, reported bugs and suggested improvements that have been incorporated
in the current version.

This version of PLTMG was supported by the National Science Foundation
through grant DMS-0511766 (University of California at San Diego). The UCSD
CAM group Beowulf cluster was built using funds provided by the National Science
Foundation through SCREMS-0532073.

University of California at San Diego Randolph E. Bank
September, 2007
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Chapter 1

Introduction

1.1 Problem Specification.

Consider the elliptic boundary value problem
—V-a(z,y,u, Vu, \) + f(z,y,u, Vu,A) =0 in Q, (1.1)

with boundary conditions

U:gg(l',y,)\) on 892;
an = gi(x,y,u,A) on 09, (1.2)
u,a-n  continuous on 0.

Here ) is a bounded region in R?, n is the unit normal, a is the vector (aj,az)?,
a1, az, f, g1, and go are scalar functions. 0y is a portion of 92 where periodic
boundary conditions are applied. In some problems solved by PLTMG, the param-
eter \ is not used, while in others A € R is a scalar parameter or A € H!({2), where
H1(£2) denotes the usual Sobolev space. Let
H, ={¢ € H'(?)| ¢ is continuous on I},
Hy ={¢p € H,|d = go on 9},
He ={p € Hylo=0on 0}

Then the weak form of (1.1)-(1.2) is: find u € H} such that
a(u,v) =0 for all v € H], (1.3)

where

a(u,v) = /Qa(u, Vu,A) - Vo + f(u, Vu, \)vde dy — /{m g1 (u, v ds. (1.4)

1
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In some problems solved by PLTMG, a functional p(u, A) plays an important
role. Functionals we consider are of the form

p(u7)‘):/pl(xay7uvvu7)‘)dxdy+/p?(mayvuvvuv)‘)dsv (15)
Q r

where p; and p, are scalar functions. Here I' = 9QUT o, where I'g consists of certain
internal curves specified by the user.

This version of the PLTMG package address five major problem classes. These
are briefly described below.

1.1.1 Elliptic Boundary Value Problem.

For this problem, PLTMG solves a discrete analog of (1.3). The parameter A does
not play a role in this problem. Let 7 denote a triangulation of © and let M
be the space of C? piecewise polynomials of degree p associated with 7. In this
version of PLTMG, we allow the choices 1 < p < 3. PLTMG usually represents
such a piecewise polynomial using the standard nodal basis; a function can then
be specified by giving its values at the principle lattice points of the element, as
illustrated in Figure 1.1.

Figure 1.1. Nodal degrees of freedom for the continuous peicewise linear
element, p = 1 (left), the conlinuous piecewise quadratic element, p = 2 (middle),
and the continuous piecewise cubic element, p = 3 (right).

Let Z : H'(Q) — M denote continuous piecewise polynomial interpolation
operator that interpolates at the degress of freedom of 7. Then

M, = {¢p € M| ¢ is continuous on 9},
Mg ={p e My|¢p=1I(g2) on 0Qs},
M, ={p e Mp,|¢p=0on N}
The discrete equations solved by PLTMG are formulated as follows: find u;, € My

such that
a(up,v) =0 for all v € M.. (1.6)
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1.1.2 Obstacle Problem.

The second class of problems addressed by PLTMG are the subset of variational
inequalities known as obstacle problems. Let

K={¢peHy|u<o<u}.
The obstacle problem is formulated as

min p(u) (1.7)
where p is a functional of the form (1.5). The parameter A is not used in this
problem. Implicit in our formulation of this problem is an assumption that the
Frechet derivative of p corresponds to an elliptic boundary problem of the form
(1.3). We also assume that the bound constraints are consistent with the boundary
conditions.

The discrete form of this problem is as follows. Let

Kn=A{¢€My|Z(v) < ¢ <I(u)}
We then seek u;, € K, that satisfies

min p(up) (1.8)

up €L

1.1.3 Continuation Problem.

Continuation problems addressed by PLTMG are all of the form (1.3), where the
parameter A € R. Continuation problems also require a functional p as in (1.5).
Solutions of (1.3)—(1.5) in general define a family of curves on the (A, p) plane.
Typical curves are shown in Figure 1.2.

Figure 1.2. Continuation curves p= p(\).

The singular point labeled “A” in the figure on the left is a limit (turning)
point, and those labeled “B” in the figure on the right are bifurcation points (this
figure corresponds to the special case of a linear eigenvalue problem). The purpose



4 PLTMG USERS' GUIDE 10.0

of the continuation process is to compute solutions (u, A) corresponding to points
on these curves.

PLTMG provides a suite of options for solving continuation problems. Among
them are options for following a solution curve to a target value in A or p, locating
limit and bifurcation points, and switching branches at bifurcation points. Because
some problems might have more than one parameter of interest, PLTMG also has
options for switching parameters and functionals (changing the definitions of A and
p) during the calculation, as a means of exploring higher dimensional spaces.

1.1.4 Parameter ldentification Problem.

In this problem, a partial differential equation of the form (1.3) appears as a con-
straint in an optimization problem. Here we seek A € R and u € H, that satisfy

min p(u, ) (1.9)
subject to the constraint (1.3) and the simple bounds
A<A<A (1.10)
We define the Lagrangian
L(u,v,\) = p(u, A) + a(u,v), (1.11)

where v € H, is a Lagrange multiplier. We can solve the optimization problem by
seeking stationary points of L(u, v, A) constrained by the simple bounds (1.10).

In the discretized problem, we seek uj, € Mg, a discrete Lagrange multiplier
v, € M, and A, € R that correspond to a stationary point of L(up,vp, Ap),
constrained by the simple bounds

A< <A (1.12)

As in the case of continuation problems, a problem of the form (1.9)—(1.10)
may involve more than one parameter of interest. At present, PLTMG does not al-
low A to be a vector of parameters, but it does allow parameter switching (redefining
the meaning on \) during the course of the calculation. Thus one can sequentially
minimize (1.9) with respect to one of the parameters, holding the others fixed.

1.1.5 Optimal Control Problem.

This problem is very similar to the parameter identification problem, except now
A € HY() (or perhaps some weaker space where pointwise values of (1.14) below
are defined). Thus we seek u € H, and A € H!(Q) that satisfy

min p(u, \) (1.13)
subject to the constraint (1.3) and the simple bounds

Az,y) <A < Az,y) (1.14)
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for (z,y) € Q. As before, we define the Lagrangian
L(u,v, X) = pu, A) + au,v), (1.15)

where v € H, is a Lagrange multiplier. We seek stationary points of L(u,v, )
constrained by the simple bounds (1.14).

In the discretized problem, we seek uj, € Mg, a discrete Lagrange multiplier
v, € M., and A\, € M that correspond to a stationary point of L(up,vp, Ap)-
constrained by the simple bounds

I(\) < M <IN (1.16)

1.2 Main Subroutines

The software package consists of six primary subroutines. These main routines
and their functions are summarized in Table 1.1. The package uses two basic data
structures to specify the domain 2: the triangulation and the skeleton. Loosely
speaking, a triangulation specifies the domain 2 as the union of triangles. A skeleton
specifies the domain as the union of one or more subdomains and requires only a
description of the boundary of each subdomain. The user can specify the domain
as either a triangulation or a skeleton. Specifying a triangulation generally requires
less data only for simple domains that can be triangulated with very few triangles.
If the domain has a complicated geometry or has internal interfaces that the user
would like the triangulation to respect, then it is usually easier to specify the domain
as a skeleton. Both data structures are documented in Chapter 2.

Subroutine | Main Function

TRIGEN Mesh generation and modification
PLTMG Solve partial differential equation
TRIPLT Display solution or related function
INPLT Display input data

GPHPLT | Display performance statistics
MTXPLT | Display sparse matrix

Table 1.1. The main subroutines in the package.

Subroutine TRIGEN is mainly concerned with transforming the data struc-
tures defining the domain. TRIGEN also provides a posteriori error estimates for
the solution in the H' () and £2(Q2) norms. TRIGEN provides options for creating
triangulation and skeleton data structures, and adaptively modifying the triangu-
lation data structure. TRIGEN also provides options for various tasks related to
parallel processing, namely partitioning the mesh, broadcasting a given mesh to
all processors, reconciling a fine mesh distributed among several processors, and
(possibly) collecting a fine mesh from many processors onto just one. TRIGEN is
documented in Chapter 3.
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Subroutine PLTMG uses finite element discretizations based on C° piecewise
linear triangular finite elements and includes algorithms to address each of the
problem classes described above. In the case of parallel processing, PLTMG includes
a domain decomposition solver for each problem class. PLTMG is described in detail
in Chapter 4.

Subroutine TRIPLT provides graphical displays of the solution and other grid
functions. Three-dimensional color surface/contour plots with shading and an ar-
bitrary viewing perspective are available. Subroutine INPLT provides a graphical
display of the mesh data (triangulation or skeleton) defining 2. Subroutine GPH-
PLT provides a variety of graphical displays of convergence histories, statistical
data, and other interesting output from PLTMG. Subroutine MTXPLT displays
the stiffness matrix A or the (approximate) LDU factorization of A in a graphical
format. These routines are described in detail in Chapter 5.

An elementary interactive test driver, ATEST, is described in Chapter 6. AT-
EST provides options for calling each of the main routines, as well as other useful
functions such as writing and reading data files, resetting parameters, and executing
problem specific subroutines provided by the user. Several short machine depen-
dent routines are required for timing and graphics. These are also described in
Chapter 6. In Chapter 7, the example problem data sets included with the source
code are briefly described.

PLTMG was originally conceived as a prototype program to study the the-
oretical and practical aspects of the multigrid iterative method, adaptive grid re-
finement and error estimation procedures, and their interaction. As such, PLTMG
was designed to (formally) handle a wide class of elliptic operators and reasonably
general domains. The boundary of the problem class has expanded as problems
were encountered that required its enlargement to be solved. The problem class
addressed by this version of PLTMG should not be interpreted as the limit of the
class of problems that could be successfully solved by the techniques embodied by
this package. Conversely, one should not assume that every problem (formally)
within this class can be solved using the existing code.

As with other versions of the package, time efficiency is a secondary considera-
tion to robustness, versatility, and ease of maintenance. While PLTMG is probably
not the fastest code that could be used for any particular problem, we believe that
it will deliver reasonable execution times in most environments.

1.3 Installation.

The package is provided in both single and double precision versions. The code
development was done in single precision, and the program S2D of Jim Meyering
(available from Netlib) was used to create the double precision version. The source
code is contained in several files as indicated in Table 1.2. The majority of the
source code is machine independent. The X-Windows interface is based on the
Motif widget set and can be used only on systems which support X-Windows.
Certain X-Windows libraries must be loaded along with the PLTMG software. The
OpenGL graphics program SG of Michael Holst has been integrated as one of several
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available graphics devices. SG is available elsewhere, and its MALOC library must
be loaded along with the PLTMG software. Finally, the parallel processing options
in PLTMG are based on MPI, and the MPI library must also be loaded in order to
resolve all external names.

File Contents

pltmg.f most source code
mgmpi.f (mgmpi_stubs.f) MPI interface

mgvio.f (mgvio_stubs.f) SG interface

xgui.c (xgui_stubs.c) X-Windows interface
mgxdr.c XDR interface

atest.f test driver program
burger.f, battery.f, circle.f, control.f

domains.f, ident.f, jen.f, message.f test problem data sets
mnsurf.f, naca.f, ob.f, square.f, usmap.f

Table 1.2. Files in the basic distribution.

In MPI is not available or not desired, one can substitute the supplied stub
interface routines. The stub routines are a set of MPI interface routines with all
calls to MPI library functions and subroutines deleted. By using the stub routines
in place of the regular interface, one can create an executable with no unresolved
external references without loading the MPI library. In this case, however, all the
parallel options of PLTMG are disabled.

In a similar fashion, if SG is not available or not desired, one can use the stub
routines in place of standard interface routines. If the stub routines are used, the
MALOC library is not needed, but the SG OpenGL and BH file graphics devices are
disabled. Finally, if the X-Windows libraries are not available, one can replace the
X-Windows interface with stub routines. In this case, the graphical user interface
and the corresponding X-Windows graphics devices are all disabled, but the X-
Windows libraries are not needed.
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Chapter 2
Data Structures

2.1 Overview.

In this chapter, we define the data structures used in the PLTMG package. We begin
with the two data structures used to define the region €: the triangulation and the
skeleton. Triangulation and skeleton data structure definitions are summarized in
Table 2.1 and described in detail in Sections 2.2 and 2.3.

The arrays IP, RP, and SP contain many scalar parameters, switches, control
variables, flags, and pointers, some that must be specified by the user and others
that are internally computed but may be of interest to the user. These are described
in Section 2.4. Finally, the coefficient functions defining the differential operator
and functional p in (1.1)—(1.3), and the optional function QXY used by TRIGEN
and TRIPLT, are described in Section 2.5.

2.2 The Triangulation.

In this section, we define the triangulation data structure. Let 7 denote the tri-
angulation consisting of triangles t;, 1 < i < NTF, vertices v;, 1 < i < NVF, and
edges b;, 1 <14 < NBF. Triangles may have curved edges, which are approximated
by arcs of circles. The centers of the circles are given by ¢;, 1 < i < NCF. Curved
edges may be on the boundary or in the interior of the region €.

For example, consider the circle of radius one with a crack along the positive
z-axis. This domain can be triangulated using 8 triangles, 10 vertices, and 10
boundary edges, 8 of which are curved, as illustrated in Figure 2.1. Vertices vy and
v10 have the same (x,y) coordinates, but vs is “above” the crack and vy is “below.”
Similarly, edge by is the top of the crack, while edge b is the bottom. The ordering
of vertices, triangles, and edges is arbitrary.

The arrays VX and VY are of length NVF and contain as their Ith entries
the (x,y) coordinates of vy, illustrated for this example in Table 2.2. If a triangle
has a curved edge, that edge is approximated by a circular arc passing through the
endpoints of the edge, with the center of the circle located at one of the points c;.

9
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array definition
(VX(I),VY(I)) | vertex coordinates
(XM(I),YM(I)) | circle center coordinates

IBNDRY(1,I) | first endpoint number
IBNDRY(2,I) | second endpoint number
IBNDRY(3,I) | circle center number

IBNDRY (4,I) | edge type

IBNDRY(5,I) | reserved for parallel processing
IBNDRY(6,I) | edge label

ITNODE for triangulation

ITNODE(1,I) | first vertex number
ITNODE(2,I) | second vertex number
ITNODE(3,I) | third vertex number
ITNODE(4,I) | reserved for parallel processing
ITNODE(5,I) | element label

ITNODE for skeleton

ITNODE(1,I) | first vertex number
ITNODE(2,I) | first edge number
ITNODE(3,I) | congruent region number
ITNODE(4,I) | reserved for parallel processing
ITNODE(5,I) | region label

Data structure definitions.

IBNDRY (4,I) | edge type
2 Dirichlet boundary
1 natural boundary
0 internal
-K linked with edge K
3,4,5 reserved for parallel processing

FEdge type definitions.

Table 2.1.

Because there are generally two such arcs for every pair of endpoints, the shorter
arc is taken to be the correct edge; therefore, one must specify curved edges that
subtend (strictly) less than m of arc; w/4 is a reasonable upper bound. The centers
of the circles used to specify curved edges are given in the arrays XM and YM of
length NCF, which contain as their Ith entries the x and y coordinates of the center
cy. The data for our example is shown in Table 2.2.

To simplify data entry, we provide the routine CENTRE for computing the
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<
s N -

Figure 2.1. Clockwise, from upper left: example domain; triangle numbers;
vertex numbers; curved edges; edge numbers.

center of a circle given three points on its boundary. CENTRE is called using the
statement

Call CENTRE( X1, Y1, X2, Y2, X3, Y3, XC, YC)

Here (X1,Y1) and (X2,Y2) are the endpoints of an arc of the circle, and (X3,Y3)
is a third point on the arc (e.g., the midpoint). CENTRE returns the center of the
circle in (XC,YC).

A given triangle t; € 7 is specified by giving an accounting of its three vertices
and by specifying an integer label or tag. Such labels are provided strictly for the
convenience of the user and can be used to identify differing regions or material
properties associated with the element. The array ITNODE is a 5 x NTF integer
array whose Ith column contains information about ¢;. The first three entries of
ITNODE contain the three vertex numbers of triangle ¢;. ITNODE(J,I) = K, for
1 < J <3, means (VX(K),VY(K)) is the Jth vertex of ¢;. The ordering of the
vertices of a given triangle is arbitrary and independent of the other triangles.!
Entry ITNODE(4,I) is used internally by PLTMG in parallel processing, denoting
the processor that “owns” ¢;; one can simply initialize ITNODE(4,I) = 0. Entry
ITNODE(5,I) contains any user provided label for ¢;. In our example, we choose
to label each element by the quadrant in the Euclidean plane in which it lies. The
ITNODE array for our example is shown in Table 2.2.

LPLTMG reorders vertices as necessary to ensure a counterclockwise orientation for elements.



12 PLTMG USERS' GUIDE 10.0

I 1 2 3 4 5 6 7 8 9 10
vX(|o 1 1/v/2 0 -1/¥v/2 -1 —1/v2 0 1/v2 1
VY() |0 0 1/vV2 1 1/4/2 0 —1/vV2 -1 —-1/v/2 0
XM(I) | 0
YM(I) | 0

The VX, VY, XM and YM arrays. NVF =10 and NCF = 1.

1 1 2 3 4 5 6 7 8 9 10
IBNDRY(L,LI) |1 2 3 4 5 6 7 8 9 10
IBNDRY(2I) |2 3 4 5 6 7 8 9 10 1
IBNDRY(3I)|0 1 1 1 1 1 1 1 1 0
IBNDRY(4I) |2 2 2 2 2 2 2 2 2 1
IBNDRY(5I) {0 0 0 0 0O O O 0O O O
IBNDRY(@6,I) |2 0 0 0 0 O O O 0 1

The IBNDRY array. NBF = 10.

1 1 2 3 4 5 6 7 8
ITNODE(1,) |1 1 1 1 1 1 1 1
ITNODE2I) |2 3 4 5 6 7 8 9
ITNODE@3I) |3 4 5 6 7 8 9 10
ITNODE(4I) |0 0 0 0 0 O O O
ITNODE(5,I) |1 1 2 2 3 3 4 4

The ITNODE array. NTF = 8.

Table 2.2. Data structures for a triangulation.

The array IBNDRY is a 6 x NBF integer array whose Ith column contains
information the indices of the endpoints of the interval. IBNDRY(JI) = K,
1 < J < 2, means (VX(K),VY(K)) is an endpoint of b;. Ordering of vertices
is arbitrary.? Entry IBNDRY(3,I) contains the index for the circle center for the
edge. IBNDRY(3,I) = K means (XM(K),YM(K)) is the circle center for edge b;. If
the edge is straight, IBNDRY(3,K) = 0.

The fourth entry defines the boundary type for edge b;. The possibilities for
edge type are shown in Table 2.1. There are several reasons to include internal
edges (IBNDRY(4,I) = 0) in a triangulation. First, if the internal edge is curved,
it must be specified in IBNDRY in order to be treated properly. Second, the set T’
in equation (1.3) taken as the edge set in IBNDRY; thus internal edges which are
part of I must be defined in IBNDRY. An important restriction on internal edges

2PLTMG orders the vertices of boundary edges to correspond to a left-handed (usually coun-
terclockwise, except for holes) traversal of the boundary.
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of a triangulation is that they must lie on an internal interface. That is, the two
triangles sharing by must have different labels as their fourth entries in ITNODE.

The fourth type of edge is a linked edge. Linked edges occur only in pairs. If by
and by are a pair of linked edges, then IBNDRY (4,I) = —J and IBNDRY (4,J) = —1I.
Linked edges by and by must be geometrically congruent. That is, by must be
mapped to by using a translation and orthogonal rotation. Continuity of the solution
up, and weak continuity of a - n is imposed on linked edge pairs. Thus if by and by
are boundary edges, this is equivalent to imposing periodic boundary conditions.
In the course of parallel processing, PLTMG creates edges of types 3 — 5. Entry
IBNDRY(5,I) is also used internally by PLTMG for parallel processing.

Entry IBNDRY(6,I) contains an integer label for the edge, similar to ITN-
ODE(5,*); this label can be used to uniquely identify a particular edge, or to asso-
ciate some property with the edge. The IBNDRY array for our example is shown
in Table 2.2.

In our example, we impose Dirichlet boundary conditions on the outer bound-
ary of the circle, and also along the top of the crack, and Neumann boundary
conditions on the bottom of the crack. The outer boundary of the circle is labeled
0, the top of the crack 2, and the bottom of the crack 1.

In the case of a singular Neumann problem (e.g., a1 = uy, a2 = uy, f =0, and
091 = 01in (1.1)), the solution w is determined only up to an arbitrary constant. In
this situation, the solution is not unique, and is determined only up to an additive
constant. Setting the switch ISING = 1 causes both right hand sides and solutions in
all linear systems to be orthogonalized with respect to constants, in effect computing
least squares solutions in the orthogonal complement subspace. In other situations,
one should set ISING = 0.

2.3 The Skeleton.

The skeleton data structure is often the easiest data structure for the user to specify
by hand, especially if the domain has complicated geometry, symmetry, or internal
interfaces. In the skeleton data structure, the domain 2 is viewed as the union
of NTF simply connected subregions ;, 1 < i < NTF. The regions need not be
convex, and the case NTF = 1 is not excluded. A shared boundary between two
subregions (an internal interface) will be respected by the triangulation process in
TRIGEN; that is, the interface will be represented as one or more triangle edges in
the triangulation.

The boundary of each £2; should be a simple closed curve that does not in-
tersect itself. Thus, for example, if 2 has a hole, adding a single cut between the
outer boundary and the hole will not be adequate. At least two subregions will be
required in this case.

Having decomposed the domain into NTF subregions, we decompose the
boundaries of the subregions into NBF edges b;, 1 < ¢ < NBF. Each edge has
two endpoints v/, 1 < j < 2, and if it is a curved edge, it will have a circle center
¢;. All curved edges are approximated by a circular arc as in the triangulation data
structure. Curved edges must subtend less than /2 of arc. Globally, the vertices
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are labeled vg, 1 < k < NVF, and the circle centers are labeled ¢, 1 < k < NCF.
The intersection of any two edges should be at most one common endpoint.

As an example, we consider the square region with a hole illustrated in Fig-
ure 2.2. In this example, we decompose the region into 2 subregions (NTF = 2),
using 10 vertices (NVF = 10), 12 edges (NBF = 12), and 1 circle center (NCF = 1)
as shown.

\
\
/
/
\\\
\/ an

RS
)
R
/
A

Figure 2.2. Clockwise, from upper left: example domain decomposed into
two subregions; vertex numbers; midpoint numbers; edge numbers.

Global numbering of the subregions, edges, vertices, and midpoints is arbi-
trary. The arrays VX, VY, XM, and YM have similar definitions for the triangu-
lation and skeleton. These arrays for our example domain are shown in Table 2.3.
The (z,y) coordinates of vertex vg, 1 < k < NVF, are specified in the arrays VX
and VY. The (z,y) coordinates of circle center ¢;, 1 < i < NCF, are specified in
the arrays XM and YM.

Edges are specified in IBNDRY as in the case of the triangulation. Descen-
dents of Dirichlet, natural, and linked edges are included in the output IBNDRY
array when ) is triangulated using TRIGEN. Descendents of internal edges are re-
tained only if they separate regions with different labels. Descendent edges inherit
the label of the original edge. In our example, we will assign Dirichlet boundary
conditions to the left and right sides and the bottom of the domain, and natural
boundary conditions elsewhere. The IBNDRY array then has the form given in
Table 2.3.

A subregion Q;, 1 <i < NTF, is defined by an ordered sequence of edges (at
least three) that form its boundary. The sequence is ordered such that the boundary
of Q; is traversed in a counterclockwise direction (thus providing notions of “inside”
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I 1 2 3 4 5 6 7 8 10
VXD |2 2 0 2 2 0 0 -1 1
vy |2 2 2 2 2 2 1 0 -1
XM(I) | 0

YM(I) | 0

The VX, VY, XM, and YM arrays. NVF =10 and NCF = 1.

1 1 2 3 4 5 6 7 8 9 10 11 12
IBNDRY(1,)) |6 1 2 3 4 5 6 7 8 9 7 9
IBNDRY(2I) |1 2 3 4 5 6 7 8 9 10 10 3
IBNDRY(3I)|0 0 0 0 O O O 1 1 1 1 0
IBNDRY(4I) |1 2 2 2 2 1 0 1 1 1 1 0
IBNDRY(5I) |0 0 0 0 0O O O 0 0 O 0 0
IBNDRY(6,I) |2 1 3 3 1 2 0 4 4 4 4 0

The IBNDRY array. NBF = 12.

I 1 2 1 1
ITNODE(L,I) | 1 4 ITNODE(1,]) |1 5
ITNODE(2]) | 2 5 ITNODE(2I) | 2 6
ITNODE(3,I) | 0 1 ITNODE(3,I) | 0 -1
ITNODE(4I) | 0 0 ITNODE(4I) |0 0
ITNODE(,I) | 1 2 ITNODE(,I) |1 2

The ITNODE array for mapping by rotation (left) and by reflection (right).
NTF = 2.

Table 2.3. Skeleton data structures.

and “outside”). Each edge in the sequence shares exactly one endpoint with the
edge that precedes it and the edge that follows it in the sequence; the first and last
edges in the sequence also share one endpoint. A particular edge can appear only
once in the sequence.

The array ITNODE is used to define the subregions. Column I of ITNODE
corresponds to the region Q;. Entry ITNODE(1,I) is a global vertex number for
one of the vertices on the boundary of ;. Unless ITNODE(3,I) # 0 (see below)
the choice of vertex is arbitrary. The second entry, ITNODE(2,I), is the global edge
number of the first edge in a counterclockwise traversal of 27, beginning at vertex
vk, where ITNODE(1,I) = K.

Entry ITNODE(3,1) is used to specify certain symmetries the user may wish to
impose on the triangulation. Two subregions are congruent if one can be mapped
onto the other using an affine transformation consisting of a translation, an or-
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thogonal rotation, and perhaps a simple reflection. If this mapping also induces
one-to-one correspondences between the edges, vertices, and circle centers used to
define the regions, then the user can specify that the two regions be triangulated in
a similar fashion.

ITNODE(3,I) = 0 specifies that Q; can be triangulated independently of
other regions. ITNODE(3,I) = J, 0 < J < I, specifies that ; can be mapped
onto {1 using just a translation and rotation. ITNODE(3,I) = —J, 0 < J <
I, specifies that ; can be mapped onto ; using a translation, rotation, and a
reflection. If ITNODE(3,I) = +.J, then ITNODE(1,I) must correspond to the vertex
on 9€Q; which is mapped to the vertex corresponding to ITNODE(1,J) on Q. If
ITNODE(3,I) # 0, TRIGEN will map the triangulation generated for Q; onto €y,
ensuring the desired symmetry properties of the overall triangulation. Note that this
is not a symmetric relation; ITNODE(3,I) = J does not mean ITNODE(3,J) = I.
In particular, if | ITNODE(3,I) |> I, TRIGEN will return in an error condition.

In our example, €25 can be mapped onto €2 by either rotation or reflection.
We can ensure the triangulation for 25 will be similar to that for €2y, either under
rotation or reflection. The resulting triangulations may be different in the two
cases.® ITNODE arrays for the two situations are illustrated in Table 2.3. Entry
ITNODE(4,1) is used by PLTMG in parallel processing. Entry ITNODE(5,1) is a
label for the region; all the triangles created in 2; inherit this label.

We provide the utility subroutine SKLUTL to aid in the creation of the skele-
ton data structures. Subroutine SKLUTL is called using the statement

Call SKLUTL( ISW, VX, VY, XM, YM, ITNODE, IBNDRY,
IP, W, IFLAG )

This routine takes as input a skeleton data structure defined VX, VY, XM,
YM, IBNDRY, and ITNODE. The integers NTF, NVF, NCF, NBF should be spec-
ified in the IP array. The integer ISW specifies the task, as indicated in Table 2.4.
W is a work array of length LENW, whose minimum length depends on ISW, but
LENW > 5(NBF + NVF) is sufficient.

ISW | task

create ITNODE array
refine long arcs
determine congruent regions

N = O

Table 2.4. The values of ISW.

If ISW = 0, SKLUTL computes all entries of the ITNODE array, given the
remaining arrays in the skeleton data structure (VX, VY, XM, YM, and IBNDRY ),
and the parameters NVF, NCF, and NBF in the IP array. The value of NTF is

3 We could ensure greater symmetry in the triangulation by decomposing €2 into 4 or 8 congruent
regions instead of 2 and then setting ITNODE(3,I) appropriately.
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returned in the IP array. The regions are labeled with ITNODE(5,I) = I for
1 < I < NTF, although these labels can subsequently be reset by the user. Also
ITNODE(3,I) = 0 for 1 < I < NTF. If ISW = 1, SKLUTL accepts as input a
complete skeleton description, and divides curved edges as necessary to ensure that
all curved edges subtend less than 7/4 of arc. New edges and vertices are added as
necessary, and the relevant skeleton parameters updated. New values of NBF and
NVF are returned in the IP array. If ISW = 2, SKLUTL accepts as input a complete
skeleton description, and finds congruent regions. The values of ITNODE(3,I) (and
possibly ITNODE(1,I) and ITNODE(2,I)) are reset as necessary. If two regions are
congruent but the congruence is not unique, as in our example, an arbitrary choice
is made from among the possibilities. Errors are returned in the integer IFLAG as
described in Table 2.9.

Several other routines in the package check skeleton data structures for com-

mon errors in the data. If found, such errors are reported by setting the parameter
IFLAG as described in Table 2.9.

2.4 Parameter and Work Arrays.

W is a real array of length LENW; all internal storage for PLTMG and the other
routines in the package is allocated from this array. A is a real array of length
MAXA. JA is an integer array of length MAXJA. These arrays are the main sparse
matrix data structures used by the multigraph solver in PLTMG [24]. They are
used internally and need not be initialized by the user.

IP, RP, and SP are integer, real, and CHARACTER*80 arrays, respectively,
of length 100 containing various user specified parameters, and internally generated
parameters, switches, flags, and pointers. A list of the currently used locations,
their names, and brief definitions appears in Tables 2.6-2.8. Parameters marked
“u” should be supplied by the user.

The parameter IFIRST is an initialization switch specifying the degree of the
finite element space to be used, as indicated in Table 2.5. If IFIRST = 0, no

IFIRST | option
0 no initialization
1 initialize for piecewise linear elements
2 initialize for piecewise quadratic elements
3 initialize for piecewise cubic elements

Table 2.5. The values of IFIRST.

initialization takes place. If IFIRST = p, 1 < p < 3, the array W is partitioned
for the space of finite element space of continuous piecewise polynomials of degree
p. The triangulation data structures are also checked. The first p? x MAXV entries
in W are allocated to the computed solution u (IUU = 1), providing the user easy
access to the solution. Array entry IP(25) is the error flag IFLAG. A summary of
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the possible values for IFLAG is given in Table 2.9.

| 1 IP(]) | u | definition
1 NTF u | number of triangles / regions
2 NVF u | number of vertices
3 NCF u | number of circle centers
4 NBF u | number of edges
5 NDF u | number of degrees of freedom
6 IFIRST u | initialization switch
7 IPROB u | problem type
8 ISPD u | symmetric / nonsymmetric switch
9 ITASK u | problem task
10 MXCG u | maximum conjugate gradient iterations
11 MXNWTT | u | maximum damped Newton iterations
12 ISING u | switch for singular Neumann problem
16 NEVP u | number of evaluation points
19 IERRSW u | error recovery switch
20 IADAPT u | mesh generation option switch
21 IREFN u | uniform refinement control
22 NVTRGT | u | target value for number of vertices
23 NRGN u | number of contour lines for skeleton
24 MFLAG parallel error flag
25 IFLAG error flag
26 IORD order of finite element space
27 NEWNTF number of elements owned by processor
28 NEWNVF number of vertices owned by processor
29 NEWNBF number of edges owned by processor
30 NEWNDF number of degrees of freedom owned by processor
31 NVV number of interface vertices
32 NBB number of interface edges
33 NDD number of interface degrees of freedom
34 NVI number of coarse interface vertices
35 NBI number of coarse interface edges
36 NDI number of coarse degrees of freedom
37 NTG global number of elements
38 NVG global number of vertices
39 NBG global number of edges
40 NBG global number of degrees of freedom
41 IUSRSW u | USRCMD switch
42 MODE u | ATEST mode switch
43 NGRAPH | u | number of graphics windows
44 FDEVCE u | TRIPLT graphics device

Table 2.6: IP array definitions. (Continued next page.)
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’ I IP(I) ‘ u ‘ definition
45 GDEVCE u | GPHPLT graphics device
46 JDEVCE u | INPLT graphics device
47 MDEVCE | u | MTXPLT graphics device
48 MPISW u | MPI switch
49 NPROC number of processes
50 IRGN individual process number
51 MXCOLR | u | maximum number of colors
52 IFUN u | alternate function switch for TRIPLT
53 INPLSW u | alternate graph switch for INPLT
54  IGRSW u | alternate graph switch for GPHPLT
55 IMTXSW | u | alternate matrix switch for MTXPLT
56 NCON u | number of contours
57 ICONT u | continuity switch
58 ISCALE u | scale option switch
59 LINES u | line drawing option switch
60 NUMBRS | u | numbering option switch
61 NX u
62 NY u | (NX,NY,NZ)
63 NZ u | is the viewing perspective for TRIPLT
64 MX u | (MX,MY,MZ)
65 MY u | is the viewing perspective for GPHPLT
66 MZ u | and MTXPLT
67 LEVEL u | matrix level
68 ICRSN u | graphics coarsening switch
69 ITRGT u | target size of graphics mesh
70 IBASE MPI internal edge base number
71 NVDD total number of interface vertices
72 LIPATH length of IPATH array
73 LENJA used locations in JA array
74 LENA used locations in A array
75 LVL number of multigraph levels
76 NEF number of error functions
77 NGF number of grid functions
78 NDL order of error recovery systems
79 IEVALS number of function evaluations on last call
80 ITNUM number of Newton iterations on last call
81 MAXPTH maximum size for IPATH array
82 LENW u | length of the work array W
83 MAXT u | number of columns in the array ITNODE
84 MAXV u | length of the arrays VX and VY
85 MAXC u | length of the arrays XM and YM

Table 2.6: IP array definitions. (Continued next page.)
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’ I IP() u ‘ definition
86 MAXB u | number of columns in the array IBNDRY
87 MAXJA u | length of JA array
88 MAXA u | length of A array
89 MAXD length of grid function arrays
90 IUU pointer to grid function arrays
91 ITDOF pointer to degrees of freedom mapping array
92 JTIME pointer to timing array
93 JHIST pointer to convergence history array
94 JPATH pointer to continuation path history array
95 KA pointer to multigraph pointer array
96 JSTAT pointer to parallel statistics array
97 IEE pointer to local error estimates array
98 IPATH pointer to IPATH array
99 IZ pointer to temporary workspace
Table 2.6: IP array definitions.
| I RP(I) u | definition
1 RLTRGT | u | target value for A
2 RTRGT u | target value for p(u, A)
3  RMTRGT | u | target value for u
4 RLLWR u | lower bound for A
5 RLUPR u | upper bound for A
6 DTOL u | drop tolerance for incomplete factorization
8 SMIN u | lower limit for contour colors
9 SMAX u | upper limit for contour colors
10 RMAG u | window magnification factor
11 CENX u | (CENX,CENY) are the window center coordinates
12 CENY u
15 HMAX u | approximate largest element size
16 GRADE u | largest growth factor for adjacent elements
17  HMIN u | approximate smallest edge length
21 RL current value of A\,
22 R current value of p(up, An) = pn
23 RLDOT current value of Ay,
24 RDOT current value of pp
25 SVAL current value of smallest singular value
26 RLSTRT starting value for A
27 RSTRT starting value for p(up, Ap)

Table 2.7: RP array definitions. (Continued next page.)
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’ I RP(I) ‘ u ‘ definition
31 RLO previous value of A
32 RO previous value of p(up, A\n) = pp
33 RLODOT previous value of Ay,
34 RODOT previous value of py,
35 SVALO previous value of smallest singular value
37 ENORMI estimate for |u — up |11 (q)
38 UNORMI the norm |up |1 ()
39 ENORM2 estimate for |u — up|z2(0)
40 UNORM2 the norm |up|z2(q)
51 EPS the machine epsilon
52 STEP damping step s for Newton’s method
53 RELERO relative size of solution error |ep |1 (q)/|unlr (@)
54 RELERR relative size of Newton update |0U|/|U]|
55 ANORM maximum diagonal entry in Jacobian matrix
56 RELRES the relative residual |G| /| Go|
57 BRATIO the relative residual |G |/|Gr—1]
58 DNEW the discrete inner product —(G,0U, G)
59 BNORMO scaling factor |Go|
60 BMNRMO scaling factor for p
63 RMU current value of p
64 REG internal regularization parameter
67 SCLEQN current value of scalar equation N — o
68 SCALE scaling factor for scalar equation
69 THETAL (2 — 0) )\, in scalar equation
70 THETAR 0py, in scalar equation
71 SIGMA the step o for scalar equation
72 DELTA Newton update for \p
73 DRDRL the value of 9p/OA
74 SEQDOT the value of N
76 QUAL target element quality
77 ANGMN target minimum angle
78 DIAM approximate diameter of €2
79 BEST value of TRIGEN quality function
80 AREA area of
81 TOLA angle tolerance
82 ARCMIN minimum arc
83 ARCMAX maximum arc
84 TOLZ contour tolerance
85 TOLF function value tolerance
87 XMIN
88 XMAX QC(XMIN,XMAX)x (YMIN,YMAX)

Table 2.7: RP array definitions. (Continued next page.)
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’ I RP(I) ‘ u ‘ definition
89 YMIN
90 YMAX

Table 2.7: RP array definitions.

’ I SP@I) ‘ u ‘ definition
1 ITITLE u | title for INPLT
2  FTITLE | u | title for TRIPLT
3 GTITLE | u | title for GPHPLT
4 MTITLE | u | title for MTXPLT
5 SHCMD | u | string for shell command
6 RWFILE | u | save file for read/write commands
7 JRFILE | u | read file for journal command
8 JWFILE | u | write file for journal command
9 BFILE u | output file
10 JTFILE u | temporary file for journal command
11 IOMSG error message string
12 CMD current command string
13 LOGO u | logo for X-Windows display
14 BGCLR | u | background color for X-Windows display
15 BTNBG | u | button background color for X-Windows display
18 PSFILE u | root name for PostScript files
19 XPFILE | u | root name for xpm files
20 BHFILE | u | root name for bh files
21  SGHOST | u | host name for SG display

Table 2.8: SP array definitions.

2.5 Coefficient Functions.

Several routines in the package require knowledge of the partial differential equation
(1.1), the boundary conditions (1.2), the functional p in (1.3), and, on occasion, an
alternate function of the solution. This information is provided by the user through
subroutines A1XY, A2XY, FXY, GNXY, GDXY, P1XY, P2XY, and QXY.
Subroutines A1XY, A2XY, FXY, and P1XY have identical argument lists.

Call AIXY( X, Y, U, UX, UY, RL, ITAG, VALUES ),
Call A2XY( X, Y, U, UX, UY, RL, ITAG, VALUES ),
Call PIXY( X, Y, U, UX, UY, RL, ITAG, VALUES ),
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IFLAG

general return codes

0
25

normal return
wrong input data structure

IFLAG

PLTMG and TRIGEN errors

zero pivot in sparse factorization

Newton method line search failed

illegal problem type

continuation procedure failed

multigraph iteration failed to converge
Newton (Newton/DD) iteration failed to converge
Error on one or more MPI processes
MPI was off for a command needing MPI
NPROC > NTF in load balance

no interface unknowns in DD solver
IPATH array not created

IFLAG

storage errors

82
83
84
85
86
87
88
89

storage exhausted in work array W

storage exhausted in array ITNODE

storage exhausted in arrays VX and VY
storage exhausted in arrays XM and YM
storage exhausted in array IBNDRY

storage exhausted in matrix array JA

storage exhausted in matrix array A

storage exhausted in degree of freedom arrays

IFLAG

data errors for triangulation

-31
—32

illegal ITNODE(K,*) K =1,2,3
overlapping triangles in ITNODE

IFLAG

data errors for triangulation and skeleton

—40
—41
—42
—43
—44
—45
—46
—47
—48

illegal value for NVF, NCF, NTF, or NBF
illegal IBNDRY(K,*) K = 1,2

illegal IBNDRY(3,%)

illegal IBNDRY (4,%)

incorrect circle center coordinates

arc greater than 7/2 in length

error in linked edges

boundary vertex without two boundary edges
ITNODE and IBNDRY are not consistent

IFLAG

data errors for skeleton

—51
—52
—53
—54
—55

illegal ITNODE(1,*)
illegal ITNODE(2,%*)
skeleton tracing error

region specified in clockwise order
illegal ITNODE(3,%*)
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Call FXY( X, Y, U, UX, UY, RL, ITAG, VALUES ).

In these subroutines, all of the arguments except VALUES are provided as
input. In particular (X,Y) € Q is the evaluation (quadrature) point, and

U:uh(X,Y),
8uh
X=—(XY
v 33:( ),
8uh
Y=——(XY
Uy = 5 HXY),
RL =\,

(RL = M (X,Y) when Ay € S). The parameter ITAG=ITNODE(5,I) is the user
specified label associated with element 7; € 7 containing (X,Y’). From this input
data, the user provides values of the given function and its derivatives in the array
VALUES. This array is of size 15. All entries are initially set to zero by the calling
routine; thus the user need supply only nonzero values.

To simplify this process, PLTMG supplies a labeled common block

common /VAL0/ K0, KU, KX, KY, KL, KUU, KUX, KUY, KUL, KXU,
KXX, KXY, KXL, KYU, KYX, KYY, KYL, KLU, KLX, KLY, KLL

containing a predefined list of integer pointers mapping function and derivative
values to particular entries in the VALUES array. The details of this mapping are
given in Table 2.10 for the case of f; the identical mapping is used for a;, as and
p1.

For example, if

Ju o
f—A%—FU,

then the following code fragment would be included in Subroutine FXY.

VALUES(K0)= RL * UX + U**2
VALUES(KX)= RL
VALUES(KU)= 2. * U
VALUES(KL)= UX
VALUES(KUU)= 2.
VALUES(KLX)= 1.

The subroutine corresponding to ps is P2XY and is called using

Call P2XY( X, Y, DX, DY, U, UX, UY, RL, ITAG, JTAG, VALUES ).
The arguments are a superset of those of the previous subroutines, and all ar-
guments with the same name serve the same purpose. This routine is called only

with points (X, Y") lying on some edge ey € T'. The additional arguments (DX, DY)
are the unit normal direction for the edge, and JTAG=IBNDRY(6,J) is the user
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pointer index | function

Ko 1 f
KU 2 fu
KX 3 fu,
KY 4 Ju,
KL 5 fa

KUU 6 Suu

KXX 7 fruaus,

KYY 8 Juyu,

KUX=KXU | 9 Wi,
KUY=KYU | 10 Juu,
KXY=KYX | 11 Juguy

KUL=KLU | 12 Fur
KXL=KLX | 13 Fuu
KYL=KLY | 14 Fur

KLL 15 Far

Table 2.10. VALUES array for subroutine FXY.

specified label for the given edge. The mapping given in Table 2.10 is used here as
well.
The subroutine corresponding to g7 is GNXY and is called using

Call GNXY( X, Y, U, RL, ITAG, VALUES ).

This routine is called only for points (X,Y) € 9, and as in the previous cases, all
arguments except the array VALUES are input. In this case ITAG=IBNDRY(6,I)
is the user supplied label for the edge, and VALUES is an array of size 6. Here the
labeled common block

common /VAL1/ K0, KU, KL, KUU, KUL, KLU, KLL

assists in mapping function and derivative values to particular entries in the VAL-
UES array. The details of the mapping are given in Table 2.11.
The subroutine corresponding to go is GDXY and is called using

Call GDXY( X, Y, RL, ITAG, VALUES ).

This routine also supplies the upper and lower bounds for the inequality constraints
on uy for the obstacle problem, bounds on A, in the case that A = A(x,y), and
the initial guess ug, for the solution uj. For parameter identification problems, the
Lagrange multiplier can be initialized using vg, and for optimal control problems
the Lagrange multiplier can be initialized with vy and A(z,y) can be initialized
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pointer

index | function

Ko
KU
KL
KUU
KUL=KLU
KLL

OO W N

g
Ju
gx

Guu
Gu
[0

Table 2.11. VALUES array for subroutine GNXY.

with A\g. When called to supply a Dirichlet boundary condition, (X,Y") € Q5 and
ITAG=IBNDRY(6,I) is an edge label. When called in regard to inequality con-
straints and the initial guess, (X,Y) € Q and ITAG=ITNODE(5,]) is the element
label supplied by the user. Similar to the other routines, VALUES is an output
array of size 8. It’s entries can be conveniently accessed through pointers provided

in the labeled common block

common /VAL2/ K0, KL, KLL, KLB, KUB, KIC, KIM, KIL

The details are provided in Table 2.12.

pointer | index | function
Ko 1 g
KL 2 g
KLL 3 g\
KLB 4 u, A
KUB 5 T, A
KIC 6 ()
KIM 7 o
KIL 8 Ao

Table 2.12. VALUES array for subroutine GDXY.

Subroutine QXY is

Call QXY( X, Y, U, UX, UY, RL, ITAG, VALUES)

This routine provides the alternate function to display in TRIPLT and the al-
ternate function for adaptive algorithms and skeleton generation in TRIGEN. The
arguments are defined as in the other coefficient functions. The output array VAL-
UES has dimension 5; It’s entries can be conveniently accessed through pointers

provided in the labeled common block
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common /VAL3/ KF, KF1, KF2, KSK, KAD

whose entries are documents in Table 2.13.

pointer | index | function
KO0 1 alternate scalar function for TRIPLT
KF1 2 first component of vector function for TRIPLT
KF2 3 second component of vector function for TRIPLT
KSK 4 alternate function for skeleton creation in TRIGEN
KAD 5 alternate function for adaptive algorithms in TRIGEN

Table 2.13. VALUES array for subroutine QXY

2.6 Sparse Matrix Storage.

Matrices generated in the solution process are stored in the sparse matrix format
described in [3] using an integer array JA and a real array A. As an example,
consider the 4 x 4 matrix given by

a1 ai2 a14

A— Ga21 Q22 G23 A24
azz ass

a41 Q42 Q44

This matrix is stored in JA and A as illustrated in Table 2.15. All nonzeros are
stored in the array A. First the diagonal entries are stored, followed by the upper
triangular entries, stored row by row. If the matrix is nonsymmetric, this is fol-
lowed by the lower triangular entries, stored column by column. Symmetric and
nonsymmetric storage is governed by the parameter ISPD as indicated in Table

2.14.

ISPD | storage/iteration options
0 nonsymmetric/biconjugate gradient
1 symmetric/conjugate gradient

Table 2.14. The values of ISPD.

The first NVF + 1 entries of JA are pointers. In particular, entries JA(I)
to JA(I+1) — 1 of the JA array contain column indices for nonzeros in row I of
the strict upper triangle. As illustrated in Table 2.15, the column indices stand
in correspondence to the nonzeros of the upper triangle stored in the array A. If
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nonsymmetric storage is used, entries of the transposed lower triangle are stored in
the same order as the upper triangle.

I 1 2 3 4 5 6 7 8 9 10 11 12 13

JA(I) 6 8 10 10 10 2 4 3 4
A(I) a1l G22 G33 Q44 — @12 Q14 Q23 A24 A21 A41 A32 A42

Table 2.15. Sparse matriz data structures. JA has 9 entries. A has 9
entries if ISPD =1 or 13 entries if ISPD = 0.

In the multigraph iterative method [24, 3], sparse matrices for each level, as
well as ILU factorizations, permutation matrices, and inter level transfer matrices
arise. These matrices are all stored in the user supplied arrays JA and A. JA is an
integer array of length LENJA; A is a real array of length LENA; . An internal
array, KA, allocated from the work array W, contains pointers into the JA and A
arrays for all the matrices generated by the multigraph solver. See [3] for details.



Chapter 3

Mesh Generation

3.1 Overview.

Subroutine TRIGEN creates or adaptively modifies the data structures defining the
region §2. There are options to generate a triangulation from a skeleton, a skeleton
from a triangulation, adaptively refine or unrefine a triangulation, uniformly refine
a triangulation, and adaptively smooth the vertices of a triangulation. TRIGEN
also has several options for partitioning and mesh management in parallel computa-
tion environments. The parameter IADAPT specifies various options for TRIGEN,
summarized in Table 3.1.
TRIGEN is called using the statement

Call TRIGEN( VX, VY, XM, YM, ITNODE, IBNDRY, JA, A,
IP, RP, SP, IU, RU, SU, W, QXY )

Except for the case TADAPT = 45, on input the arrays VX, VY, XM, YM,
ITNODE, and IBNDRY should define a triangulation. For JADAPT = 45, the
input should be a skeleton. The arrays JA, A, and W provide workspace, while IU,
RU, and SU are broadcast and received in MPI communication steps, but are not
directly used in TRIGEN. When TRIGEN is used to adaptively modify an existing
triangulation the procedures generally rely on local a posteriori error estimates for
the finite element approximation, although some options are provided for adaptation
based on other functions.

3.2 Creating a Triangulation from a Skeleton.

When TADAPT = 5, on input the arrays VX, VY, XM, YM, ITNODE, and IB-
NDRY should define a skeleton as described in Section 2.3. TRIGEN triangulates
the subregions defining the skeleton in the order that they are given in ITNODE,
taking into account shared internal boundaries and the symmetry requirements.
Let ¢ be a triangle with area a and side lengths hq, heo, and hs. The quality

29
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IADAPT | mesh generation option

0 error estimates only

1 refine or unrefine mesh using up,

-1 refine or unrefine mesh using QXY
2 unrefine and refine mesh using uy,

-2 unrefine and refine mesh using QXY
3 smooth mesh points using uy,

-3 smooth mesh points using QXY

4 uniform refinement

5 skeleton — triangulation

-5 simplify skeleton

6 triangulation — skeleton using up

-6 triangulation — skeleton using QXY
7 load balance (MPT)

8 reconcile mesh (MPT)

9 gather mesh (MPI)

Table 3.1. Some options use a posteriori error estimates for the computed
solution uyp, or interpolation errors for the alternative function QXY. Other options
require MPI for parallel communication.

of t, q(t), is measured using the formula
q(t) = 4v/3a/(h? + h3 + h3). (3.1)

The function ¢(t) is normalized to equal one for an equilateral triangle and to
approach zero for triangles with small angles. In attempting to compute a high
quality triangulation, TRIGEN uses

q(t) = .6 (3.2)

as a test for acceptability of a triangle (sufficiently small interior angles on the
boundaries of the subregions €2; could cause (3.2) to be violated).

The triangulation process for those regions for which ITNODE(3,1I) # 0 is
simple and is carried out by generating the appropriate affine mapping. The trian-
gulation process for subregions with ITNODE(3,I) = 0 is somewhat complicated
but embodies three straightforward heuristics.

Given a subregion viewed as a polygon (possibly with curved edges, and in-
terior angles of size m or greater), TRIGEN first tries to reduce the order of the
polygon by one by “chopping” off a triangle using a vertex with small interior angle.
Inequality (3.2) and several less obvious conditions must be satisfied for a successful
chop. When the chopping strategy is no longer successful, TRIGEN checks to see
if the remaining polygon is convex with six or fewer sides. If it is, TRIGEN tries to
triangulate the entire remaining subregion by adding the centroid as a vertex and
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connecting it to each boundary vertex. All the resulting triangles must satisfy (3.2)
and some other conditions for this strategy to be successful.

If the second strategy fails or is inapplicable, TRIGEN tries to break the
polygon into two smaller polygons by connecting two nonadjacent vertices by a
straight line. TRIGEN excludes many potential cuts as geometrically infeasible or
otherwise undesirable. From the remaining possibilities TRIGEN picks the cut that
maximizes the minimum of the four interior angles the cut creates. TRIGEN then
applies the three strategies to the two newly created polygons in recursive fashion.
After the region has been successfully triangulated, TRIGEN tries to improve the
triangulation by (locally) rearranging edges and adjusting vertex locations such that
the criterion (3.2) is optimized.

The user can control the triangulation process to some extent through the
parameters HMAX and GRADE. Element size is controlled by HMAX. Normally,
one should choose 0 < HMAX < 1. TRIGEN then attempts to create triangles
with edges shorter than HMAX - diam (). If HMAX < 0 or HMAX > 1, TRIGEN
will reset HMAX = 1. Setting HMAX only places an upper bound on triangle sizes;
the sizes of the triangles actually generated depend strongly on the geometry of the
Q; and may not achieve the bound.

GRADE is (approximately) the largest ratio of sizes of elements sharing a
common edge (1/GRADE is the smallest ratio). GRADE should be set on the
interval 1.5 < GRADFE < 2.5; values outside this interval are set to the appropriate
end point. Generally speaking, smaller values of GRADE result in smoother transi-
tions from regions of large elements to those of small elements, and a higher overall
quality measured by (3.1). On the other hand, larger values of GRADE tend to
produce meshes with fewer elements, more rapid transitions in element size, and
lower overall quality. One may have to experiment to achieve the proper balance
between these conflicting objectives.

For example, consider the domain pictured in Figure 3.1, top left. The remain-
ing pictures in Figure 3.1 show triangulations generated by TRIGEN for various
values of HMAX and GRADE, illustrating their effect on the resulting triangula-
tion.

The pictures are made by INPLT (see Section 5.3), which draws the mesh with
elements colored according to the quality measure ¢(¢) in (3.1). In the pictures, an
element is “good” if q(t) > +/3/2, “fair” if .6 < q(t) < v/3/2, and “poor” if ¢(t) < .6.
This is an interesting region to triangulate because the two narrow subregions at
the top require small elements. TRIGEN tries to use larger elements in the larger
subregions, but is constrained by the choices of HMAX and GRADE. Decreasing
HMAX or GRADE tends to improve the overall quality of the triangulation, at the
expense of introducing more elements.

3.3 A Posteriori Error Estimates.

Of central importance to the adaptive procedures is the computation of a posteriori
local error estimates [2, 1, 48, 50]. In the case of piecewise polynomials of degree
p, our a posteriori error estimate is based on a superconvergent approximation of



32 PLTMG USERS' GUIDE 10.0

cmos device cmos device
1 A 2 A element quality
3 A 4 A A good 86.19
5 A 6 A A faoir 13.81
A poor 0.00
worst 0.666

-

average  0.918

A skeleton with NTF = 6, NVF = 30, NBF = 35, NCF = 0 (left). The triangulation for
HMAX =0, GRADE = 1.5 has NTF = 507, NVF = 291 (right).

cmos device cmos device
average  0.893

R,

The triangulation for HMAX = 0, GRADE = 2.0 has NTF = 329, NVF = 199 (left). The
triangulation for HUAX = 0, GRADE = 2.5 has NTF = 262, NVF = 163 (right).

cmos device cmos device
average  0.950

.

The triangulation for HMAX = .03, GRADE = 1.5 has NTF = 1297, NVF = 709 (left).
The triangulation for HMAX = .06, GRADE = 1.5 has NTF = 632, NVF = 360 (right).

element quality element quality
A good 64.44 A good 56.11
A fair 35.56 A fair 43.51
A poor 0.00 A poor 0.382
worst 0.641 worst 0.496

average  0.870

element quality elemnent quality
A good 93.83 A good 89.67
A fair 6.168 A fair 1013
A poor 0.00 A poor 0.00
worst 0.670 worst 0.666

average  0.929

cmos device cmos device
element quality element quality
A good 74.09 A good 64.46
A fair 25.91 A fair 34.75
A poor 0.00 A poor 0.796
worst 0.657 worst 0.535

- - -

Figure 3.1. The triangulation for HMAX = .03, GRADE = 2.5 has
NTF =853, NVE = 482 (left). The triangulation for HMAX = .06, GRADE = 2.5
has NTF = 377, NVF = 227 (right).

average 0.881
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the derivatives of u of order p [26, 27, 28]. In particular, given the finite element
function uy, we compute the piecewise linear vector functions S,Q"Qhafag_kuh, for
0 < k < p. where Qy, is the £2 projection from the space of discontinuous piecewise
constant functions into the space of continuous piecewise linear polynomials, and
S}y, is a smoothing operator based on the discrete Laplace operator; in PLTMG, we
take m = 2. See [26, 27, 28] for details.

The switch IERRSW allows the user to control the continuity of the recovered
derivatives. The options are specified in 3.2. In some problems, one expects the
gradient or higher derivatives of the solution to be discontinuous, typically due to
discontinuities in the coefficient functions. If IERRSW = 1, a patchwise continuous
recovery is made. The user defines the patch boundaries by specifying different
values of ITNODE(5,*) for different patches. The parameter NDL is the order of the
(block diagonal) linear systems that are used in the recovery; when IERRSW = 0
there is one block of order NVF.

IERRSW | error recovery option

0 globally continuous recovery
1 patchwise continuous recovery

Table 3.2. Patches are defined using element labels ITNODE(5,%).

Using these recovered derivatives, we compute a local error estimate ¢; for
t € T. Suppose the finite element space consists of continuous piecewise polynomials
of degree p, and denote by u, the usual Lagrange interpolant. Our estimate is
motivated by noting that under certain circumstances, |V(upy1 — up)|z2() is an
asymptotically exact estimate of |[V(u — up)|z2(q). This is known for the cases
p=1and p =2 [27, 28]. Since the usual interpolation points for u, and generally
not a subset of those for u,11, on each individual element ¢, we replace u,11 by
Up+1 = Up + epy1, Where epy1 is a locally defined polynomial of degree p 4 1 that
is zero at the interpolation points for the polynomial of degree p and has the same
(constant) derivatives of order p + 1 as upy1 (see Figure 1.1). Such polynomials
form a (local) vector space of dimension p + 2. For example, es is a locally defined
quadratic polynomial with value zero at all vertices of the mesh. On a given element
t, es can be expressed as a linear combination of three quadratic “bump functions”
qr associated with the edge midpoints of ¢,

3

ey = Zgitthtk ar(z,y) (3.3)
k=1

where ¢}, is the length of edge k, tj is the unit tangent, and
Mt — _1 < awa:uQ awyUQ ) )

2 anyQ 8yyu2

is the Hessian matrix. All terms on the right hand side of (3.3) are known except
for the second derivatives appearing in the Hessian matrix M;. In our local error
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indicator, we simply approximate the second derivatives in the Hessian matrix M,
using derivatives of S™Q,Vuy. In particular, let

M _ _1 arSmQhaTuh arSmQhayuh
¢ 2 8ySmQh8xuh 8ySmQh8yuh

_ o ~ ~
M, = ?t(Mt + M}, (3.4)
3

€ = Z Giti Mty gi.(2, ).
k=1

The normalization constant a; is chosen such that the local error indicator 7, sat-
isfies

Nt = |Veil ez = (I = S™Qn)Vun| g2t

Normally we expect that a; =~ 1, which is likely to be the case in regions where
the Hessian matrix for the true solution is well defined. Near singularities, u is
not smooth and we anticipate difficulties in estimating the Hessian. For elements
near such singularities, a; provides a heuristic for partly compensating for poor
approximation. For the cases e3 and e4, more complicated formulas of similar
nature are used. In particular, €; is expressed in terms of parameters describing
the geometry of ¢, and the derivatives of order p + 1 in ¢, which are obtained from
Du ST QRO uy,, and 8, S QrOKOF*uy, for 0 < k < p, in a fashion analogous
to the case p = 2 described above. Global a posteriori estimates [e|z2() and
|Vet|z2 (o) are stored as the parameters ENORM2 and ENORMI, respectively.

In the case of parameter identification problems, the error in the Lagrange
multiplier €; is computed by the same procedure described above. The local error
indicator is given by

. 1/2
= {||V€t”2£2(t) + ”vet||2£2(t)} :

In the case of optimal control problems, errors in both the Lagrange multiplier €
and the control é; are computed, and the local error indicator is given by

B R 1/2
ne = {||V€t 1220 + IVt Z2 ) + Ve H%z(t)} :

In both the cases, the definitions of ENORM1I1 and ENORM?2 are similarly modified.

3.4 Adaptive Mesh Refinement and Unrefinement.

When TADAPT = 1, the current mesh is adaptively refined or unrefined. When
NVTRGT > NVEF, the mesh is refined, while if NVTRGT < NVF, the mesh
is unrefined. In either case, the goal is to achieve the best possible mesh using
(approximately) NVTRGT vertices.

When IADAPT = 2, both refinement and unrefinement are employed. First,
the mesh is unrefined to obtained a mesh with approximately NVITRGT < NVF
vertices. The mesh is then refined to obtain a mesh with approximately NVF
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vertices. The output triangulation thus has approximately the same number of
vertices as the input triangulation, but the topology of the mesh and the distribution
of mesh points can be quite different.

Our basic refinement algorithm uses the longest edge bisection procedure of
Rivara [37, 15] and does not generate a refined element tree. All current elements
are placed in a heap data structure according to the size of the error estimates.
The element with largest error estimate is at the root of the heap. This element
is selected for refinement and is bisected along its longest edge. The neighbor
element sharing that edge is also bisected along its longest edge. If the result is
a triangulation (i.e., the longest edge for both elements is the same), the process
stops. Otherwise, it is recursively applied to the longest edge neighbors of all refined
elements. An example is shown is Figure 3.2. This process is known to have finite
termination, typically in a very small number of steps. When the longest edge
bisection process finally results in a triangulation, the new elements are created
and added to the triangulation data structures. New elements inherit the (constant)
derivative values from their parents, so error estimates can be computed and the
heap updated. Using the updated heap, the refinement process continues, until a
mesh with approximately NVTRGT vertices is created. Local edge swapping and
mesh smoothing algorithms are applied to locally optimize the shape regularity of
the final mesh in terms of the quality measure (3.1).

Figure 3.2. FElement t is refined by the longest edge bisection method.
The original mesh is on the left. The first step of bisection (middle) does not yield
a compatible triangulation. However, the second step (right) does yield a triangula-
tion.

In the case of unrefinement, the basic step consists of deleting vertices from
the mesh, rather than directly unrefining elements. Each vertex v is associated
with a region €2, as illustrated in Figure 3.3. The error associated with vertex
v is the largest error of any element contained in €2,. With these definitions, the
unrefinement procedure is quite analogous to the refinement procedure described
above. All the vertices are placed in a heap based on their errors, with the vertex
of smallest error at the root. Certain vertices, which are critical to the geometric
integrity of the domain as a whole (e.g., corner vertices on the boundary of the
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region), are given artificially large errors. Vertices of low degree have their errors
reduced a bit to favor their elimination.

In the elimination step, the root vertex of the heap is eliminated from the
mesh. The region (2, associated with this mesh is then triangulated using the
boundary vertices, as shown in Figure 3.3. The newly created elements inherit
derivative values from the original elements in 2, (through suitable averaging), and
error estimates are computed for the new elements. The vertices lying on 92, have
their errors updated as required, and the heap is updated. The process is continued
until a mesh with NVTRGT vertices is achieved. As in the case of refinement, local
edge swapping and mesh smoothing are used to improve the shape regularity of the
final mesh in terms of the quality measure (3.1).

Figure 3.3. On the left is the subregion €, associated with vertex v. To
unrefine the mesh, vertex v and all its incident edges are removed from the trian-
gulation (middle). The region ), is then triangulated using the boundary vertices

(right).

If IADAPT = —1 or IADAPT = —2, the refinement and/or unrefinement
processes are carried out using interpolation errors for the function QXY in place
of the a posteriori error estimates. In particular, for a given element ¢, let gp41
denote the interpolating polynomial for QXY of degree p + 1, characterized by
nodes at the usual Lagrange lattice points of ¢. In this situation, we can use the
(constant) derivatives of order p+1 of gp4+1 in place of the corresponding recovered
derivatives for uj. Once this substitution is made, the adaptive algorithms proceed
in the usual fashion.

We do not anticipate that this option will be used much; it was originally
implemented to allow subroutine TRIGEN to be debugged independently of sub-
routine PLTMG. On the other hand, there may be special cases where some function
other than |Ve;|z2() should be optimized. Note that if TRIGEN is called before
a solution wuy is computed by PLTMG, the arguments U, UX, UY, and RL in
function QXY will be arbitrary and should be ignored.

Some examples are shown in Figure 3.4. In these examples, we employ the
alternate function QXY = r'/4sin(#/4) defined on the circular domain with a crack
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shown in Figure 2.1. The initial mesh with NVF = 10 is shown in Figure 3.4, upper
left. Three refined meshes were generated from this mesh using calls to TRIGEN
with IADAPT = —1 and NVTRGT = 40, 160, 640.

3.5 Adaptive Mesh Smoothing.

When IADAPT = 3, subroutine TRIGEN does no refinement or unrefinement of
the mesh but rather adjusts the (z,y) coordinates of the mesh points (VX and VY)
in an attempt to optimize the mesh.

The procedure consists of a Gauss—Seidel-like iteration on the vertices in the
mesh, where each vertex is locally optimized with all other vertices held fixed [22].
Four sweeps are performed. Typically a given vertex v is allowed to move within
the region , shown in Figure 3.3. Not all vertices in the mesh are allowed to
move. Some boundary and interface vertices must remain fixed to preserve the
definition of the region. These vertices are called corners. Corners include actual
geometric corners of the region, vertices where boundary conditions change type
or label, vertices where interfaces intersect the boundary, and vertices where two
or more interfaces intersect. An interface here is taken as any sequence of triangle
edges that separate triangles with different user defined labels. Vertices on the
boundary or on interfaces that are not designated corners are allowed to move only
along the boundary or interface. The remaining vertices, called interior vertices,
are allowed to move freely within ,. As in our refinement algorithms, some local
mesh smoothing based on (3.1) is used to locally optimize the shape regularity of
the mesh.

For each vertex v = (z,y) in the mesh, we solve the minimization problem

min IVeilZza,) (3.5)

of order two by a damped Newton’s method. As noted above, we assume the
derivatives of order p+1 are constant in each element ¢ having v as a vertex, leading
to an overall piecewise constant approximation of these derivatives on €2,,. All other
dependencies on v = (z,y) are taken into account by Newton’s method. Boundary
and interface vertices have an additional constraint equation, so an appropriately
constrained version of problem (3.5) is solved for those vertices. Besides its usual
task of ensuring sufficient decrease, the damping strategy for Newton’s method is
also used to ensure that the point (z,y) remains well within €2, so that all triangles
are always well defined. It is interesting to note that the function |Ve:|,2¢q,)
contains a natural barrier function that becomes infinite as (z,y) approaches 9%2,.

In the case IADAPT = —3, the adaptive smoothing procedure uses the inter-
polation errors for the function QXY in place of the a posteriori error estimates, in
a fashion analogous to the cases of refinement and unrefinement with IADAPT < 0.

The mesh smoothing option is illustrated in Figure 3.4. We first uniformly
refined the original mesh with JADAPT = 4 and IREFN = 12 (see Section 3.6). We
then made two calls to TRIGEN with JADAPT = —3 to smooth the mesh points.
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3.6 Uniform Refinement.

When IADAPT = 4, subroutine TRIGEN will perform a uniform refinement of the
existing triangulation. The refinement is controlled by the parameter IREFN >
1. Each element in the triangulation is uniformly divided into IREFN? similar
triangles. Some examples are shown in Figure 3.5.

Figure 3.5. Uniform refinement for the cases IREFN = 2,3, 4.

3.7 Creating a Skeleton from a Triangulation.

When IADAPT = 46, subroutine TRIGEN generates skeleton data structures from
a triangulation. This skeleton can then be used to generate a new triangulation
(using TRIGEN with IADAPT = 5), providing what amounts to a static rezoning
capability. This might be useful in situations where it is important or desirable to
have grid lines in the mesh aligned with contour lines of a given function. Generating
such a skeleton by hand might be cumbersome, or even impossible a priori if the
function in question depends on the solution u. If IADAPT = 6, the solution is
used to define the contour lines. If JADAPT = —6, the alternate function QXY
is used. TRIGEN evaluates QXY at each vertex of each element in the mesh.
QXY generally will be multivalued at the vertices because of discontinuities in Vuy,.
Therefore, TRIGEN computes a weighted average of QXY at each vertex, with
weights proportional to the area of each element containing the vertex. The resulting
grid function is then interpreted as a continuous piecewise linear polynomial.

NRGN equally spaced contour lines for the function specified by IADAPT
are used as subregion boundaries. The value of NRGN has a significant impact on
new triangulations later produced by TRIGEN. Larger values of NRGN generally
result in the creation of more subregions. Since the length scales of the subregions
are used in determining the length scales of the resulting triangles, triangulating
a skeleton with thin subregions will result in many small triangles. Using fewer
contours generally will result in larger length scales and potentially fewer triangles
in the resulting mesh.
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Contour spacing is also controlled to some extent through the parameter
HMIN, which must satisfy 0 < HMIN < 1. This parameter controls minimum con-
tour spacing by (approximately) ensuring the contours are at least HMIN - diam(2)
apart. This requirement may effectively reduce the value of NRGN in conflicting
situations.

At a conceptual level, the problem of creating a skeleton is similar to the
problem of drawing a contour map in TRIPLT. However, in TRIPLT, except for
the global problem of ordering the triangles for a surface plot, all the calculations
proceed on an element-by-element basis, with the calculation for one element not
interacting in any significant algorithmic way with the calculation for any other
element. Here there are significant interactions on a global level, requiring a data
structure that can contain the entire contour map.

Thus we develop a data structure in which 2 is partitioned into polygonal
subregions. The boundary of a given subregion consists of portions of triangle
edges and contour lines. The contours of a piecewise linear polynomial are straight
lines in each element, with continuity between elements. When p > 1, contours are
approximated using the contours of the piecewise linear interpolant on a suitably
uniformly refined mesh (ie, one in which nodes in the input mesh become triangle
vertices in the refined mesh). Initially, each subregion is contained within a single
triangle of the mesh and has 3-5 sides, depending on the orientation and number
of specified contour lines that appear in the element.

These subregions could, by themselves, be developed into a skeleton. However,
such a data set would have many more subregions and vertices than necessary. Thus
TRIGEN performs transformations on the list of regions, aimed at reducing both
the number of subregions and the number of vertices required to define them.

One basic step is to merge two subregions that share a common boundary into
one larger subregion, thus eliminating all the internal edges and vertices along the
common boundary. TRIGEN attempts to merge smaller subregions to form larger
ones, generally respecting the following guidelines:

e Subregions with different labels cannot be merged. The labels are those orig-
inally provided by the user in ITNODE.

e If the common boundary is a contour edge, then the subregions cannot be
merged.

e If the common boundary is not contiguous, then the subregions cannot be
merged, as this would create a non—simply connected subregion.

The second guideline may be violated for exceptionally small subregions, which
can occur frequently in the initial decomposition. If retained, they would cause
many small triangles to be created by TRIGEN. If a subregion has an area A
satisfying A < HMIN? | Q |, then TRIGEN will try to merge it with a larger
subregion, even if it must violate the second guideline to do so. Generally, TRIGEN
tries to create the largest subregions possible within its constraints.

A vertex is said to have degree k if it has k incident polygon edges. A path
is a sequence of connected degree two vertices, generally terminated at each end
by a vertex of degree greater than two. TRIGEN eliminates unnecessary vertices,
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adhering to the following guidelines:

e A vertex is a candidate for deletion only if it has degree two. This means that
the vertex is an internal vertex shared by only two subregions or a boundary
vertex contained in only one subregion.

e A boundary vertex cannot be removed if the two boundary edges it separates
have different boundary condition types or different labels. The labels are
those originally provided by the user in IBNDRY.

e A vertex is removed only if it is (approximately) collinear with the vertices
on the path containing the given vertex, or if it is a redundant vertex on a
circular arc approximation of the path.

The data reduction transformations described above maintain a data set cor-
responding to a valid skeleton. Thus, after the transformations are completed, the
remaining subregions are used to generate the appropriate skeleton data structures.

As an example, we consider the region shown in Figure 3.6, upper left. In
this example, we first generated a triangulation using TRIGEN with JADAPT =5,
HMAX = .1, and GRADE = 1.5, shown in Figure 3.6 upper right. Using this trian-
gulation as input, we generated three additional skeletons, with NRGN = 5, 10, 20.
For all cases HMIN = .05, and IADAPT = —6, with the alternative function
QXY = 22 + y2. For purposes of comparison, for each skeleton we computed
a new triangulation based on that skeleton, using TRIGEN with IJADAPT = 5,
HMAX = .1, and GRADE = 1.5.

Note that increasing NRGN increases the complexity of the skeleton, tending
to make more narrow regions, which in turn forces TRIGEN to create triangulations
with more elements. On the other hand, using more regions forces the resulting
triangulation to more closely follow the alternate function QXY = z2 + 2.

3.8 Simplifying a Skeleton.

When IADAPT = -5, on input the arrays VX, VY, XM, YM, ITNODE, and
IBNDRY should define a skeleton as described in Section 2.3. The output is a
simplified skeleton, typically with fewer vertices and edges. The main purpose is
to improve the quality of a skeleton, typically one that has been generated though
some automated process, by removing unnecessary vertices and edges, in particular
short edges that are not needed to define the geometry. Unnecessary short edges can
result in patches of small elements when used by TRIGEN to create a triangulation.
The routines called here are a subset of those called in the cases IADAPT = £6.
In this case, we scan all vertices and edges. All vertices that are endpoints of
exactly two edges with identical entries in IBNDRY, other than the endpoints, are
candidates for removal. If both edges are straight and the vertex is colinear with
the other two endpoints, then it is deleted from the skeleton. Vertices on curved
edges are deleted if the resulting arc is not too large. Several straight edges can
be replaced by a single straight edge or arc, provided the proposed new edge is
a sufficiently good approximation. In this case, the orthogonal distance from the
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The original skeleton with NTF = 1, NVF = 30, NBF = 30, NCF = 5 (left). The
triangulation has NTF = 166, NVF = 108 (right).
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A skeleton created with NRGN = 5, based on the original triangulation, has NTF = 6,
NVF = 53, NBF = 58, NCF =5 (left). The new triangulation has NTF = 402, NVF =
241 (right).
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A skeleton created with NRGN = 10, based on the original triangulation, has NTF = 12,
NVF = 80, NBF = 91, NCF =5 (left). The new triangulation has NTF = 818, NVF =
472 (right).
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Figure 3.6. A skeleton created with NRGN = 20, based on the original
triangulation, has NTF = 24, NVF = 157, NBF = 180, NCF = 5 (left). The new
triangulation has NTF = 1933, NVF = 1067 (right).
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vertices proposed for deletion to the proposed new edge is the principle, but not
exclusive, criteria. The user specified parameter HMIN governs this test.

3.9 Parallel Adaptive Methods.

In this section we summarize the general strategy for adaptive mesh generations
that is implemented in PLTMG. A number of static and dynamic load balancing
approaches for unstructured meshes have been proposed in the literature [19, 46,
, 33, 29, 35, 30]; most of the dynamic strategies involve repeated application of
a particular static strategy. One of the difficulties in all of these approaches is the
amount of communication that must be performed both to assess the current load
imbalance severity, and to redistribute the work among the processors once the
imbalance is detected and an improved distribution is calculated.
The approach used by PLTMG is based upon the Bank-Holst algorithm [12,
, D, 19, 12, 38, 39], that addresses the load balancing problem in a new way,
requiring far less communication. Another important point is that our approach
allows PLTMG to run in a parallel environment without a large investment in
additional coding. This approach has three main components:

Step 1: A small (nonlinear) problem is solved on an initial coarse mesh, and a poste-
riori error estimates are computed for the coarse grid solution. The triangu-
lation is partitioned such that each subdomain has approximately equal error
(although they can significantly differ in size and numbers of elements).

Step 2: Each processor is provided the complete coarse mesh and solution, and in-
structed to solve the entire (nonlinear) problem, with the stipulation that its
adaptive refinement should be limited largely to its own partition. Load bal-
ancing is achieved by instructing each processor to create a refined mesh with
the same number of nodes.

Step 3: A final mesh is computed using the union of the refined partitions provided by
each processor. This mesh is reconciled such that the (virtual) mesh made up
of the refined subregions would be conforming. A final solution is computed,
using a domain decomposition method. An initial guess is provided by the
local solutions.

The above approach has several interesting features. First, the load balancing
problem (Step 1) is reduced to the numerical solution of a small problem on a single
processor, without requiring any modifications to PLTMG. Second, the adaptive
mesh generation calculation (Step 2) takes place independently on each processor,
and can also be performed with no communication.

The only parts of the calculation requiring communication are

1. the initial fan-out of the mesh distribution to the processors, once the decom-
position is determined by the error estimator.

2. the mesh regularization, requiring communication to produce a global con-
forming mesh.
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3. the final solution phase. Note that a good initial guess for Step 3 is provided
in Step 2 by taking the solution from each subregion restricted to its partition.

The options 7 < TADAPT < 9 provide basic parallel mesh management tools
that support this paradigm. The domain decomposition solver is implemented as
an option in subroutine PLTMG.

3.10 Mesh Partitioning.

When IADAPT = 7, TRIGEN computes a posteriori error estimates and partitions
the mesh as in the Bank-Holst paradigm. If PLTMG is running on NPROC proces-
sors, then the mesh is partitioned into NPROC subregions, such that each subregion
has approximately equal error. This algorithm is a variant of the recursive spectral
bisection algorithm [31, 44, 47]. While this particular mesh partitioning algorithm
is one of the more expensive of the choices that we could make, it is typically used
only once on a relatively small problem. Although this calculation is important in
the parallel processing environment, it is done on a single processor and does not
use the MPI library. At the conclusion of the load balancing step, TRIGEN creates
new internal edges in IBNDRY at the interface between different subregions.

We begin by creating patches of elements with small errors called macro-
elements. Macro-element patches contain a minimum of one and a maximum of 100
elements and must form a geometrically connected set. Let

1 2
¥ = Nproo 2= IVeltor

For a patch P, let
Ep =Y |Veil|zz(-

teP

If the patch P contains more than one element, we require Ep < 1072 x E.
Suppose the mesh is composed of N macro-elements. We define the N x N
symmetric, positive semi-definite M-matrix A by

—{ i # j and patches ¢ and j share ¢ common edges
Aij = 0 ¢ +# j and patches ¢ and j share no common edge
s 1=7, Si:*Zk;eiAik

Macro element patches are created to reduce the order of the matrix A, and thus
reduce the cost of solving the eigenvalue problems described below. The matrix
A corresponds to the discrete Laplacian for the dual graph of the macro element
mesh, in which the macro elements are considered nodes, and the off-diagonal entries
correspond to edges defined by the adjacency relation, weighted by the number of
overlapping edges in the original triangulation.

We consider the eigenvalue problem

A = Mip (3.6)
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Our approach is standard; by construction, the smallest eigenvalue for (3.6) is
A1 =0and ¢ = (1,1,...,1)%. Our interest is in the second eigenvector 12, known
as the Fiedler vector.

We use a standard binary tree with 2 NPROC — 1 nodes (NPROC leaves and
NPROC — 1 internal nodes). The root is labeled ¢ = 1 and node ¢ has children
2i and 2i + 1, 1 < i < NPROC — 1. Associated with each node is a weight w;
denoting the number of leaves contained in its subtree. In particular, w; = 1,
i =2NPROC —1,...,NPROC and w; = wg; + wa;y1 for i = NPROC —1,...,1.

The entire mesh is assigned to root, and it is partitioned among its two children
as follows. We first approximately solve the eigenvalue problem (3.6) for the whole
mesh, and then create a permutation of the macro-elements {¢;} such that

¢ <gq; implies o; <ty ;.
We then find the index k which provides the best partition of the form

1 1
o > Ep, ~ ™ > Ep,.
<k ;i >k
The corresponding submeshes are assigned to the children nodes.

We apply this procedure recursively, at each level dividing each group of ele-
ment patches into two smaller groups by solving an eigenvalue problem of the type
(3.6) restricted to that group of patches. The final result is NPROC subregions
with approximately equal error F.

We now briefly describe some details of our procedure for computing the sec-
ond eigenvector of (3.6). Our procedure is essentially just a classical Rayleigh
quotient iteration [43], modified both to bias convergence to A2, and to account for
the fact that the linear systems arising in the inverse iteration substep are solved
(approximately) by an iterative process. To simplify notation and avoid multiple
subscripts, we let ¢ =~ 19, where k now denotes the iteration index.

We suppose that we have a current iterate ¢, which satisfies ¢} ¢ = 1 and
Pidr = 0. Using ¢y, we compute the approximate eigenvalue 5\2,,c ~ Ao from the
Rayleigh quotient 5\2,1@ = ¢} Ay, and approximately solve the linear system

Agk =T = :\2,k¢k - A¢k~

Note that by construction ¢{ry = ¢Lry = 0. This linear system is solved using the
multigraph procedure [24].
From 4, we form the vector d; satisfying 840, = 1 and o, = ¢Lor = 0.
Finally, we solve the 3 x 3 eigenvalue problem for /1, where
(%
A= |06 | Alor o &)
&
where & is defined below. If v = (o, 3,7)! is an eigenvector corresponding to the
smallest nonzero eigenvalue, we form ¢~>k+1 = aoy + By + & and gk+1 = Bk + vk
with & = 0. Then ¢41 and €41 are formed from (;NSkH and ékﬂ, respectively, by
normalization and orthogonalization to ;. Solving the 3 x 3 eigenvalue problem
rather than a 2 x 2 problem was motivated by the work of Knyazev [34].
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3.11 Parallel Communication.

TRIGEN has three options (7 < IADAPT < 9) that require MPI library routines
for communication. When IADAPT = 7, following the load balance computation,
the processor corresponding to IRGN = 1 broadcasts its mesh, solution, and sup-
porting data to all processors.

The option IADAPT = 8 reconciles the mesh. This is the most complex of
the MPI options in TRIGEN, and is typically called once, at the conclusion of
the second step of the Bank-Holst paradigm. It must be called before the domain
decomposition solution in subroutine PLTMG, as PLTMG makes use of the parallel
interface data structure IPATH generated by this call.

In creating the IPATH data structure, each processor first organizes its trian-
gulation and solution data structures. Generally, edges and vertices on the interface
between region IRGN and the rest of the domain appear first in their respective
arrays (IBNDRY, VX, VY, U, etc). This data is organized to correspond to counter
clockwise traversal of the interface. Next in all arrays comes data corresponding to
the interior of subregion IRGN; generally, this should be the majority of the data.
Finally, at the end of each array appears data corresponding to regions other than
IRGN. Each processor then assembles its contributions to the preliminary IPATH
array based on the reordered data, and this information is then exchanged among
processors using MPI. IPATH in an integer array of length 6 x LIPAT H containing
information about the interface edges.

After the boundary exchange, each processor tries to match its boundary
interface edges to those provided by neighboring regions, in order to establish the
structure of the global mesh. Typically this mesh is not conforming. When non-
matching edges are found, the region that is less refined does additional refinement
until its boundary edges form a one-to-one match with those of its neighbors. An
example is shown in Figure 3.7.

Figure 3.7. The coarse side of a non matching interface (left) is refined
to make the global mesh conforming (right).

Each processor then reorders its data structures and communicates its con-
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tribution to the IPATH array a second time. This time the edge matching process
concludes with no nonconforming edges found. By matching boundary edges at
the interface, one also effectively matches degrees of freedom on the interface; this
information is needed for the domain decomposition solver.

The option IADAPT =9 is in some sense the inverse of IADAPT = 7. In this
case, the global conforming mesh is assembled on the single processor corresponding
to IRGN = 1. Each processor organizes its data as in the case IADAPT = 8, but
now the data outside of IRGN is discarded. The remaining data is then gathered
by the processor corresponding to IRGN = 1 and global conforming data structures
are generated on this processor. The option JADAPT = 9 is provided as a con-
venience feature, and is not needed in the Bank-Holst paradigm. We remark that
the ITNODE, IBNDRY, VX, VY, and other arrays need to be sufficiently large to
accommodate the entire global conforming mesh, which may not be possible for
large parallel computations.
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Chapter 4

Equation Solution

4.1 Overview.

Subroutine PLTMG solves the problems described in Section 1.1. The solution
process for each class of problems has certain unique aspects, but all make use of
Newton’s method. Solvers for the resulting systems of linear equations are all based
on the multigraph iterative method.

Subroutine PLTMG is entered using the statement

Call PLTMG( VX, VY, XM, YM, ITNODE, IBNDRY, JA, A, IP, RP,
SP, W, AIXY, A2XY, FXY, GNXY, GDXY, PIXY, P2XY )

On input, the arrays VX, VY, XM, YM, ITNODE, and IBNDRY define a
triangulation. Fortran subroutines A1XY, A2XY, FXY, GNXY, GDXY, PI1XY,
and P2XY are documented in Section 2.5. Parameters IP, RP, and SP arrays read
and written by PLTMG are summarized in Tables 2.6-2.8. The arrays JA, A, and
W provide workspace.

The parameter IPROB indicates the problem class; the various options are
shown in Table 4.1. The case IPROB > 0 indicates a standard sequential solve,
either on a single processor, or on multiple processors as part of the second phase
of the Bank-Holst paradigm. The case IPROB < 0 indicates the global parallel
domain decomposition solve as part of the Bank-Holst paradigm. Because this is
a global solve it involves some MPI communication at each iteration step. When
IPROB < 0, the parallel domain decomposition solve is preceded by a local solve
on each processor, in order to insure the quality of the initial guess for the global
problem.

The cases IPROB = +3 and IPROB = +4 have various suboptions unique
to their particular problem class. The available options are specified through the
parameter ITASK. These are summarized in Table 4.2.

49
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IPROB | problem option
1 elliptic boundary value problem
2 obstacle problem
3 continuation problem
4 parameter identification problem
5 optimal control problem
-1 DD solve for elliptic boundary value problem
-2 DD solve for obstacle problem
-3 DD solve for continuation problem
-4 DD solve for parameter identification problem
-5 DD solve for optimal control problem

Table 4.1. The parameter IPROB.

ITASK | IPROB | option
0 1 default
9 use functional
0 2 default
0 continue to the nearest target point
1 continue to the nearest target or singular point
2 switch branches at a bifurcation point
3 3 switch A and/or p; initialize with A fixed
4 switch A and/or p; initialize with p fixed
5 solve with ¢ = 0, § = 0 (X fixed)
6 solve with ¢ =0, 0 = 2 (p fixed)
7 solve with 0 = 0,60 =1
0 4 default
8 switch A and initialize
0 5 default

Table 4.2. The parameter ITASK.

4.2 Elliptic Boundary Value Problems.

When IPROB = 1, PLTMG solves the discrete system (1.6). If the underlying
boundary values problem is not self-adjoint some upwinding terms based on the
Scharfetter—-Gummel discretization scheme [6, 10] are added to the discretization;
in this case (1.6) should be replaced by: find u, € My such that

ap(up,v) =0 for all v € M., (4.1)
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where ap, (up,v) reflects the additional stabilization terms. We note that the up-
winding terms are derived for the case of piecewise linear finite elements (p = 1).
While a similar upwinding scheme is also formally applied for quadratic and cu-
bic elements, its stability and convergence properties are not yet analyzed. In any
event, (4.1) corresponds to the system of nonlinear equations

GU) =0, (4.2)

where the unknown vector U corresponds to the values of the finite element solution
up, at the vertices of the triangulation. The Jacobian matrix

og (U

Aw) = 84
ou

is a sparse stiffness matrix corresponding to a linear elliptic boundary value problem
(linearized about U). Even in the event the the original problem is linear, PLTMG
solves all problems with IPROB = 1 as nonlinear, and formally applies Newton’s
method to (4.2). In Figure 4.1, we summarize our approximate Newton procedure
with line search.

Procedure Newton

N1 Begin with initial guess Uy, and a sufficient
decrease parameter 7. Set k «— 0,
s0 <+ 1, and compute Gy and |Go|.

N2  solve (approximately) AU, = —G(Uy).

N3  compute Uy 11 = Uy + Uk, Grt1, |Gr+1], and
Sk+1 = |Grt1l/19%|-

N4  if 1 — &gy < 7Sk, then decrease s; and go to N3;
else set Spy1 — sk/ (s + (1 — sk)&€k+1/100)
and k «— k+ 1.

N5  if converged, then exit; else go to N2.

Figure 4.1.

The scalar s is the damping parameter. When the sufficient decrease crite-
rion is not satisfied on line N4 and s; must be reduced, the next value is found
through application of one step of a guarded secant /bisection algorithm to the one-
dimensional minimization problem

min Hg(uk + Sk&/{k)”
Sk

If sufficient decrease is achieved, the current sy, is used to predict sy41; this formula is
designed to force rapid increase of s;+1 — 1 when €41 becomes small as superlinear
convergence occurs, and at the same time provide a reasonable first guess in the
early stages of the Newton iteration, when damping is most important. A maximum
of MXNWTT damped Newton iterations are allowed. PLTMG reports the actual
number of Newton iterations used on the most recent call in the parameter ITNUM,



52 PLTMG USERS' GUIDE 10.0

and the number of evaluations of G as IEVALS; IEVALS > ITNUM, since more
than one function evaluation may be used in each line search.

All sets of linear equations involving the matrices A(U) and A(U)" have the
appearance of finite element discretizations of linear elliptic boundary value prob-
lems. These systems are solved using the multigraph iterative method [24, 23].
The multigraph iteration is an algebraic multigrid method, governed by several in-
put parameters. The parameter ISPD described in Table 2.15 specifies whether
symmetric or nonsymmetric storage is used in the A array. At each level an ILU
factorization is used as a smoother. The parameter DTOL is the drop tolerance for
this approximate factorization. Generally, smaller values of DTOL result in more
accurate ILU factorizations, but higher costs in space and time per iteration. The
extreme case DTOL = 0 results in a sparse direct factorization (if sufficient storage
is available).

The multigraph iteration is used as a preconditioner for a composite step
conjugate gradient or biconjugate gradient iteration, specified through ISPD as
indicated in Table 2.15. The composite step algorithms [9, 8] are similar to the
standard biconjugate gradient and conjugate gradient methods, respectively, except
that they occasionally proceed from the iterate for step k to the iterate for step k+2.
Such composite steps are taken to improve the stability of the recurrence relations
and smooth the behavior of the residual norm. The maximum number of iterations
to be used per solution is specified by the parameter MXCG. Note that as many as
MXCG iterations are used each time a system of linear equations is solved.

As a simple example, we solve the Poisson equation

—Au
U

1 in Q,
0 on 012,

The domain 2 was provided as a skeleton and is shown in Figure 4.2. This problem
was solved using piecewise quadratic finite elements and eight processors. The
skeleton was triangulated, and then a mesh with NVF = 2000 was adaptively
created on one processor. The processor then did a load balance step (IADAPT =7
in TRIGEN) and broadcast this mesh to all processors. The load balance and initial
solution are shown in Figure 4.2. Each processor then independently continued the
refinement process on its subregion, creating a local mesh with approximately 8000
vertices. The global refined mesh was made conforming (IADAPT = 8 in TRIGEN)
and the domain decomposition solver invoked in PLTMG (IPROB = —1). The
resulting global refined mesh had NDG = 182022 degrees of freedom. The global
mesh, solution, and a posteriori error estimate are shown in Figure 4.2. The mesh
is colored by element size, and element edges are not drawn.

4.3 Domain Decomposition Solver

Here we describe the domain decomposition algorithm implemented in PLTMG for
Step 3 of the Bank-Holst paradigm (see Section 3.9). This algorithm is described in
detail in [16, 4, 36, 25]. Tt is motivated by and similar to the domain decomposition
algorithms described in [15, 14]. In the case IPROB = —1, this solver is used in
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Figure 4.2. The error on the global refined mesh and some timing statistics.
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place of the simple multigraph solver in line N2 of Procedure Newton given in Figure
4.1.

For simplicity in our discussion here, we restrict attention to the case of just
two subdomains. In our scheme, each subregion contributes equations corresponding
all fine mesh points, including its interface. Thus in general there will be multiple
unknowns and equations in the global system corresponding to the interface grid
points. This is handled by equality constraints that impose continuity at all mesh
points on the interface. The result is a mortar-element like formulation, using Dirac
0 functions for the mortar element space. In any event, with a proper ordering of
unknowns, the global system of equations has the block 5 x 5 form

A Ay, U, R,
Ay A, 1| |6, R,
A A —I||sos|=| R |. (4.3)
Ay Ao 0Us Ry
I -1 A U, — U,

Here A;; and Asp correspond to the fine grid points on processors 1 and
2, respectively, that are not on the interface, while A,, and A,, correspond to
interface points. The fifth block equation imposes continuity, and its corresponding
Lagrange multiplier is A. The identity matrix appears because the global fine mesh
is conforming. The introduction of the Lagrange multiplier and the saddle point
formulation (4.3) are only for expository purposes; indeed, A is never computed or
updated.

On processor 1, we develop a similar but “local” saddle point formulation.
That is, the fine mesh subregion on processor 1 is “mortared” to the remaining
course mesh on processor 1. This leads to a linear system of the form

Ay Ay oUy Ry
Ay Ay 1| e, R,
i, A, -1|lev,|=| R |. (4.4)
Ag,  Ago §U, 0
I -1 A U, -~ U,

where quantities with a bar (e.g., Asy) refer to the coarse mesh. A system similar
to (4.4) can be derived for processor 2. With respect to the right hand side of
(4.4), the interior residual Ry and the interface residual R, are locally computed
on processor 1. We obtain the boundary residual R,, and boundary solution U,
from processor 2; processor 2 in turn must be sent R, and U,. The residual for
the coarse grid interior points is set to zero. This avoids the need to obtain Ry via
communication, and to implement a procedure to restrict Ry to the coarse mesh on
processor 1. Given our initial guess, we expect R; ~ 0 and Ry = 0 at all iteration
steps. R, and R, are not generally small, but R, + R, — 0 at convergence.

As with the global formulation (4.3), equation (4.4) is introduced mainly for
exposition. The goal of the calculation on processor 1 is to compute the updates
0U; and U, which contribute to the global conforming solution. To this end, we
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formally reorder (4.4) as

1 I A U, —U,
-1 Auu A_~V2 601/ Ru
Ay Ay, suy | = m | (4.5)
I Ay A, sU, R,
AQV AQQ 5[72 0

Block elimination of the Lagrange multiplier A and 6U, in (4.5) leads to the block
3 x 3 Schur complement system

An Ary B oUy Ry
Ay Ayt A, An| o0, = [B + R + AU, —U) |, (46)
Azy Ao dU2 A2 (U, = Uy)

The system matrix in (4.6) corresponds to the final adaptive refinement step on
processor 1, with possible modifications due to global fine mesh regularization. It is
exactly the matrix used in the preliminary local solve to generate the initial guess for
the global domain decomposition iteration. In the solution of (4.6), the components
0U; and 06U, contribute to the global solution update, while 0U, is discarded. We
remark that the global iteration matrix corresponding to this formulation is not
symmetric, even if all local system matrices are symmetric.

The domain decomposition algorithm is incorporated as the solver for the ap-
proximate Newton iteration described in Figure 4.1. In particular, only one domain
decomposition iteration (a so-called inner iteration) is used in each approximate
Newton step. Thus, loosely speaking, each solve of (4.6) alternates with a line
search step in which the global solution is updated. The Newton line search pro-
cedure requires global communication to form some norms and inner products, as
well as the boundary exchange described above.

4.4 QObstacle Problems.
When IPROB = 2, PLTMG solves the obstacle problem (1.8). The inequality con-

straints are treated via an interior point procedure [11]. In particular, we consider
the Lagrange function

NVF

L(un) = p(un) — p Y d; {log(un(pi) — u(p:)) + log(@(p;) — un(p:))}  (4.7)
=1

where u > 0 is a small barrier parameter; the user specifies the target value in
RMTRGT. Vertices of the triangulation are denoted by p; = (2;,¥;), and d; is the
diagonal entry of the mass matrix corresponding to p;. The weights d; = O(h?)
scale the barrier terms in a fashion similar to p(uy,), and make p independent of the
mesh.

The overall solution strategy is to compute stationary points of the Lagrange
function (4.7) for a decreasing sequence of RMTRGT = p > 0 values, following a
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smooth trajectory moving towards the boundary of the feasible region. This has
much in common with the more general path following procedures used in the case
IPROB = 3. If one alternates solution steps with adaptive refinement steps as in a
typical adaptive feedback loop, one should generally reduce p as O(vNVF') so that
errors introduced by the continuation procedure are roughly comparable in size to
the approximation errors introduced by the finite element discretization.

The assembly and solution procedures are quite similar to the case IPROB =
1. In particular, the right hand side is modified by terms of the form

—pd; { (un(pi) — w(p:)) ™" + (un(p:) —u(p:)) "'},

and the diagonal of the stiffness matrix (Hessian matrix of the functional p(up)) is
modified by terms of the form

pudi { (un(pi) — u(ps) % + (un(pi) —u(p:)) ">} .

With these modifications, the approximate Newton strategy described in Section
4.2 is used here.

When IPROB = —2, the domain decomposition algorithm outlined in Section
4.3 is used, with appropriate modifications to the stiffness matrix and right hand
sides. As in the case IPROB = —1, only one domain decomposition solve (inner
iteration) is used in each approximate Newton iteration.

As an example, we use PLTMG to solve the variational inequality

Inin/{|Vu|2 —2f(z,y)uldzr dy
ueK Q

where the domain Q = (0,1) x (0,1), and

— 4
f(z,y) = —A(sin(37wx) sin(37y)).

K= {u € Ho(Q) : Ju| < 1 % sin(mx) sin(7y) } )

In the absence of the obstacle, this is a simple elliptic equation with exact solution
u = sin(37x) sin(37y).

In this calculation, we began with a uniform 5 x 5 mesh, and adaptively refined
towards a final mesh with NVF = 12800 using piecewise cubic elements. On the
initial mesh we took p = 1. At each refinement step, we first solved the problem
with the existing value of 1 and then reduced p by a factor of 2 and solved a second
time; the final mesh had p = 27% and NDF = 114781. As previously mentioned,
this strategy tries to balance discretization errors with the errors introduced by p.
In Figure 4.3, we show several of the meshes and corresponding solutions. Elements
in the meshes are colored by size, and for the finer meshes, triangle edges are no
longer drawn. In Figure 4.3, we also show the a posteriori error estimate for the
finest mesh. Here we see that the error is relatively uniform throughout the domain,
indicating that the adaptive procedure has done a good job in this example.
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Figure 4.3. Timing data and the error estimate for the final mesh.
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4.5 Continuation Problems.

In the case of continuation problems (IPROB = 3), the parameter ITASK speci-
fies the the continuation option. Available options are summarized in Table 4.2.
For convenience in notation, we will systematically drop the subscript h from all
variables in this section (e.g., A\, will be denoted \).

When the continuation process is used, we use a normalization equation of
the form

N(u,\) =o.

The scalar ¢ = SIGMA is the steplength. PLTMG uses then the normalization
equation described in [7, 41],

N(u, A) = 0po(p = po) + (2= ) Ao (A = No). (4.8)

Here § = THETA is a parameter selected by PLTMG; by choosing 6 and ¢ properly,
it is possible to achieve target values in either p or A. The vector (uf, \g) is the
current solution point and (uf, /'\0) the current unit tangent vector. The scalar p is
defined formally using the chain rule for differentiation:

P = putt+ pAA.

The values 0 < ITASK < 4 embody the basic continuation path following
options available in PLTMG. The values 5 < ITASK < 7 are designed for updating
the solution at a fixed point when the mesh has been changed by a call to TRIGEN.

An initial solution is provided by the user through subroutine GDXY. There-
after, the continuation proceeds from the last successfully computed point. A brief

outline of the basic continuation process (ITASK = 0 or ITASK = 1) is given in
Figure 4.4.

Procedure Continue

C1  Begin with initial solution (uf, Xo) and tangent
vector (i, \o).

C2 compute the step o for the normalization equation;
predict (uf, X) — (ub, Ao) + a (1, Ao).

C3  correct (uf,\) « NWT(ut,\);
compute Yy, Pr, and v;
compute tentative % and .

C4  if a singular point was detected and ITASK =1,
then go to CT7.

C5  set (uh, \o) « (uf,\) and (i, Ag) — (u, ).

C6  if (uf, \o) is a target point, then exit; else go to C2.

C7  compute the singular point using secant/bisection
algorithm on v (o) = 0; exit.

Figure 4.4.

PLTMG always returns with (RLTRGT,RTRGT) = (RL,R) = (),p). To
continue with ITASK = 0 or ITASK = 1, the user specifies a target value for
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either RTRGT or RLTRGT. If RLTRGT # RL, then PLTMG seeks a solution
with A = RLTRGT. Similarly, if RTRGT # R, then PLTMG seeks a solution with
p = RTRGT.

A step o and a predicted solution are computed on line C2. The predictor
is a standard Euler type commonly used in continuation procedures. The step
size calculation is influenced not only by the user request but also by imposed
requirements that the predicted solution be sufficiently accurate. The procedures
used in this portion of the calculation are described in detail in [18]. The solution
is corrected on line C3. The correction process symbolized by the operator NWT
involves the solution of a set of nonlinear equations, and is discussed in greater
detail below.

PLTMG locates singular points by computing the smallest singular value v
of the Jacobian matrix. A modified inverse iteration procedure computes the left
and right singular vectors ¥, and v, corresponding to v as part of each correction
step C3. If the matrix is symmetric (ISPD = 1), then ¢y = ... In a somewhat
nonstandard fashion for singular values, we normalize the singular vectors to have
unit length and satisfy

/Q ey dz > 0.

Requiring the sign of the inner product of ¥, and v, to be positive forces the
singular value v to change sign at a singular point (normally one requires v > 0
and then the inner product changes sign at singular points). Unfortunately, while
v changes sign in a continuous fashion at singular points, it can also change sign
discontinuously at regular points. For example, in the linear eigenvalue problem,
along the trivial branch v will continuously pass through zero at each eigenvalue
and will discontinuously change sign at some point between each consecutive pair
of eigenvalues where the smallest singular value of the Jacobian changes from the
preceding to the following eigenvalue.

If PLTMG detects a change in sign in v along the solution curve between
the starting point and target point, and if ITTASK = 1, the computation of the
target point is abandoned in favor of computation of the possible singular point.
A secant/bisection algorithm for the equation v(o) = 0 is used. More details of
these procedures can be found in Bank and Chan [7] and the references therein. At
the conclusion of this iteration, some tests are made to determine if the point is a
bifurcation point, a limit point, or a regular point.

The algorithms in PLTMG were designed to handle only simple limit and
bifurcation points, although on occasion we have observed them to work on some
higher degree singular points as well. When a target or singular point has been suc-
cessfully computed, PLTMG returns with (RLTRGT, RTRGT) set to the current
values of (A, p).

If PLTMG is called with ITASK = 2 at a bifurcation point, parameters rele-
vant for the continuation procedure are initialized for the bifurcating branch, but
the solution itself remains unchanged. In the next call to PLTMG with ITASK =0
or ITASK =1, the continuation procedure will follow the bifurcating branch.

If PLTMG is called with ITASK = 3 or ITASK = 4, parameters relevant for
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the continuation procedure are reinitialized using the new parameter or functional;
the solution itself remains unchanged. The two cases differ in that either A\ or p
can be held fixed during the reinitialization; for either case it is possible to specify
either a new continuation parameter A\, a new functional p, or both.

The successful use of the continuation procedure requires guidance from the
user. For example, it is possible to specify target values that cannot be reached.
Also, since singular points are detected by changes in sign of v, one can fool the
singular-point detection algorithm by specifying target values sufficiently far away
that two sign changes are passed on one step.

We now consider the cases 5 < ITASK < 7. We begin by noting that the
discretization process can introduce spurious solution curves or cause significant
distortions in the solution curves of the continuous problem (1.1); one must therefore
be cautious in interpreting the numerical results [40]. As the mesh is refined or the
mesh points are smoothed, the solution curves generally will move; the assumption
of PLTMG is that, as a function of the discretization, the solution curves converge
in some uniform fashion to those of the continuous problem, and that the mesh
is sufficiently fine to capture the qualitative features of the continuous problem’s
solution curves in the regions of interest [7, 17]. Typically, for each point on the
current grid, there are three natural points on a nearby new grid solution curve
that can be associated with it: the point with the same A value (ITASK = 5), the
point with the same p value (ITASK = 6), and the point of intersection with the
perpendicular hyperplane passing through the current solution point (ITASK = 7).
Some typical examples are illustrated in Figure 4.5.

fine grid
fine grid
ITASK = 6
P P
ITASK = 7
ITASK = 6
coarse grid
coarse grid
A A

Figure 4.5. The effect of ITASK in the case of mesh refinement.

In some situations, all three points may not exist, or they may not be distinct.
This is illustrated in Figure 4.5, right, where ITASK = 6 and ITASK = 7 correspond
to the same fine grid point, while no (nearby) solution exists for ITASK = 5.

We now consider the linear algebraic aspects of the problem. As with other
problem types, the nonlinear systems for IPROB = 3 are solved by the approximate
Newton iteration [21, 20] described in Figure 4.1. The nonlinear system to be solved
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has the form

G(u,A) =0,
N(u,\) =o.

Here the operator G represents the finite element equations of order NVF, and N
the normalizing equation used in the continuation process; o is the steplength. At
each step of the Newton process, the linear system to be solved has the form

Gu Gx\ (ou) _ G(u, \) (4.9)

N, Ny)\6x) N(u,A\)—0c )’ ’
where du is a vector of length NVF and A is a scalar. The solution is constructed
by solving

Guv = —G,

Gyw = =Gy — Guuy,
Uy < Uy +w,
SN — 7Nuv7—|—N—c77
Nyt + Ny

ou = v+ dAuUy.

The vector uy, initially set to zero, is updated at every step. Thus the right-
hand side G + G, @y has the appearance of a residual, and w may be viewed as an
incremental update. At convergence, @ A = u, SO 1 is known at every Newton step.
The linear systems involving G, are solved by the multigraph algorithm.

The block elimination process is embedded in the overall damped Newton
process [18, 20] given in Figure 4.1. Here U} = (u’,\) is the kth Newton iterate,
oUf = (dut,6)), and G}, = (G*, N — o). The norm |G| is given by

|Gc? = 1GI* + ¢|N — of?,

where ¢ is a scaling parameter (SCALE in the RP array) chosen to balance the two
terms appropriately.

The case IPROB = —3 corresponds to a parallel solve of the block linear
system (4.9), embedded in the overall Newton iteration. It is defined only for the
cases ITASK = 5,6,7; at present there is no parallel implementation of the basic
path following options. Thus we assume that the continuation is done on a coarse
mesh on a single processor, and parallel computation is used only in the context of
computing a highly refined solution at a particular point.

For continuation problems, PLTMG provides a limited amount of written
output summarizing the state of the computation. All formats are designed for
output devices having a minimum of 80 characters per line. All output is directed
to the subroutine FILUT L, which is responsible for creating the files BFILE and
JWFILE.

For each call to PLTMG a banner is printed. Each continuation step results in
a single line of output containing seven numbers. A typical example of such output
is illustrated below:
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pltmg: lambda rho lambda dot rho dot eigenvalue
0 3 0.99004E+01 0.39814E+01 -0.80768E-02 0.39890E+01 -0.94673E-04

The first column contains the current value of IFLAG (in this example, I FLAG
0). The second contains the value of ITNUM, the actual number of approximate
Newton iterations used. The next four columns contain the current values of the
parameter A, the functional p, and their derivatives with respect to arclength along
the current solution manifold A and p. The column labeled “eigenvalue” gives an
approximation to the smallest singular value v of the Jacobian matrix G,.

As an example, we consider the nonlinear eigenvalue problem

—Au = Asinu in Q=(0,1) x (0,1),
u = 0 on 092,

with the functional given by

p(u,A)z/quxdy.
Q

This problem has bifurcation points at the eigenvalues of the linear eigenvalue prob-
lem, —Au = Au, which are given by A\py = (k> + )72, k= 1,2,..., £ =1,2,....
We chose as our coarse mesh a 17 x 17 uniform mesh, and will employ piecewise
linear elements.

Our goal is to compute the first four eigenvalues and eigenfunctions. The first
and third eigenvalues have multiplicity one. The second and fourth eigenvalues
have multiplicity two. While the algorithms in PLTMG are not designed to handle
multiplicities greater than one, the code performed in a satisfactory fashion and
computed all four eigenvalues without difficulty. As a cautionary remark, one should
not assume that the situation in this respect will always be so favorable.

We initialize at A = 0 and continue to A = 10 with I'TASK = 0 and then to
A = 22 with ITASK = 1. At A = 22, the sign of v (eigenvalue) has changed, so
PLTMG computes the singular point, in this case the first eigenvalue.

pltmg: lambda rho lambda dot rho dot eigenvalue
0 1 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 0.76859E-01
0 2 0.10000E+02 0.00000E+00 0.10000E+01 .00000E+00 0.38192E-01
0 2 0.22000E+02 0.00000E+00 0.10000E+01 0.00000E+00 -0.82128E-02
pltmg: find limit / bifurcation point
0 2 0.19876E+02 0.00000E+00 0.10000E+01 0.00000E+00 0.32804E-06
pltmg: probable bifurcation point
0 0 0.19876E+02 0.00000E+00 0.10000E+01 0.00000E+00 0.32804E-06

o

Note that the secant/bisection algorithm converged in one step. After deter-
mining that the singular point was a bifurcation point, PLTMG makes an additional
calculation to ensure that the tangent vector uy corresponds to the current branch
(in this case, the trivial branch).

We save the solution in a file in order to continue from this point to the
second eigenvalue in a convenient manner (see Section 6.7), and switch branches
(ITASK = 2). We then routinely continue on the bifurcating branch in several steps
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(p = .01, X = 25,50, 100, 150, 300, 500). At A = 500, we refine the mesh with a call to
TRIGEN (IADAPT =1, NVTRGT = 1000), creating a mesh with NV F = 1000.
We follow with a call to PLTMG with ITASK = 7. The eigenfunction and mesh
are shown in Figure 4.6.

We restore the solution at the bifurcation point and continue along the trivial
branch to the second eigenvalue. We save the solution, switch branches and explore
the bifurcating branch in a fashion similar to the first eigenvalue. A similar proce-
dure is repeated for the third and fourth eigenvalues. The eigenfunctions computed
on a refined mesh of NVF = 1000 are shown in Figure 4.6. In Figure 4.7, we show
the complete history of the calculation in terms of the continuation path.

4.6 Parameter Identification Problems.

When IPROB = 4, PLTMG solves the parameter identification problem (1.9)-(1.12)
The simple bounds on A, are treated in a fashion analogous to the case IPROB = 2.
In particular, we consider the Lagrangian

L(up, v, An) = p(un, An) + alup, vp) — p{log(An — A) —log(A — Ap)}  (4.10)

where p > 0 is the barrier parameter and vy, is the Lagrange multiplier (a member
of the finite element subspace). Our procedure computes a stationary point of the
Lagrangian (4.10) using an approximate Newton method.

The linear algebra problem at each Newton iteration is of the form

H A' C, du b,
A 0 ¢lloe]=16]. (4.11)
ct ¢t D) \sx b

Here the matrix A is the Jacobian matrix corresponding the the bilinear form
a(up,vy). In particular, linear systems involving A (or A') are solved using the
multigraph iteration. The matrix H is symmetric and has the same sparsity pattern
as A; other characteristics strongly depend on the particular problem. C, and C,
are generally dense column vectors, and D is a scalar. The vectors du and dv are
the (Newton) updates for u; and the Lagrange multiplier vy, respectively, and JA
is the scalar (Newton) update for Ap. by, b, and by correspond to the appropriate
Newton residuals.

Our solution algorithm is just standard block elimination, with a small alge-
braic modification that reduces the number of solves with A or A! from 4 to 3. Here
we summarize the procedure. First we solve

ABU = bvv
Aw = C, — Auy,
Uy — Uy +w.

Both systems are (approximately) solved using the multigraph iteration. The vector
u, is introduced to make the right hand side C,, — Au) appear as a residual. @) is
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The first eigenfunction.
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Figure 4.6. The fourth eigenfunction.



4.6. Parameter ldentification Problems. 65

square
continuation poth continuation options
741 inftialization

reqular point
6.53 | L. .
limit point
506 bifurcation paint

adaptive mesh

OO0oEED0DN

o7 adaptive mesh {mpi)

43+

353
singular vostor 0 3.60-2

or

275

T 1
41522 5.25e2

Figure 4.7. The continuation path.

initially set to zero, and updated with the solution of every linear system. Then we
form

by, = by, — Hby,

C, =C, — Huy,

which requires two sparse matrix multiplications with H. Next we compute A
using the (scalar) Schur complement

. by — C}ii)v — ’ﬁgj)u

o\ = —.
D — Ctay —uC,

We then form du from B
ou = b, —0\uy,

and find dv from B B
Atsv =b, — A C,,.

The latter requires the use of the multigraph iteration for a third time. The basic
Newton iteration is again that given in Figure 4.1 with the interpretation U?! =
(ul,vh, Ap) and G' = (b, b, by).

The parameter identification problem has one additional option, specified by
ITASK = 8. If the problem has more than one scalar control parameter, one
can switch parameters, sequentially optimizing the solution with respect to one
parameter with the others held fixed. If ITASK = 8, PLTMG reinitializes certain

variables that depend on A before starting the Newton iteration.
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When IPROB = —4, a parallel Newton algorithm is implemented, similar in
structure to the case IPROB = —1. A domain decomposition solver analogous to
that described in Section 4.3 is incorporated into the block elimination algorithm
defined above.

As an example, we consider the problem

min/ 6_20(x2+y2)(u —1)*du,
Q

subject to the boundary value problem

—(14+MAu=1 in Q
Vu-n=20 on 0
u=>0 on 0§29

and the inequality constraints
0<A<2

In this example, we used piecewise quadratic elements. The domain was provided as
a skeleton and the initial mesh generated by TRIGEN. Both are shown in Figure 4.8.
The initial mesh was then refined in seven steps to a final mesh with NVF = 10000
vertices. On this final mesh A = .9634, and NDF = 39657. The final mesh, the
solution, and the Lagrange multiplier are shown in Figure 4.8. The interior point
parameter y was set to p = 1 for the initial mesh, and reduced by a factor of 2 at
each mesh refinement step, yielding 1 = 277 on the finest mesh.

4.7 Optimal Control Problems.

When IPROB = 5, PLTMG solves the control problem (1.13)-(1.16). This problem
is similar to the case IPROB = 4 except that now Ay is a piecewise linear polynomial
rather than a scalar. Here we consider the Lagrangian

L(un, v, An) = p(un, An) + a(un, vp)
NVF
— K Z d;i {log(An(pi) — A(pi)) +1og(A(pi) — Mn(pi)) }

+ (VAR VL) (4.12)

where p > 0 is the barrier parameter, d; is the diagonal of the mass matrix cor-
responding to vertex p;, and vy is the Lagrange multiplier. The last term on the
right hand side of (4.12) is an extra regularization term chosen to keep the prob-
lem well-posed if the control parameter is not globally defined in the domain (2.
As usual, our algorithm seeks a stationary point of the Lagrangian (4.12) using an
approximate Newton method.

The linear algebra problem at each Newton step is of the form

A 0 S| [ov]=10]. (4.13)
StoSst G ) \6A by
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The skeleton and initial mesh with NVF = 33.
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The solution and final adaptive mesh with NVF = 10000, NDF = 39657.
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Figure 4.8. The Lagrange multiplier and the error estimate for the final mesh.
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Here H and A are defined as before. In typical problems G is a symmetric, positive
definite matrix, corresponding the the regularization term p(VAp, VAg) in (4.12),
and any additional terms appearing in the user supplied functions. The matrix G
also has a nonnegative diagonal term arising from the inequality constraints for \y.
As before, linear systems involving A and A are easily solved using the multigraph
iteration. Additionally, since G formally has the appearance of a stiffiness matrix
for a self-adjoint elliptic equation, linear systems involving G can also be solved
using a multigraph iteration. The matrices S,, and S, have the same symmetric
sparsity structure as G and A, but are generally not symmetric.

Our solver is based on block Gaussian elimination, similar to the case IPROB =
4. However, in the case of (4.13), it is too expensive to compute an exact Schur
complement for the 3, 3 block; instead we approximate the Schur complement by G
itself. Thus, our solution algorithm is really just a preconditioner. In particular, it
is one step of a block symmetric Gauss-Seidel iteration. This is realized as follows:

A&u = bva

Até, = b, — Hé,,

GOX =by — Ske, — Shé,,

Adu = b, — SydA,

AlSv = b, — Héu — S 0.
Linear systems involving A, A%, and G are solved using the appropriate multigraph
iteration. If G were replaced by the Schur complement and all linear systems solved
exactly, this would yield the exact solution.

When IPROB = —5, a parallel Newton algorithm is implemented, similar in

structure to the case IPROB = —1. A domain decomposition solver analogous to
that described in Section 4.3 is incorporated into the block preconditioner defined

above. As in the case IPROB = 5, only one block SGS iteration is used.
As an example, we solve the optimal control problem

min/ (u —ug)® +yA* dx
Q

subject to the constraint equation

—Au = XA inQ=(0,1)x(0,1),
u = 0 on 9N,

and the inequalities

The target function ug was
up = sin(3mz) sin(3my)

and the regularization parameter v = 1074,
This problem was solved in parallel using eight processors using piecewise cubic
elements. An initial 9 x 9 uniform mesh was adaptively refined to NVF = 1000.
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See Figure 4.9. This mesh was load balanced and broadcast to the eight processors.
Each processor then adaptively refined its partition to NVF = 4000, yielding a
global refined mesh with NDG = 207164. The interior point parameter y = o = .01
on the 9x9 mesh, and thereafter was reduced by a factor of 4 in each refinement step,
both in creating the mesh with NVF = 1000 that was used for the load balance, and
in the subsequent parallel adaptive refinement steps. The final u = g2~ 1'2. The
global refined mesh, solution u, Lagrange multiplier v, and the control function A
are shown in Figure 4.9, along with the a posteriori error estimate and some timing
data.

4.8 Subroutine PLTEVL.

Subroutine PLTEVL evaluates the solution and its gradient at a list of user speci-
fied evaluation points. PLTEVL is called using the statement

Call PLTEVL(X, Y, U, UX, UY, VX, VY, XM, YM,
ITNODE, IBNDRY, IP, RP, W )

The arrays VX, VY, XM, YM, ITNODE, and IBNDRY define a triangulation.
INEVP| is the number of evaluation points. If NEVP > 0, PLTEVL carries out
some relatively expensive initialization and then evaluates the function and gradient.
If NEVP < 0, PLTEVL assumes the initialization has been done on a previous call
(with no intervening calls to other routines in the package), and will bypass the
initialization. The arrays X and Y are of length |[NEVP|, with (X(I),Y(I)) being
the Ith evaluation point. The output arrays U, UX, and UY are of size |[INEVP),
with U(I) containing the function value and (UX(I),UY(I)) the gradient value at
the I'th evaluation point. Since the gradient is piecewise constant, it is not uniquely
defined along internal triangle edges and at vertices. At such evaluation points a
representative (arbitrary) assignment is made from among the possibilities. If a
given evaluation point lies outside the domain 2, the corresponding function and
gradient values are set to the minimum value of the function.

The main problem in evaluating a grid function at an arbitrary point (z,y)
is determining which element contains the point. Since the meshes in PLTMG are
generally unstructured and nonuniform, this requires searching and testing lists of
elements. PLTEVL has an expensive initialization phase where elements are sorted
to minimize this searching.

This is done by assigning each triangle to a node in a binary tree. We begin
by embedding the entire mesh in a rectangle that becomes the root node of the tree.
The root rectangle is then bisected, either horizontally or vertically, by connecting
a pair of opposing midpoints. This bisection splits the list of triangles into three
groups: those completely in the left (top) rectangle, those completely in the right
(bottom) rectangle, and a third group (ideally small) that have nontrivial intersec-
tions with both rectangles. The decision whether to divide horizontally, vertically,
or not at all depends mainly on the size of this last group relative to the other two.
In any event, if a refinement is made, the two new leaves inherit the lists of ele-
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4.8. Subroutine PLTEVL. 71

ments completely contained in their corresponding rectangles, and the third group
of elements remains associated with the father element. The leaves (son rectangles)
then become candidates for further bisection. The overall process creates the binary
tree, in which each node is a rectangle, and associated with each node is a short list
of triangles.

The point (z,y) € ¢, where t is an element of the triangulation, if and only
if all its barycentric coordinates with respect to ¢ are nonnegative (this test is
modified slightly for a triangle with a curved boundary edge). The evaluation of
the barycentric coordinates requires the assembly and solution of a 3 x 3 set of linear
equations

1 1 1 c1 1
r1 X2 I3 C| =2,
Yr Y2 Y3 C3 Y

where (z;,y;) are the vertices of ¢.

The evaluation of a function at the point (x,y) uses two different strategies.
In the first, we find a triangle ¢ associated with the leaf of the tree whose rectangle
contains the point (z,y); this is done by following a path in the binary tree from
the root to the desired leaf.

We evaluate the barycentric coordinates of (x,y) with respect to ¢; if all are
nonnegative, we are done. If one (or two) coordinates are negative, we locate the
neighbor element to t corresponding to a negative coordinate; this element is closer
to (x,y) than t itself. We then replace t by its neighbor and repeat the test on the
new element. In this way we map out a fairly direct path from the seed element
to the element that contains the point. Since the seed triangle was associated with
the leaf of the binary tree containing the point, we expect the path to contain few
elements.

This strategy fails if at some step there is no neighbor element, i.e., we arrive
at the boundary. If the domain Q is convex, this implies the point (z,y) is not in
). Since we make no convexity assumption on €2, it could also mean for example,
that we have arrived at a crack and the point is in an element on the other side of
the crack. Thus, if the first strategy fails, we build a list of all elements that might
contain the point. This is done by marching down the binary tree from the root
to the leaf containing the point. The lists of triangles associated with all the nodes
along this path are joined to form the list for the given point. This list is checked,
beginning with those triangles associated with the leaf, and continuing through the
tree towards the root. In this process, either we find an element containing the
point or we exhaust the list and conclude that (x,y) is not in Q. In practice, this
second strategy is required infrequently, even if €2 is not convex.
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Chapter 5

Graphics

5.1 Overview.

The graphics package associated with PLTMG is composed of subroutines TRIPLT,
INPLT, GPHPLT, and MTXPLT. These routines are written in self-contained,
portable Fortran, addressing the graphics output device through subroutines PLINE,
PFILL, PFRAME, and PLTUTL. The specifications for these routines are given in
Section 6.12.

Typical graphics output consists of three windows or frames. There is a large
square window on the left, and two smaller square windows on the right. The main
image typically appears in the large frame, and other useful information (for ex-
ample, a legend matching colors to function values) appears in the smaller frames.
The graphics interface now provides z-buffer information, for use in three dimen-
sional imaging systems such as OpenGL. All the graphics routines are written such
that the image appearing in the main window can be animated using such graphics
systems when appropriate.

Subroutine TRIPLT graphs the solution and various associated functions (e.g.,
i, ¥, €). TRIPLT also has options for plotting vector functions (e.g., Vup).
Subroutine INPLT can display either a triangulation or a skeleton, with elements or
regions colored according to various attributes such as the quality of the elements in
a triangulation. Subroutine GPHPLT displays various graphs and charts containing
timings, convergence histories, and other items of interest. Subroutine MTXPLT
displays several sparse matrices associated with the solution process.

The parameter MXCOLR is a device dependent constant, stating the max-
imum number of colors available for use by the graphics package. We assume
that 2 < MXCOLR. While it is possible to make some interesting plots and
contour maps with TRIPLT using only monochrome devices (M XCOLR = 2),
TRIPLT makes extensive use of available color facilities in producing (shaded)
three-dimensional surface plots and vector plots. GPHPLT, MTXPLT, and INPLT
also use color, but in less critical ways.

Subroutines TRIPLT, INPLT and GPHPLT offer some capabilities for parallel
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processing. In the parallel processing environment, only the master process (corre-
sponding to IRGN = 1) makes calls to the graphics interface routines (PLTUTL,
PFRAME, LINE, and PFILL. However, in the case of TRIPLT or INPLT, one
may wish to plot the solution, error, or some other function in situations where the
data is distributed among the processors. If MPT is turned on (MPISW = 1), then
TRIPLT and INPLT collect data from all other processors, and draw a compos-
ite picture consisting of the union of the refined regions for each processor. If the
problem is sufficiently large that it is impossible or inefficient to collect all the data
on a single processor, each processor can coarsen its data before sending it to the
master process. This coarsening process is controlled by the parameters ICRSN
and ITRGT. If MPI is turned off (MPISW = —1), then TRIPLT and INPLT draw
the function on processor one (refined in region one and coarse elsewhere). For
some options, GPHPLT collects data from all processors when MPI is turned on,
for example in presenting timing and load balancing data. Subroutine MTXPLT
currently has no parallel processing capabilities.

For most of the examples of graphics output, we solved Laplace’s equation
in a circle of radius one with a crack along the positive x axis. This domain was
used to illustrate the triangulation data structure in Section 2.2. Nonhomogeneous
Dirichlet boundary conditions were imposed on the circular boundary such that the
true solution is v = r'/*sin(6/4), the leading term in the singularity due to the
crack tip. Some example output in Section 5.4 came from other problems, in cases
where it could not be provided by our simple example.

5.2 Subroutine TRIPLT.

TRIPLT is called using the statement

Call TRIPLT( VX, VY, XM, YM, ITNODE, IBNDRY, IP, RP, SP,
W, QXY')

The arrays VX, VY, XM, YM, ITNODE, and IBNDRY should define a trian-
gulation. TRIPLT uses several variables from the IP, RP, and SP arrays, as shown
in Tables 2.6-2.8. The string variable FTITLE is the character string displayed as
a label above the graph. Additionally, TRIPLT uses the work array W and the
Fortran subroutine QXY. Subroutine QXY is documented in Section 2.5. The error
flag IFLAG is set as in Table 2.9 if there is insufficient storage.

The parameter IFUN specifies the function to be plotted. The available op-
tions are summarized in Table 5.1. Some of these functions are not defined for
all problem types. Although there are many possibilities for IFUN, they may be
classified as surface plots and vector plots.

For surface plots, all functions are continuous with the (possible) exceptions
of the error, which is piecewise constant on triangles, and QXY, which can be
multivalued at vertices due to discontinuities in Vuy. If desired, a discontinuous

function can be mapped to a continuous function using a local averaging technique.
This is invoked by setting the switch ICONT = 1.
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Figure 5.1. The solution IFUN = 0 and the error IFUN = 5.

Figure 5.2. The case IFUN = 0, (NX,NY,NZ) = (1,-1,-1), and
IFUN = 5, (NX, NY,NZ) = (1, 1, 1).
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Figure 5.3. The case IFUN = 0, (NX, NY,NZ) = (1,—1,—1), RMAG =
2, CENX = .5, CENY = .3, and the case IFUN=5, (NX,NY,NZ) = (0,0,1),
RMAG = 2, CENX = .5, CENY = .3.
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Figure 5.4. The case LINES = 1 and the case LINES = 3. The corre-
sponding picture for LINES = 0 is in Figure 5.1.
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Figure 5.6. The case IFUN = 3, (NX,NY,NZ) = (1,-1,-1). In the
picture on the right RMAG = 2, CENX = .5, and CENY = .3.
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Figure 5.8. Triangles colored by size INPLSW = 5) and by error
(INPLSW =6).
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IFUN | displayed function

the solution uy,

the scalar function | Vuy, |
the vector function Vuy,
the alternate function QXY
the alternate vector function QXY
the error estimate | e[ x1 s
the tangent function %

the right singular vector 1),
the left singular vector 1,
the Lagrange multiplier w,,
the control variable \p,

the dual function

© 00O Ui Wi —= O

— =
= O

Table 5.1. The values of IFUN.

5.2.1 Surface Plots.

In the case of surface plots, NCON specifies the number of contours (colors) to be
used. If NCON > MXCOLR — 2, some colors are used for more than one contour.
The parameters SMIN and SMAX can be used to specify the limits of the color
scale. If SMIN < SMAX, then these values are used as limits, with parts of the
function lying outside (SMIN,SMAX) colored white. Otherwise, the largest and
smallest values of the displayed function are used as limits.

Each picture consists of three frames; a large plot on the left and a two-part
legend on the right. The upper right contains a scale relating colors to function val-
ues; three scales are available using the switch ISCALE as described in Section 5.2.4.
For the case IFUN = 5, ICONT = 0, a histogram showing the distribution of errors
letl#(¢) is also provided in this legend. Four line-drawing options using LINES
and eight labeling options using NUMBRS are also available. RMAG, CENX, and
CENY provide a zoom-in capability as described in Section 5.2.3. The main image
can be animated using three dimensional imaging systems such as OpenGL.

The triple d = (NX,NY, NZ) specifies the viewing perspective. The three-
dimensional surface is projected into the plane orthogonal to d, and the function
is drawn as it would appear to an observer viewing the surface from a line of
sight parallel to d. The vectors (NX, NY,NZ) and —(NX, NY, NZ) cause the same
projection to be computed; however, different pictures are generally produced for
the two cases. In the former case one observes the projection on the “front” of the
plane, and in the latter case one observes the projection on the “back” of the plane.
If MXCOLR is sufficiently large, the surface will be shaded relative to a light source
directly behind the viewer, imparting some additional three-dimensional character
to the picture.

The lower right-hand legend provides guidance in understanding three-dimensional
surface plots. In this case the legend contains a “flat” version of the main picture, al-
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lowing another avenue for orienting oneself with respect to the viewing perspective.
Some examples of surface plots are given in Figures 5.1-5.4.

5.2.2 Vector Plots.

Color plays an important role in the vector plots. Different colors correspond to dif-
ferent directions in the vector field. This is illustrated in the color wheel portion of
the upper right-hand legend. The number of directions is specified by the parameter
NCON. Different intensities of the same color correspond to the magnitude of the
vector; darker shades correspond to smaller magnitudes, and lighter shades corre-
spond to higher magnitudes. The correspondence between color intensity and vector
magnitude is illustrated for an example color in the upper right-hand legend. The
parameters SMIN and SMAX are used to specify the limits of the color intensity
scale for the magnitude of the vector. As with surface plots, if SMIN < SMAX,
then these values are used as limits; otherwise the largest and smallest magnitudes
of the vector function are used.

Three scales for the vector magnitude are available using the option switch
ISCALE. Four line-drawing options using LINES and eight labeling options using
NUMBRS are also available, and RMAG, CENX, and CENY provide zoom-in
capabilities. The triple (NX,NY,NZ) specifies a direction as in the case of surface
plots. In this case the surface plotted is the linear interpolant of the magnitude of the
vector function.* In this case the elements remain colored as in a two dimensional
vector plot. Some examples of vector plots are given in Figure 5.5. The vector
function S™QpVuy, can also be plotted as a scalar function |S™Qy,Vuy|. Some
examples are given in Figure 5.6.

5.2.3 The Parameters RMAG, CENX, and CENY.

The parameters RMAG, CENX, and CENY provide a zoom-in option. RMAG
is the magnification factor relative to the picture coordinates. For example, if
RMAG =1 the whole picture will be drawn; if RMAG = 2, the picture is scaled by
a factor of 2 in both directions and thus no longer fits on the output device. One
must now choose a window and view only a portion of the picture. The fractions
0 < CENX < 1 and 0 < CENY < 1 are used for this purpose. In particular
(CENX, CENY) specifies the point that will appear at the center of the magnified
window. If RMAG = 1, the values of CENX and CENY are ignored. Some
examples are shown in Figure 5.3 and Figure 5.6 (right).

As an aid to understanding, the lower right legend contains a copy of the
complete picture (corresponding to RMAG = 1). Whenever RMAG > 1, a small
box is drawn in this legend depicting the portion of the picture appearing in the
main graph. The box is supplemented by a crosshair locator, since the box becomes
too small to be visible for large magnification factors.

4 For the actual magnitude, the surface of each triangular element is not necessarily a plane,
making the hidden surface problem more difficult.
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5.2.4 The Parameters ISCALE, LINES, and NUMBRS.

The parameter ISCALE provides three scaling options, summarized in Table 5.2.
For linear scaling, drawn contours are equally spaced with respect to the largest and
smallest values of the given function z(x,y). If ISCALE = 1, then the contours are
equally spaced with respect to the largest and smallest values of log z. If ISCALE =
2, then the contours are equally spaced with respect to largest and smallest values
of the function sinh™'z. The logarithmic scaling clearly requires z to be positive.
The sinh™! scaling is always defined, having a (signed) logarithmic behavior for
large | z | and a linear behavior for small | z |. If ISCALE =1 and z < 0 at some
vertex, then TRIPLT defaults to the sinh ™! scaling. In Figure 5.1, the solution uy,
was drawn using the linear scale (ISCALE = 0), while the error estimate was drawn
using the logarithmic scale (ISCALE = 1).

ISCALE | scale
0 linear
1 logarithmic
2 sinh™!

LINES line drawing option
-2 matrix element boundaries
-1 skeleton graphics triangulation
0 all triangle edges
1 boundary/interface edges
2 load balance boundary edges
3 contours

NUMBRS | labeling option

-2 matrix element locations
-1 matrix element values
0 no labels
1 triangles/subregions
2 vertices
3 edges
4 curved edges
5 edge type
6 edge labels
7 processor
8 vertex type

ICRSN coarsening option
0 no coarsening
1 coarsen global mesh

Table 5.2. The values of ISCALE, LINES, NUMBRS and ICRSN.
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Three line drawing options are available, specified through the parameter
LINES, as summarized in Table 5.2. If LINES = 0, TRIPLT will draw edges
of all triangles in the mesh. If LINES = 1, only boundary edges and edges sepa-
rating triangles from different regions are drawn. The case LINES = 2 is similar
to the case LINES = 1, except that here boundary edges and edges separating
triangles from different processors are drawn. When LINES = 3 for surface plots,
TRIPLT draws boundary triangle edges and contour lines separating contours of
different colors. This option produces a traditional contour map on monochrome
devices and thus is useful when M XCOLR = 2. Some examples for LINES = 1
and LINES = 3 are shown in Figure 5.4. The option LINES=3 is not implemented
for vector plots.

Eight labeling options are available in TRIPLT; these are specified through
the parameter NUMBRS, as summarized in Table 5.2. When NUMBRS # 0, three-
dimensional plotting is disabled; the result will be a “flat” (but labeled) surface.
Some examples are shown in Figures 2.1 and 2.2.

5.2.5 The Parameters ICRSN and ITRGT.

When NVF becomes very large, the amount of data used to make an image may
become too large for animated display systems like OpenGL or for Postscript files of
reasonable size.® In this situation, one may wish to compress the data and make a
lower resolution image. The parameter ICRSN indicates whether or not to coarsen
the mesh, as indicated in Table 5.2. If ICRSN = 1, then the parameter ITRGT
specifies the target number of vertices for the coarsened mesh. The coarsening
option is very much like the mesh coarsening option in TRIGEN; many of the same
subroutines are used, and the overall coarsening strategy is the same. However, the
coarsening criteria is different.

In the case of TRIPLT, let p; be a vertex in the mesh and €2; denote the patch
of triangles having p; as one its vertices. For each vertex, we compute the best (least
squares) linear polynomial on €2; that interpolates the displayed function at p;. A
discrete £2 norm of the difference between this linear polynomial and the displayed
function at the vertices lying on 0€; is used as the coarsening criterion. Such a
criterion does not directly control the shape regularity or approximation properties
of the mesh, but does tend to minimize the visual disruptions caused by deleting
p; and creating a triangulation of €; based on its boundary vertices. All vertices
are placed in a heap, and the least disruptive vertex is eliminated until the target
ITRGT is achieved. When MPI is on (MPISW = 1), each processor independently
coarsens the mesh for its subregion to a target of ITRGT/NPROC vertices. Thus,
when the submeshes are later combined, the global mesh appearing in the image
will have at most ITRGT vertices.

When the mesh is coarsened, all numbering options are disabled; NUMBRS =
0 is always used. The setting LINES = 0 is reset to LINES = 1, and ICONT =1
is always used.

5Raster graphics images like those produced by X-Windows displays and XPM files are largely
independent of the size of the underlying data set.
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5.2.6 Some Algorithmic Details.

The main algorithms of interest in TRIPLT are those for hidden line and surface
removal. In the general case of a surface plot, one must make comparisons between
various triangles to determine whether a given triangle blocks another with respect
to the viewer. Since the triangular mesh is generally unstructured, our goal is to
organize the data to minimize the number of comparisons between triangles.

Generally, for surface plots in which (NX, NY,NZ) # (0,0, 1), a partial order
is constructed in which elements farthest from the viewer are ordered first, and
those closest to the viewer are ordered last. The elements are then drawn and
colored in order, with the elements closer to the viewer (possibly) overwriting some
elements that are farther away. The notion of distance from the viewer is defined
with respect to the x and y coordinates only, so that the same ordering is computed
independently of the function being graphed. A typical element is compared only
to elements with which it shares a common edge; it is ordered before any edge
neighbors closer to the viewer and after any neighbors farther away. Since any
element has at most three neighbors, this greatly limits the number of comparisons
necessary and completely solves the ordering problem for a convex domain with no
holes.

Unfortunately, many domains are not convex and have holes, so that elements
with boundary edges must be treated as special cases. Thus we make a list of
triangles with boundary edges, sort them with respect to the direction (in the
(z,y) plane) perpendicular to the (NX, NY') components of the viewing direction.
Boundary edges are also sorted by whether they face “backward” or “forward”
with respect to (NX,NY). With these preliminary calculations done, all pairs of
relevant triangles that might conflict are tested and appropriate ordering constraints
imposed. For a mesh with NTF triangles, the number of boundary triangles is
O(VNTF), so that in the worst case (every boundary element compared with every
other boundary element), this will still be only O(NTF') work. Since only O(NTF)
work is required for the interior elements, the overall work is still O(NTF).

5.3 Subroutine INPLT.

Subroutine INPLT is a graphics routine for displaying the input data defining a
triangulation or a skeleton. INPLT is called using the statement

Call INPLT( VX, VY, XM, YM, ITNODE, IBNDRY, IP, RP, SP, W)

The arrays VX, VY, IBNDRY, ITNODE, XM, and YM define either a tri-
angulation or a skeleton (INPLT uses the value of ITNODE(3,1), which is zero for
a skeleton and positive for a triangulation, to distinguish these cases). The string
variable ITITLE is displayed as a banner above the graph. Variables in the IP, RP,
and SP arrays used by INPLT are shown in Tables 2.6-2.8. INPLT was used to
make Figures 3.1 3.4, and 3.6, among others in this manual.
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INPLSW | triangulation skeleton
0 user label user label
1 load balance uniform color
2 element quality | subregion
3 largest angle
4 smallest angle
5 element size
6 error estimate

Table 5.3. The values of INPLSW.

5.3.1 Triangle Plots.

For triangle plots, the elements in the triangulation are colored to depict some
feature of the mesh. The available options are controlled by the switch INPLSW
as summarized in Table 5.3.

If INPLSW = 0, the elements in the mesh are colored according to the user
supplied labels in ITNODE(5,1); all elements with the same label will have the same
color. If INPLSW = 1, the elements in the mesh are colored according to the load
balance (ITNODE(4,1)).

For 2 < INPLSW < 4, INPLT colors the elements of the triangulation accord-
ing to their quality, measured by ¢(t) in (3.1), their largest angle, and their smallest
angle, respectively. For each of the three measures, five numbers are printed in the
upper right legend. The row labeled “average” refers to the average of that quantity
over all elements in the mesh; “worst” reports the smallest value of ¢(t), largest an-
gle, or smallest angle of all elements. The rows labeled “good,” “fair,” and “poor”
report the percentage of elements in each category and depict the corresponding
colors.

For ¢(t), good means ¢(t) > v/3/2, fair means .6 < q(t) < v/3/2, and poor
means ¢(t) < .6. For large angles, good means A(t) < 7/2, fair means 7/2 < A(t) <
27/3, and poor means A(t) > 27/3 (A(t) is the largest angle). For small angles,
good means arccos(4/5) < a(t), fair means arccos(13/14) < a(t) < arccos(4/5) and
poor means a(t) < arccos(13/14) (a(t) is the smallest angle). Triangles that are
good in terms of ¢(t) are (necessarily) also good in terms of large and small angles.
Those that are fair in terms of ¢(¢) must be good or fair in terms of large and small
angles (but not conversely).

When INPLSW = 5, INPLT produces an image in which each element is
colored according to its size. A histogram showing the distribution of element sizes
appears in the legend. Although any scaling option available through ISCALE can
be used, generally the logarithmic scaling (ISCALE = 1) produces the most useful
image.

When INPLSW = 6, INPLT produces an image in which each element is
colored according to its error | €| (). This is similar to the case of TRIPLT with
IFUN=5 and ICONT = 0, except that the INPLT image is strictly two dimensional.
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This option is included because the coarsening procedure used in INPLT with
ICRSN = 1 assumes discontinuous element data, and generally produces higher
quality reduced resolution images than TRIPLT for this highly oscillatory function.
As in the case INPLSW = 5, all scaling options are available, but ISCALE = 1
is typically most useful. Some example images made using INPLT are shown in
Figures 5.7 and 5.8.

The meanings and use of RMAG, CENX, CENY, and MXCOLR are identical
to TRIPLT. Labeling options using NUMBRS are summarized in Table 5.2. INPLT
was used with various NUMBRS options to produce Figure 2.1 although the legends
on the right-hand sides of the pictures were deleted. For the main graph, three line-
drawing options are available using LINES, as summarized in Table 5.2.

Subroutine INPLT also allows mesh coarsening, but the criterion is different.
In INPLT, each element is a single color and the images are two dimensional, and
the coarsening criterion reflects these differences. If all elements in €2; are the same
color, then p; is eliminated. In the case INPLSW = 5,6, if this initial coarsening
does not produce a mesh with fewer than ITRGT vertices, the elements are scanned,
and all elements with two or more neighbors of the same color (different from their
color) are switched to that color. This has the effect of smoothing the boundary
between regions of different colors. The coarsening process is then applied to the
relabeled mesh. This process is repeated as necessary until the target value is
exceeded. As with TRIPLT, NUMBRS = 0 is always specified for a coarsened
mesh and LINES = 0 is reset to LINES = 1.

5.3.2 Skeleton Plots.

As with triangle plots, the subregions of the skeleton are colored according to the
option specified by INPLSW as summarized in Table 5.3. If INPLSW = 0, the
subregions are colored according to the user supplied labels in ITNODE(5,1), similar
to the case of a triangulation. If INPLSW = 1, each subregion is given the same
color, while if INPLSW = 2, each subregion is given a different color.

Subroutine INPLT draws a skeleton by first creating a crude triangulation
based on the skeleton, and then drawing the triangulation. Here shape regularity
and overall quality of the triangulation is not an issue; rather, keeping the number of
elements small and computing the triangulation quickly are important. The option
LINES = —1 displays the underlying triangulation used in the skeleton plot. It was
included mainly for debugging purposes.

The parameters RMAG, CENX, CENY, and MXCOLR are the same as for
triangle plots. Labeling options using NUMBRS are summarized in Table 5.2.
There are no coarsening or parallel computation options available for skeleton plots.
INPLT was used with various NUMBRS options to produce Figure 2.2.

5.4 Subroutine GPHPLT.

Subroutine GPHPLT displays an assortment of data related to the performance
of various algorithms and subroutines in PLTMG and TRIGEN using a graphical
format.
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GPHPLT is called using the statement
Call GPHPLT( IP, RP, SP, W)

GPHPLT makes use of the arrays PATH, HIST, PSTAT. KA, and TIME, ini-
tialized by PLTMG and TRIGEN when FIRST = 1 and containing data generated
during the solution process. The string variable GTITLE is displayed as a banner
above the graph. Other variables in the IP, RP, and SP arrays used by GPHPLT
are shown in Tables 2.6-2.8.

IGRSW | displayed graph
0 Newton iteration convergence history
1 multigraph iteration convergence history
-1 matrix sizes in multigraph iteration
2 individual subroutine timing statistics
-2 time pie chart
3 the continuation path
-3 load balance
4 error estimates for H! norm
-4 error estimates for £2 norm
) the IP array
-5 the SP array
6 the RP array

Table 5.4. The values of IGRSW.

IGRSW is an integer switch for selecting the displayed graph; the available
possibilities are summarized in Table 5.4.

5.4.1 Ilteration Information.

For the cases IGRSW = —1,0, 1, information about various iterations is displayed.
In all three cases, the same three graphs are drawn. The large main window contains
the information indicated in Table 5.4 for the corresponding value of IGRSW. The
other two graphs appear in the two smaller frames on the right. Examples are
shown in Figures 5.9— 5.10.

In the case IGRSW = 0, in the main window GPHPLT graphs the functions

1G] } { B2 }
Ri =1o —_— and E.=1o —_— 5.
k gw{ngon e A A

Gy is the residual for the Newton iteration, while §Sy is the incremental change in
the solution Si. The precise meaning of Gy and Sy varies according to the system
of nonlinear equations solved for each problem class addressed by PLTMG. Both
convergence histories are plotted in a bar graph of Ry and & versus iteration index

k.
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The convergence history for the most recently solved set of equations is dis-
played. When this corresponds to a regular (serial) solution (IPROB > 0), the
relative residuals are red bars, while the solution increments are blue. At most, in-
formation about the last twenty Newton iterations is displayed. When IPROB < 0,
the Newton iteration employs the parallel domain decomposition/multigraph solver
in place of the simple multigraph solver. In this case, the residuals are magenta
bars, and the solution increments are cyan.

Nominally, the rate of convergence for Newton’s method should asymptoti-
cally be quadratic; however, the convergence becomes linear when systems of linear
equations involving the Jacobian matrix are only approximately solved.

In the case IGRSW =1, in the main window GPHPLT graphs the function

() = toeso { {41}

7ol

Here 7 is the residual of a set of linear equations to be solved by the multigraph
method and k is the iteration number. The displayed histories are for linear systems
solved in the most recent Newton iteration. Up to four such systems are solved in
each Newton step, depending on the value of IPROB. In all cases, only information
about the last twenty cycles of the most recent iteration is saved and displayed.

Either the composite step conjugate gradient method or composite step bicon-
jugate gradient method is used [9, 8], preconditioned by a multigraph incomplete
factorization [24]. Each individual step is marked with a small icon; a color pair
(green, red), (blue, yellow), (cyan, magenta), (white, black) is assigned to each his-
tory. In each case, for simple steps the icon is colored with the first color (e.g.,
green), while for composite steps the icon is colored with the second color (e.g.,
red).

In the case IGRSW = —1, in the main window statistics related to the multi-
graph method are displayed. The horizontal axis is level (level one is the finest level).
The coarsening factor is 4; that is, the level k system is of order Ny, ~ N/4*~1. For
each level three bars are displayed; the heights are proportional to the average num-
ber of nonzeros per row in the upper triangular part of the system matrix (yellow),
the ILU factorization (cyan), and the error matrix (magenta).

5.4.2 Timing Statistics.

If IGRSW = 2, GPHPLT prints a summary of timing statistics for PLTMG and
TRIGEN. An example is given in Figure 5.11. Statistics are given both for the
total accumulated time since initialization (IFIRST = 1) and for the time spent
during the last call to PLTMG or TRIGEN. The timings are itemized with respect
to subroutines that carry out major computational tasks in the package. These
subroutines are listed in Table 5.5. Depending on the problem, some of these
routines may not be called.

A bar graph is drawn illustrating the percentage of time spent in each routine.
Each bar in the graph is partitioned into a part corresponding to the last call to
PLTMG (red) and a part corresponding to all preceding calls (blue). The timing
pie graph described below appears in the upper right frame.
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subroutine | main function

TGEN create triangulation from skeleton

REFINE adaptively refine the triangulation

UNREFN | adaptively unrefine the triangulation

UNIFRM | uniformly refine the triangulation

MVEMSH | adaptively smooth the mesh points

ERREST | compute error estimates for uy,

CDLFN Compute dual function

RGEN create skeleton from triangulation

SGEN simplify skeleton

LDBAL compute a load balance

LDEV solve eigenvalue subproblem in load balance

CUTR reorganize data structures for reconciling mesh
PASTE reconcile mesh along interface of IRGN

PASTE1 reconcile mesh along interface not part of IRGN
BCAST broadcast mesh to all processors

COLLCT | gather mesh from all processors

EXPTH exchange boundary interface data

RECOVR | Compute S™QrVuy,

TRIGEN all other time spent in TRIGEN

MGINIT initialize multigraph data structures

MG solve equations using multigraph iteration

MGILU compute sparse ILU factorizations

CEV compute the singular value p and vectors ¥, and 1,
LINSYS compute the stiffness matrix and right-hand side
PREDCT | compute the steplength ¢ for continuation

BLK3 block elimination for IPROB = 3 and IPROB = —3
BLK4 block elimination for IPROB = 4 and IPROB = —4
BLK5 block elimination for IPROB = 5 and IPROB = —5
SWBRCH | switch branches at a bifurcation point

TPICK line search for Newton iteration

TPICKD | line search for Newton/DD iteration

RGNSYS | assemble linear system for domain decomposition
PLTMG all other time spent in PLTMG

Table 5.5. Subroutines timed by GPHPLT.

If IGRSW = —2, GPHPLT displays a pie graph summarizing the same infor-
mation. Each routine in Table 5.5 is assigned to one of six categories: linear system
assembly (red), multigraph solver (green), mesh generation (magenta), a posteriori
error estimation (cyan), parallel processing routines (yellow), and other PLTMG
routines (blue). A pie graph showing the fraction of total time spent in each of
the six categories is drawn in the main frame. Details of individual contributions
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from the subroutines listed in Table 5.5 are summarized in the upper right frame.
Sample output is shown in Figure 5.11.

When MPISW = 1, the times displayed for IGRSW = 42 are time averaged
across all processors. In this case, in the lower right frame, a graph displaying the
deviation from the average time for each processor is drawn.

5.4.3 Continuation Path.

When IGRSW = 3, GPHPLT displays the continuation path generated by the
continuation procedure IPROB = 3. Target points are marked by small boxes,
generally using different colors for different values of ITASK. A legend appears in
the upper right frame summarizing the possibilities. Up to one hundred target
points generated by calls to PLTMG are saved and displayed. Successive points
are interpolated using parabolic arcs matching the values of (), p) and the tangent
vectors ()\7 p). In the lower right frame appears a convergence history for the most
recent singular vector computation. Sample output is shown in Figure 5.12.

5.4.4 Parallel Statistics
When IGRSW = —3, GPHPLT plots the functions

NPROCNTF(Qk)} and E log {NPROC||€t|H1(Qk)}
k =
>k NTF(Q%) ? >k el rr o)

where 1 < k < NPROC'. Both curves appear in the large frame. When MPISW =
1 the information from all processors is obtained by an exchange of data using
the MPI library. This is the most useful situation. When MPISW = —1, the
same graph is made using local data on the given processor; this case is typically
not interesting. In the upper right frame is a similar graph for the distribution of
error and elements following the initial load balancing step (IADAPT = 7). In the
lower right frame appear convergence histories for eigenvalue computations in the
load balancing phase. Convergence histories are shown for the four most recent
problems. Sample output is shown in Figure 5.12.

Ty, = log, {

5.4.5 Error Estimates.
In the case IGRSW = 4, GPHPLT graphs the function
F1(NVF, ICALL) = log,, {'q b } ,
Jun ||H1(Q)
and in the case IGRSW = —4, GPHPLT graphs the function
Fo(NVF, ICALL) = logy, {”Q oy } .
Huh”£2(ﬂ)

Here ¢; is the computed approximation of the error u — uj. While it is hoped
that these approximations accurately reflect the true state of affairs, the estimates
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are based on a posteriori calculations involving only the computed solution. Some
judgment of the validity of such computations may be required. An example is
shown in Figure 5.10.

Since there are several adaptive options in TRIGEN that do not involve a
change in NVF, error estimates are plotted as a function of both NVF and ICALL.
In particular, F; is graphed versus log;(NVF and ICALL in a three-dimensional
graph. All data points (up to the 20 most recent) for which error estimates are
available are marked with rectangular cylinders of different colors. A legend appears
in the upper right frame summarizing the possibilities. In the case IGRSW = 4,
the plot of F( appears in the lower right frame; if IGRSW = —4, the plot of F; in
the lower right frame.

The triple d = (MX, MY, MZ) specifies the viewing perspective for these
graphs in a fashion similar to (NX,NY,NZ) for surface plots. The choice (1,1,1)
is a reasonable default. The choice (0,—1,0) yields a traditional two-dimensional
graph of log,, F; versus log,, NVF, and is useful for situations where only refine-
ment options are used in TRIGEN. The choice (1,0,0) yields a two-dimensional
graph of log,y F; versus ICALL and is useful when only mesh smoothing options
are employed. The main image can be animated using three dimensional imaging
systems such as OpenGL.

5.4.6 Displaying Data Arrays.

The options | IGRSW |> 5, GPHPLT displays the IP, RP, or SP arrays. Unlike
other graphics options, here the entire graphics window is treated as a single frame.
In the case of the IP and RP arrays, all 100 entries, their names, and their current
values are displayed. Entries that can be interactively reset in the ATEST driver
are colored red, unused entries appear in black, and all other entries are colored
blue. This situation is similar for the SP array, except only the first 50 entries
are displayed (the remainder are all presently unused). Examples are shown in
Figures 5.13-5.14.

5.5 Subroutine MTXPLT.

Subroutine MTXPLT displays the sparsity structure of the stiffness matrix A, the
LDU factors from the I LU factorization, or the error matrix £ = LDU — A. MTX-
PLT is called using the statement

Call MTXPLT( JA, A, IP, RP, SP, W)

The arrays JA and A should contain the matrices generated through an ap-
propriate call to PLTMG. MTXPLT uses several variables from the IP, RP, and
SP arrays, as shown in Tables 2.6-2.8. The string variable MTITLE is the charac-
ter string displayed as a label above the graph. The error flag IFLAG is set as in
Table 2.9.

The parameter IMTXSW specifies the matrix to be plotted. The available
options are summarized in Table 5.6.
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Figure 5.13. The cases IGRSW =5 and IGRSW = 6.

alpha = 0.25
2

flitle  alpho = 0.25

27
29

E a0
6 rufils  circle_mpioccry 3
7 e circle.nl 32
8 ju arl n 33
out 34

oxdnl 35

36

38

3

40

P

42

18 psfile  figauxos 43
19 xpfle figooexpm P
20 bhfile  figxx.bh 45
21 sghost localhost 46
22 47
23 48
24 49
25 50

Figure 5.14. The case IGRSW = —5.

IMTXSW | displayed matrix
+1 LDU colored by element type
+2 LDU colored by element size
+3 A colored by element type
+4 A colored by element size

Table 5.6. The values of IMTXSW.

The main picture in divided into an N x N square grid. Grid cell (3, )
corresponds to matrix element (7, ). For the case of LDU factorizations, the strictly
lower triangular part of L, the diagonal D, the strictly upper triangular part of
U and the error LDU — A are displayed (L and U have unit diagonal entries).
Matrix elements stored in sparse matrix data structures are colored according to
type or size. If IMTXSW > 0, then matrix element magnitudes are displayed. If
IMTXSW < 0, then (signed) matrix element values are displayed. For the cases
| IMTXSW |= 2,4, the parameters NCON and ISCALE are used to determine the
color scale in a fashion similar to TRIPLT. Some examples are shown in Figures 5.15
and 5.16. The parameters (MX, MY, MZ) can be used to set a viewing perspective
in a fashion similar to GPHPLT. In perspective views, matrix elements are displayed
as rectangular cylinders with height proportional to element value or magnitude.
LINES and NUMBRS can be set as indicated in Table 5.2. Similar to TRIPLT, if
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NUMBRS # 0 and (MX, MY, MZ) # (0,0, 1), the picture will be drawn on a “flat”
surface. The parameters RMAG, CENX, and CENY may be used as in Section
5.2.3 to provide zoom-in capabilities. The main image can be animated using three

dimensional imaging systems such as OpenGL. Some examples are shown in Figures
5.17 and 5.18.



92 PLTMG USERS' GUIDE 10.0

alpha = 0.25 alpha = 0.25
: . X element types element types
: L # . ..| B diagonal O diagonal
s T W original | original
| fillin | fillin
R B neglected W neglected
min 4.08e—4 - min —1.85
mox 4.72 I maox 4.72

MWW
J

Figure 5.15. The cases IMTXSW =1 with (MX,MY,MZ) = (0,0,1)
(left), and IMTXSW = —1 with (MX,MY,MZ) = (1,1,1) (right).
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Figure 5.18. RMAG =10, (MX,MY,MZ) = (1,1,1). NUMBRS = —
(left) and NUMBRS = 0 (right).



Chapter 6

Test Driver

6.1 Overview.

Program ATEST is the test driver used in the development and testing of the
PLTMG package. ATEST is a flexible program in that it accepts simple command
strings directing it to call subroutines or perform other tasks. It is not limited to
a fixed sequence of tasks on a particular run; any routine can be called as often as
desired, with certain parameters reset for each call at the discretion of the user.

The program ATEST can operate in four modes, governed by the switch
MODE. If MODE = —1, ATEST runs as an interactive program, accepting com-
mands from the user via a terminal window. If MODE = 0, ATEST runs in-
teractively, accepting commands from the user via an X-Windows interface. This
interface is based on the Motif widget set and can be used only in environments
supporting X-Windows. If MODE = 1, ATEST runs as a batch program, reading
commands from a journal file and sending all output to appropriate output files.
Finally, if MODE = —2, ATEST runs as a slave mode under MPI; this mode cannot
be directly set by the user, but is set by ATEST if it determines that it is a slave
node in a parallel computation. In this situation, the user specifies MODE only for
the master node, which can be any of the three other options.

A common command syntax is used for all modes. This is described first
for the case MODE = —1 in Section 6.2. The extensions used in the X-Windows
interface are described in Section 6.3.

Several files are written by ATEST. The file BFILE contains a complete record
of all commands and printed output produced during the session. The file JWFILE
contains a record of all commands read and processed during the session, formatted
as a journal file. See Section 6.8 for a discussion of journal files. ATEST also
creates a temporary file JTFILE used in connection with the journal command.
While most commands invoke one of the major routines in the package, there are
a few utility routines (e.g. for reading and writing files) which are documented in
Sections 6.7-6.10.

93
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6.2 Terminal Mode.

In terminal mode, commands are entered from a terminal window in character
strings of 80 characters, counting blanks. The syntax of a command can take
several forms, but the root command is always a single letter. The commands that
are currently recognized by ATEST are summarized in Table 6.1.

Command | Action

call PLTMG

call TRIGEN

call TRIPLT

call GPHPLT

call INPLT

call MTXPLT

write data set to a file
read data set from a file
read journal file
execute shell command
call USRCMD

MPI toggle

quit

QW R TS 3IE I et

Table 6.1. Available commands for ATEST.

The terminal window prompt is the string command:. At this prompt, one
can enter a command string (e.g., s), reset parameters as described below, or enter
a blank line to see a list of the available commands. In this latter case the terminal
window will appear as follows.

command:
trigen t pltmg s triplt £ gphplt g inplt i mtxplt m
read r write w usrcmd u journl j shell k mpi P
quit q
command:

A syntax error in a given command string causes the entire string to be ignored.
ATEST will display the string command error and present the command prompt
for a new input string.

The most simple commands are just single lower case letters as shown in
Table 6.1. However, associated with most commands are various parameters which
can be reset before calling the given routine. To see a listing of the parameters
associated with a given command and their current values, without executing the
command itself, enter the command in upper case at the command prompt. For
example, the command F' will display the parameters which can be interactively
reset in connection with TRIPLT.
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command:F

ifun £ O iscale s O lines 1 O numbrs n 0
fdevce d O nx nx 0 ny ny O nz nz 1
ncon c¢ 11 icont ic O icrsn cr O itrgt it 10000
mxcolr mc 100 smin sn 0.0 smax sx 0.0 rmag m 1.0
cenx cx 0.5 ceny cy 0.5

ftitle t '"circle"

command :

There are thirteen integer parameters, five real parameters, and one string
parameter affecting subroutine TRIPLT that can be interactively reset by the user.
To the right of each parameter is a one- or two-letter alias (to avoid typing long
names), followed by the current value.

To reset some parameters associated with a command ¢ (¢ = s, f, g, etc.),
without invoking the command itself, one can type a string of the form

command:C namel=valuel, name2=value2, ... , namek=valuek

Note that the root command appears in upper case. The namek refer to variable
names or their aliases, and wvaluek refer to integer, real, or string values. Several
parameters can be reset, with different entries separated by commas. Values for
integer parameters should be integers, while values for real parameters can be spec-
ified using integer, fixed point, or exponential notation. There are three types of
string parameters: short, long and file. Short strings are typically single words and
can not contain any blank characters. Files are typically file names, and they also
can not contain any blank characters. All other strings are long, and can contain
any printable ASCII characters other than double quotes. Values of long string pa-
rameters should appear within double quotes. Short and file string parameters are
not enclosed with double quotes. Blank spaces are ignored everywhere but within
the value field of a long string parameter. A syntax error in the input line (e.g.,
a misspelled variable name) causes the entire command to be ignored and no vari-
ables to be reset. ATEST will respond command error and then ask for the next
command. For example, here we reset ISCALE = 1, NCON = 20, CENX = .3,
RMAG = 10, and FTITLE = A new title for circle. Subroutine TRIPLT is not
called, but the parameters are updated and redisplayed as

command:F s=1, ncon=20, cenx=.3, rmag=1.el, t="A new title for circle"

ifun £ O iscale s 1 lines 1 O numbrs n O
fdevce d O nx nx 0 ny ny O nz nz 1
ncon c¢ 20 icont ic O icrsn cr O itrgt it 10000
mxcolr mc 100 smin sn 0.0 smax sx 0.0 rmag m 10.0
cenx cx 0.3 ceny «cy 0.5

ftitle t "A new title for circle"

command :

One can reset some parameters for a given command ¢, and then invoke the
command itself, using a string of the form
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command:c namel=valuel, name2=value2, ... , namek=valuek

Note that the only difference is that the root command now appears in lower case
rather than upper case. Thus

command:f s=1, ncon=20, cenx=.3, rmag=1.el, t="A new title for circle"

resets the indicated parameters as in the previous example. However, instead of
displaying the updated values, subroutine TRIPLT is called.

Finally, the graphics and MPI commands (f, i, g, m and p) have a short form
allowing one crucial parameter (IFUN, INPLSW, IGRSW, IMTXSW, and MPISW,
respectively) to be reset without typing even the alias. For example,

command: £5

is the short form for

command:f ifun=5

The short and long forms of these commands cannot be mixed. Thus

command:f5, ncon=10

is not valid.

6.3 X-Windows Mode.

When MODE = 0, the driver ATEST creates an X-Windows interface for the
PLTMG package. The functional capabilities are the same as for the terminal
window mode, but the possibilities for data entry are more varied. An example of
the X-Windows interface appears in Figure 6.1.

The main display contains three elements. The upper portion of the display
contains command buttons. Below the command buttons is a one line command
window. The bottom portion of the display is the history window. The interface
supports up to ten graphics displays.

The command buttons stand in one to one correspondence with the basic
ATEST command set shown in Table 6.1. In particular, clicking the left mouse
button (button one) with the pointer over a command button is equivalent to the
typed lower-case version of that command. For example, clicking mouse button one
on the TRIPLT command button causes subroutine TRIPLT to be called as in the
command f. On the other hand, clicking on the right mouse button (button three)
with the pointer over a command button is equivalent to the upper case version
of the command. Clicking mouse button three on the TRIPLT command button
causes the parameters for the TRIPLT command to be displayed in a popup reset
window, as in the typed command F'. This is shown is figure 6.2.

The parameters associated with a given command are displayed in the reset
window in a format similar to terminal mode. However, each parameter value is
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Figure 6.1. The X-Windows interface.

X triplt_popup

Figure 6.2. An example reset window.

displayed in one line text-editing window, and can be reset by typing in the new
value. For some parameter names (e.g., IFUN in Figure 6.2), the name has a colored
border. Clicking on the name causes a display of radio buttons, listing available
options for the given parameter, to pop up. Clicking on the appropriate option

causes the parameter to be reset to the corresponding value.
popup associated with the parameter IFUN appears in Figure 6.3.

The radio button

For file selection commands (READ, WRITE, and JOURNL), the generic
reset window is replaced by the Motif file-selection widget. The file-selection popup
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Figure 6.3. An example radio buttons popup.

for the JOURNAL command is shown in Figure 6.4.
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Figure 6.4. An example file selection popup.

The history window displays the contents of the output file, BFILE, as it is
created. If the file becomes sufficiently large, only the tail of the file is displayed.

The X-Windows driver supports ten graphics displays (numbered 0-9). The
parameter NGRAPH, 1 < NGRAPH < 10, states the number of windows to create
initially. Graphics displays can be dismissed and recreated as necessary. These
windows use only X-Windows primitives, and display static images which cannot
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be manipulated (e.g. rotated) with the mouse. Graphics popups can be resized in
the usual way, but maintain a 3/2 aspect ratio. Also, any existing image is erased
upon resize, and must be redrawn.

When executing a journal file in X-Windows mode, if a graphics command is
executed, depending on the graphics device selected, ATEST can pause after the
picture is drawn, and create a small popup continue button. In this case, ATEST
waits until the user dismisses the continue popup before continuing to execute the
journal file. This allows time for the user to view the picture before processing the
next command in the journal file.

The X-Windows display can be interactively resized in the usual way. How-
ever, ATEST will adjust the user-specified resizing such that an overall aspect ratio
of 3/2 is maintained. ATEST also imposes a minimum size requirement on the
main window.

The string parameters BGCLR and BTNBG allow the user to specify the
background and button background colors for the main display. Motif automatically
defines the remaining colors used in the display. These parameters can be given any
of the named colors supported by X-Windows. The string parameter LOGO is
provided to X-Windows for use as titlebars and other identifiers.

Finally, we remark that the X-Windows interface does not follow the pattern
of many X-Windows programs, in that the PLTMG package was not integrated
into the X-Windows system with the X-Windows interface serving as the main
routine. Indeed, the X-Windows interface is realized as a collection of C language
subroutines called by a Fortran driver. These routines use the same database of
Fortran character strings as the terminal window interface to define their displays,
and return command strings of the same type described in the terminal windows
interface. Both the X-Windows interface and the terminal window interface are
quite generic, in that neither contains direct links to any of the main routines in
the package. Thus changes in the behavior of routines comprising the package have
no impact on the interface routines and at most modest impact on the database of
character strings that define the displays.

6.4 Batch Mode.

When MODE = 1, the ATEST driver runs as a batch program. All commands are
read from the journal file specified in JRFILE. Graphics output should be directed
to files (BH, Postscript, and XPM) rather than to interactive displays.

6.5 Parallel Processing

When run as a parallel program using NPROC processors, ATEST uses a master-
slave model. One process, the master process, runs in terminal, X-Windows, or
batch mode, and the remaining NPROC — 1 slave processes all run with MODE =
—2. Slave nodes receive command strings from the master node via MPI communi-
cation. At any given time, the parallel computation is in one of two possible states
that specify how slave nodes should process commands. Somewhat arbitrarily, the
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two states are denoted “off” and “on”. When MPI is on, all processors execute all
commands from the user, whether entered interactively or through a journal file.
When MPI is off, only the master process executes most commands. Slave nodes
remain active and still receive and evaluate the command strings they receive. Some
commands (namely p and ¢) continue to be executed and some parameter updates
continue on all processors in the off state. However, in the off state, slave nodes are
mainly waiting for MPI to be turned on again.

The p command is used to switch between the on and off states of MPI. When
MPISW =1, MPI is on, and when MPISW = —1, MPI is off. The p command is
unusual in that it can behave as a toggle; executing p with no argument switches
the MPI state. The p command can also be employed in the usual way to explicitly
set the MPI state using the parameter MPISW ( e.g., pl turns on MPI, while p — 1
turns off MPI). The MPI command button in X-Windows mode is a bit unusual;
when MPI is on, the MPI command button changes color (to the background color
of the main display). When MPI is off the MPI command button returns to its
usual color.

A common and effective way to use MPI is to create a journal file that contains
a script for the entire computation (including p commands) The j command issued
in the MPI on state directs all processors to run the journal file. The master process
will then execute the entire script, while the slave nodes execute the parts of the
journal file that correspond to the on state.

An issue with respect to file names arises in the context of parallel processing.
Some files, for example a journal file, are intended to be read by all processors. In
other situations, for example writing data files, each processor is intended to process
its own version of the file. Then name conflicts can potentially become catastrophic
if all nodes read and write files on the same file system. To resolve this conflict in a
simple way that allows the user to easily specify on a case-by-case basis if the file is
a single file or a file with distinct copies on each node, ATEST scans all file names,
looking for the characteristic string MPIXXX. If found, this string is replaced by
MPI001, MPI002, etc, where the integer part denotes the processor. Thus, for ex-
ample if one sets

JRFILE = MYFILE.JNL
all nodes process the same file with the name MYFILE.JNL. If one sets
RWFILE = MYFILE_MPIXXX.RW

node one would process the file MYFILE_MPIO01.RW, node two would process
the file MYFILE_MPI002.RW, and so on.

6.6 Array Dimensions and Initialization.
ATEST has six labeled common blocks:

common /atest1/ip(100),rp(100),sp(100)
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common /atest2/iu(100),ru(100),su(100)
common /atest3/mode, jnlsw,jnlr,jnlw,ibatch
common /atest4/jcmd,cmdtyp,list

common /atest5/idevce

common /atest6/mproc,myid,mpisw

The IP, RP, and SP arrays are described in Section 2.4. The arrays IU, RU,
and SU are not directly used by ATEST or any of the other routines. They are
provided to the user for storing integer, real, and string parameters associated with
a particular problem. The advantages in using these arrays are that they are saved
and read in the w and r commands; the common block ATEST2 can be included
in subroutines A1XY, A2XY, etc., where the parameters may be needed; and they
can form part of the interface for resetting problem parameters using USRCMD.
ATEST3 contains internal control parameters used by ATEST; each has a corre-
sponding location in the IP array. ATEST4 contains string and integer variables
that are used for internal communication among the user interface routines. The
block ATEST5 contains an integer specifying the current graphics output device,
while ATESTG6 contains parameters relevant to MPI.

The input data arrays ITNODE(5,MAXT), IBNDRY (6, MAXB), VX(MAXYV),
VY(MAXV), XM(MAXC), YM(MAXC), JA(MAXJA), A(MAXA), and the work
array W(LENW) are declared at the beginning of ATEST. The sizes of the arrays,
MAXT, MAXV, MAXC, MAXB, MAXJA, MAXA, and LENW, are specified at
the beginning of ATEST using a parameter statement; changing sizes to suit a
particular computing environment or problem is thus a simple matter.

To use ATEST, the user must provide Fortran subroutines AIXY, A2XY,
FXY, GNXY, GDXY, P1XY, P2XY, and QXY. Subroutine USRCMD should be
provided, if only as a dummy routine. The user must also supply subroutine
GDATA, in which the input arrays VX, VY, XM, YM, ITNODE, and IBNDRY
are specified, along with some parameters in IP, RP, SP, and possibly IU, RU, and
SU. Other entries of the IP, RP, and SP arrays not required to be provided by the
user through GDATA are given default values at the beginning of ATEST, but can
be reset by the user as desired.

6.7 Reading and Writing Files.

The w and r commands are used to save and restore data sets. The arrays IP, RP,
SP, IU, RU, SU, VX, VY, XM, YM, IBNDRY, and ITNODE, JA, A, and portions of
W corresponding to the current state of the calculation are written to (w command)
or read from (r command) the file RWFILE. Data files are formatted as machine
independent binary files using the XDR protocol. The w and r commands can be
used with both the triangulation and skeleton data structures.

One can use the w and r commands to save and restore the solution at various
points along a continuation path. One can also save solutions in the current run for
post processing (graphics, etc.), which can then occur in a later run.
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6.8 Journal Files.

The j command causes ATEST to read its command strings from the file JRFILE,
rather than accepting them interactively from the user. It is the only option avail-
able in batch mode. A journal file is an ASCII file containing a sequence of command
strings as described in Section 6.2. The symbol # appearing as the first character
in a line causes that line to be interpreted as a comment. When the end of the
file is reached ATEST returns to terminal or X-Windows mode and again accepts
commands interactively. If a ¢ command is encountered in a journal file, ATEST
will exit.

6.9 Shell Command.

The k command causes the string stored in the variable SHCMD to be executed by
the user’s shell. It is included mainly as a convenience, in particular as a means to
include system file manipulation commands within journal files.

6.10 Subroutine USRCMD.

The u command is used to call the user supplied routine USRCMD.

Call USRCMD( VX, VY, XM, YM, ITNODE, IBNDRY,
IP, RP, SP, IU, RU, SU, W )

This routine is written by the user to perform any tasks not covered by other
commands. In our experience, the most frequent use of USRCMD has been to reset
parameters unique to a particular problem.

USRCMD is affected by the variable IUSRSW. If IUSRSW = 0, the return
from USRCMD causes ATEST to present the command prompt. If [USRSW = 0,
the return from USRCMD results in a branch to the user supplied routine GDATA
before presenting the command prompt. This switch is useful if modified parameters
affect the geometry of the region, boundary conditions, etc., requiring modifications
of the input arrays.

Since the most frequent use of USRCMD is to modify problem dependent pa-
rameters, we now describe how to build an interface within USRCMD allowing one
to reset parameters in a fashion similar to the other commands. This is done via
subroutine USRSET, which is called as follows:

Call USRSET( FILE, LEN, I1U, RU, SU )

IU, RU, and SU are integer, real, and CHARACTER*80 arrays, respectively, of
size 100 containing the parameters to be reset. It is often convenient to use the
IU, RU, and SU arrays provided by ATEST in common block ATEST?2 for this
purpose. FILE is a CHARACTER*80 array of length LEN, described below. In
terminal mode, the command w creates a display listing the user parameters and
their current values, similar to the upper case form of other commands. Commands
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of the form

command:u namel=valuel, name2=value2, ... , namek=valuek

reset the indicated parameters and then display the updated values. In X-Windows
mode, pressing the USRCMD command button with mouse button one pops up a
reset window, similar to pressing mouse button three for the other commands.

The array FILE contains a list of commands that define the variables to be
reset, and characterize the reset display. The commands in FILE have a syntax
similar to the basic scripting language we have defined for ATEST itself. However,
in this case there are just two basic commands: n (name variable) and s (string for
radio button). These are summarized in Table 6.2.

Parameters associated with n command

Name | Alias | Type | Value

vhame | n short | maximum of 6 characters

alias a short | maximum of 2 characters

vtype |t short | i (int), r (real), s (short), 1 (long), f (file)
index | i int pointer to IU, RU, SU

Parameters associated with s command

Name | Alias | Type | Value

vname | n short | variable name
value v - depends on vname
label 1 long | label associated with value in radio buttons

Table 6.2. Command syntax for USRSET.

Note that integer variables are stored in the IU array, real variables in the
RU array, and short, long and file strings are all stored as entries in the SU array.
In order to correctly define the reset window, all four variables associated with the
n command should be defined in each n command. Similarly, the three variables
associated with the s command should all be defined in each s command. Other-
wise, the syntax for each command follows the usual rules of the scripting language.
Below is an example code fragment that could define a simple FILE array.

FILE(1) = ‘N I=1, N=NTRI, A=NT, T=I"
FILE(2) = 'N I=2, N=IBC , A=BC, T=I'

FILE(3) = 'S N=IBC, V=1, L="NEUMANN BC”’
FILE(4) = 'S N=IBC, V=2, L="DIRICHLET BC"’
LEN = 4

The first two lines are n commands that define two integer variables. The
first line defines a variable with name NTRI, alias NT, that is stored as IU(1). The
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second defines a variable IBC, alias BC, that is stored as IU(2). The variable IBC
can take on two values, 1 and 2, that are associated with Neumann and Dirichlet
boundary conditions, respectively. The third and fourth lines above are s commands
that define the structure of a radio box associated with the IBC name in the X-
Windows popup. Note that since the LABEL is a long string, its value must be
enclosed in double quotes.

6.11 Subroutine GDATA.

The user provides subroutine GDATA, which defines the region through an initial
triangulation or a skeleton. A call to GDATA is among the first executable state-
ments in ATEST.

Call GDATA( VX, VY, XM, YM, ITNODE, IBNDRY,
IP, RP, SP, IU, RU, SU, W )

Through this call the user is minimally expected to supply values for NTF,
NVF, NCF, and NBF in the IP array, as well as the relevant values for the input
arrays VX, VY, XM, YM, ITNODE, and IBNDRY. Entries in RP, SP, IU and RU,
as well as parameters in IP other than those mentioned above, may be optionally
specified in GDATA.

6.12 Machine Dependent Routines.

During the initial installation of the package, the user must provide several machine
dependent routines associated with timing and graphics. Default versions of these
routines are provided with the package, which should work without modification in
many environments, and in any event can serve as a model for a new implementation.
The timing routine TIMER is used by PLTMG and TRIGEN. The graphics routines
TRIPLT, GPHPLT, INPLT, and MTXPLT address the graphics output device
through the routines PLTUTL, PFRAME, PLINE, and PFILL. These routines are
documented in detail below.

6.12.1 Timing Routine.
Subroutine TIMER has the calling sequence

Subroutine TIMER( TIME, ISW )

Here TIME is a 3 x 50 real array and ISW is an integer. The array TIME
records the time spent in major subroutines called by PLTMG and TRIGEN. Timer
should call an appropriate system routine to determine the current time each time
it is entered, and then take various actions depending on the value of ISW. The
cases ISW = —2 and ISW = —1 request initialization of the TIME array, while
1 < ISW < 50 request an individual entry in the TIME array be updated. The
current time is saved as it is needed for the next call to TIMER. Subroutine TIMER
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is machine independent except for the call to the system clock. An example of
TIMER, calling the Unix function ETIME, is given below.

subroutine timer(time,isw)

implicit real (a-h,o0-z)
implicit integer (i-n)
real

+ time (3, *)
real temp(2),etime
save tx,len
data tx/0.0e0/
data len/50/

c
c call the clock and return the time in seconds
c (time differences are used to compute the elapsed time)
c

ty=tx

tx=etime (temp)
c
c udpate time array (1.0e-10 is below resolution of timer)

if (isw.gt.0) then
dt=amax1(tx-ty,1.0e-10)
time(1,isw)=time(1,isw)+dt
time(2,isw)=time(2,isw)+dt
else if(isw.eq.-1) then

do i=1,len
time(1,i)=0.0e0
enddo
else if (isw.eq.-2) then
do i=1,len

time(1,i)=0.0e0
time(2,1)=0.0e0
time(3,1i)=0.0e0
enddo
endif
return
end

6.12.2 Graphics Interface.

The four device dependent routines in the graphics package are

Subroutine PLTUTL( NCOLOR, RED, GREEN, BLUE )
Subroutine PFRAME( IFRAME )

Subroutine PLINE( X, Y, Z, N, ICOLOR )

Subroutine PFILL( X, Y, Z, N, ICOLOR )

Subroutine PLTUTL takes various actions depending on the value of the inte-
ger NCOLOR. NCOLOR > 0 specifies initialization; NCOLOR denotes the number
of colors to be used and satisfies 2 < NCOLOR < MXCOLR. RED, GREEN,
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and BLUE are vectors of length NCOLOR. The entries RED(i), GREEN(i), and
BLUE(i), 1 < i < NCOLOR, are floating point numbers on the interval [0, 1],
corresponding to rgb values for the ith color. Color number 1 is always white
(RED(1) = GREEN(1) = BLUE(1) = 1.0), and color number 2 is always black
(RED(2) = GREEN(2) = BLUE(2) = 0.0). The rgb values of the remaining entries
depend on the picture to be drawn and the value of MXCOLR. PLTUTL should
create a color map with the required colors, as these will be referenced in future
calls to PLINE and PFILL. If PLTUTL is called with NCOLOR < 0, the drawing
is complete and any necessary post processing should be carried out (e.g., close the
plot file).

The drawing space used by the graphics routines is always assumed to be either
the unit square (0,1) x (0,1) or the rectangle (0,1.5) x (0,1). For devices that have
a so-called Z-buffer, the drawing space is either the unit cube (0,1) x (0,1) x (0,1)
or the brick (0,1.5) x (0,1) x (0,1). The graphics display itself is always viewed
as rectangular with aspect ratio 3/2, which is either a single rectangular frame or
three square frames. These frames are numbered 1 to 4 as illustrated in Figure
6.5. The graphics routines write their output to various lists. A list consists of
a frame, and certain attributes (rotating/non-rotating, lighted /non-lighted). Some
attributes may not have realizations for certain graphics devices. The nine available
lists are summarized in Table 6.3.

When graphics is initiated for a certain list, say list k, subroutine PFRAME (k)
is called to indicate that subsequent calls of PLINE and PFILL contain data to be
written to list k. PFRAME(—k) indicates that the output to the given list should
be terminated. By convention, graphics routines are allowed only one open list at a
time. Therefore, when PFRAME is invoked with a positive argument, the given list
should be opened and the mapping from the unit cube or brick to the actual device
coordinates for the given list should be computed. If rotation or lighting attributes
are available, these should be set as specified in Table 6.3. When PFRAME is
invoked with a negative argument, the given list should be closed.

Figure 6.5. Frame definitions.

Subroutine PLINE has arguments X, Y, Z, N, and ICOLOR. X, Y, and Z are
vectors of length N > 2. The points (X(i),Y(i),Z(i)) lie in the unit cube or the
brick (0,1.5) x (0,1) x (0,1). The Z coordinate is useful only for devices that have
a Z-buffer, and can be ignored in other cases. [COLOR is an integer between 1 and
NCOLOR, where NCOLOR was the argument that initialized PLTUTL, indicating
the color to be used. PLINE should draw the given polyline (X(i),Y(i),Z(i)) to
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list | frame | rotating | lighted
1 1 no no
2 2 no no
3 3 no no
4 4 no no
5 4 yes no
6 4 yes no
7 4 yes yes
8 4 yes yes
9 4 no yes

Table 6.3. list specifications for pframe.

(X(i+1),Y(i+1),Z(i+1)), 1 < i < N — 1, with the specified color in the proper
frame.

Subroutine PFILL has arguments X, Y, Z, N, and ICOLOR. X, Y, and Z
are vectors of length N > 3. The points (X(i),Y(i),Z(i)) lie in the unit cube or
the brick (0,1.5) x (0,1) x (0,1), and define an N-sided (planar) polygonal re-
gion with sides (X(1),Y(i),Z(i)) to (X(i+1),Y(i+1),Z(i+1)) for 1 < i < N — 1,
and (X(N),Y(N),Z(N)) to (X(1),Y(1),Z(1)). ICOLOR is an integer between 1 and
NCOLOR, where NCOLOR was the argument that initialized PLTUTL, indicating
the color to be used. PFILL should color the specified polygon with the specified
color in the proper frame.

IDEVCE | output driver
0-3 SG sockets 0-3

4 BH file
5 Postscript file
6 XPM file

7-10 X-Windows displays 0-3

Table 6.4. Default graphics devices.

The default installation of the package includes several standard output graph-
ics devices. These are described in Table 6.4. SG is an OpenGL program written
by Mike Holst that is available separately. It can receive input from a specified
INET socket. ATEST allows up to four SG displays to be accessed. Because it is
socket based, SG and ATEST can be running on different computers; the param-
eter SGHOST is the name of the host computer running SG. Since it is based on
OpenGL the graphics displays are animated, and images can be manipulated with
the mouse.

BH is the protocol developed for communication between ATEST and SG. BH



108 PLTMG USERS' GUIDE 10.0

files are essentially file versions of SG images. The parameter BHFILE gives the file
name. The parameter BHFILE is scanned for the string FIGXXX. If found, this
string is replaced by FIG001, FIG002, etc, with the counter incremented for each
image. This allows the single parameter BHFILE to specify a family of separate
BH files. The parameter BHFILE is also scanned for the string MPIXXX. If found,
this string is replaced by MPI001, MPI002, etc, where the integer part denotes the
processor. This avoids potential name conflicts when running ATEST as a parallel
program. The BH file itself is a device independent binary file written using XDR.
These files can be saved and later displayed using the SG program.

If the SG interface is not available or not desired, an alternate interface com-
posed of stub routines is provided with the default installation of the program. The
alternate interface has the same routines as the regular SG interface, but with all
calls to routines and functions in the MALOC library deleted. Using the stub rou-
tines, an executable can be created without loading the MALOC library to resolve
external references. However, if the stub routines are used, the SG and BH graphics
options are disabled.

Postscript and XPM are both ASCII files. The parameters PSFILE and XP-
FILE specify the file names. These names are scanned for the strings FIGXXX and
MPIXXX, that are replaced if found as described above in the case of BHFILE.
Devices 7-10 refer to X-Windows graphics displays. Up to four such displays may
be used (although the ATEST driver itself allows up to ten). These graphics win-
dows display static pixmaps (raster images similar to XPM files) that cannot be
animated or manipulated, other than resizing the window. X-Windows graphics
displays are only available when MODE = 0.

6.12.3 X-Windows Interface.

The X-Windows interface uses several X-Windows libraries, as well as the Motif
widget set, and thus can be used only in environments that support the X-Windows
system. It is based on the release X11R6. Our intent was to make the interface as
generic and simple as possible. Since the PLTMG package is constantly evolving,
the interface is structured to run arbitrary Fortran programs, so that in the future,
large changes in the package need not cause correspondingly large changes in the
interface. The X-Windows interface is written in C.

If the X-Windows libraries that support the X-Windows interface are not
available, one can use substitute stub routines in place of the regular interface.
These alternative stub routines are supplied with the default installation of the
package, and are similar to those in the regular X-Windows interface, except that
all calls to routines and functions in the X-Windows libraries have been deleted.
Using the stub routines, an executable can be created without the need to load
X-Windows libraries to resolve external references. However, in this case the X-
Windows interface (MODE = 0) is completely disabled. This includes X-Windows
graphics options (7 < IDEVCE < 10).
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6.12.4 MPI Interface

The communication used in parallel processing is provided by calls to the MPI
library. This library is not provided as part of the PLTMG package. The calls to
the MPI library are all made from Fortran, and we have concentrated all calls into
just a few subroutines. Thus the vast majority of the code comprising the main
PLTMG routines is self-contained. If the MPI library is not available, one can use
substitute stub routines supplied with the default installation in place of the regular
interface. The stub routines are similar to the those in the regular interface, except
that all calls to routines and functions in the MPI library have been deleted. Using
the stub routines, an executable can be created without the need to load the MPI
library to resolve external references. In this case, all the parallel computing options
provided by PLTMG, TRIGEN, and the graphics routines are disabled.
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Chapter 7
Test Problems

7.1 Overview.

In this chapter, we briefly document the test problem data sets included with the
PLTMG source code. These problems encompass a variety of applications and
exercise most features of the package. Each data set minimally consists of functions
AIXY, A2XY, FXY, GNXY, GDXY, P1XY, P2XY, and QXY and subroutines
USRCMD and GDATA. Problem specific routines are also included.

7.2 Test Problem CIRCLE.

In this problem, we solve the equation
-V - (aVu) =0,

where §2 is the unit circle with a crack along the positive z axis. Homogeneous
Dirichlet boundary conditions are imposed on the top of the crack, and homogeneous
Neumann boundary conditions are imposed below the crack. The coeflicient a = ay,
is piecewise constant in the eight sectors

O ={(rn0)]0<r <1, (k—1)r/4<0<kr/d).

The domain 2 is defined by a triangulation consisting of eight similar triangles,
shown in Figure 7.1, that correspond to the eight sectors of constant a. On the
boundary of the circle, nonhomogeneous boundary conditions are imposed such
that the true solution in sector €2 is given by

u = r%(0 sin ad + v, cos ab). (7.1)

The exponent « is chosen to correspond to the leading singularity arising from
the geometry, change of boundary conditions, and coefficient jumps at the origin.
The coefficients §; and 7, are chosen to insure continuity of the solution w and
the normal component of the flux aVu - n across the interfaces, and to satisfy the

111
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boundary conditions along the crack. For example, in the case ap = 1 for all k,
a=1/4 and

u = rsin af.

The USRCMD for this test problem has ten parameters that can be set. IBC
determines the boundary conditions. If IBC' = 2, the boundary conditions on the
outer boundary of the circle are nonhomogeneous Dirichlet chosen such that (7.1)
is the exact solution; if IBC = 1, nonhomogeneous Neumann boundary conditions
are imposed on the circular part of the boundary in a similar fashion. One can also
alter the geometry of the domain using the parameter NTRI, where 1 < NTRI < 8.
If NTRI = 8 the entire circle is used as the domain; if NTRI < 8, only the first
NTRI sectors are used. Some examples are shown in Figure 7.1. Eight parameters,

Figure 7.1. On the far right is the square domain for problems SQUARE,
OB and CONTROL. The remaining domains are for test problem CIRCLE with
NTRI=8, NTRI="7 and NTRI = 3.

Al, A2,... A8 define the coefficients ax. Given the a; and NTRI, the values of
a, B and v, are computed in GDATA by solving appropriate nonlinear equations.
Since the exact solution is known, we can compute the exact error. For this test
problem, the function QXY is defined to be the exact error for graphics options
and the true solution (7.1) otherwise.

7.3 Test Problem SQUARE.

In this test problem, a complicated equation is solved on a simple domain. The
domain is always the unit square shown in Figure 7.1; boundary conditions on each
side of the square can be independently specified as Dirichlet or natural, or pairs of
opposite sides can be specified as periodic. The region is specified as a triangulation.
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The coefficient functions are defined by

ou ou

a1 =AIX —+A1lY — + AlUu,
ox oy
as = A2X @ + A2Y @ + A2U u,
ox oy
Oou ou 9 3
f= —BUXa——BUYa——CUO — CUlu— CU2u* — CAHN (u — u”)
€ Y
ou ou .
—CIR| —(y—.5) — —(x —.5) | — CEXPe" — CSIN sinu, —F0(y — x)
or dy
g1 = —DUO — DU1 u,
9> = ~EU0,

and the functional p is defined by

2
p1=u,

p2 = 0.
Any of these nineteen parameters can be set using USRCMD, and any can
be used as the continuation parameter A by specifying the parameter ICONT in

USRCMD as in Table 7.1. With this variety of nonlinearities, one can exercise most
continuation features of PLTMG. If ICONT = 0, then none of the parameters is

ICONT A ICONT A
0 none 10 CU1
1 AlX 11 cu2
2 AlY 12 CAHN
3 Al1U 13 CEXP
4 A2X 14 CIR
5 A2Y 15 CSIN
6 A2U 16 DUO
7 BUX 17 DU1
8 BUY 18 EU0
9 Ccuo 19 Fo

Table 7.1. Possible settings for ICONT.

regarded as A, and one should set IPROB = 1 to signify that the problem does not
involve continuation.

One can also set the integer parameters LEFT, RIGHT, TOP, and BOTTOM
in USRCMD. These refer to the four sides of the square in an obvious fashion and
can be individually set to 2 for Dirichlet boundary conditions or to 1 for natural
boundary conditions for the given side of the square. A pair of opposite edges can
be set to 0 (e.g., TOP = BOTTOM = 0), and IBNDRY will then be set for periodic
boundary conditions.
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7.4 Test Problem DOMAINS.

In this test problem, a simple equation is solved on a variety of complicated domains.
This test problem was designed mainly to exercise TRIGEN.
The problem to be solved is the linear partial differential equation

ar = A1x 24 a1y 2 4 Arua,
ox oy
0y = A2x 2% 4 a2y 2% 4 v,
ox oy
ou ou
f=-BUXZ _Buy 2! _ cUlu - CUO
ox dy

with a combination of homogeneous Dirichlet, homogeneous Neumann, and peri-
odic boundary conditions. The parameters A1X, A1Y, A1U, A2X, A2Y, A2U,
BUX, BUY, CUO, and CUI can all be set in USRCMD. The parameter DOMAIN,
satisfying 1 < DOMAIN < 20, specifies the domain to be used. The various possi-
bilities are shown in Figure 7.2. All domains are defined by skeletons, so TRIGEN
must be called to generate a triangulation.

7.5 Test Problem NACA.

Test problem NACA solves the equation of potential flow in one of several domains.
The equation is of the form

-V - p(Vu)Vu =0,

where )

p(Vu) = (1 =2 )77
and v = 1.4. The local Mach number is computed in QXY and is given by

c —1.

12— u?

There are four domain options, chosen using the parameter DOMAIN in USR-
CMD. These domains are shown in Figure 7.3. All regions are defined as skeletons,
so TRIGEN must be used to generate a triangulation.

Neumann boundary conditions are imposed everywhere so each domain has
ISING = 1. There are several parameters in USRCMD that affect these problems.
The parameter MINF, specifying the Mach number at infinity M., sets the bound-
ary conditions on the outer boundary and is also the continuation parameter \ for
these problems. The parameter ANGLE specifies the angle of attack (in degrees).
The parameter SIZE sets the radius of the outer boundary. When the local Mach
number is less than one the flow is subsonic; PLTMG will work well in regions where

the flow is entirely subsonic. As the M, is increased, the solution will begin to
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ai&l lago

Figure 7.2. The domains for DOMAIN =4, 1 < i < 20.
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Figure 7.3. The domains for DOMAIN =i, 1 < i < 4, with SIZE=1.

develop regions of supersonic flow near the airfoils; PLTMG will continue to work as
these regions are forming, but eventually will fail, as the underlying discretization
used by PLTMG is not really appropriate for hyperbolic problems.

7.6 Test Problem JCN.

Test problem JCN solves the convection diffusion equation
=V (Vu+ pu) =0,

where [ is piecewise constant. The region is shown in Figure 7.4. The domain is
specified by skeleton, so TRIGEN must be used to generate a triangulation.

Figure 7.4. The domain for test problem JCN (left), a triangulation pro-
duced by TRIGEN (middle), and the corresponding triangulation after a call to
USRCMD with OBTUSE =1 (right).

This problem is an idealized model of the current continuity equation from the
semiconductor device model that we have used to study the stability of discretiza-
tions used in device simulation. The problem has seven regions; 5 = 0 in regions
one and seven. In the other five regions it has a magnitude of approximately 10*
and is directed radially in each of the five subregions. The solution develops steep
gradients at the junction between region seven and the five adjoining subregions.

Constant nonhomogeneous Dirichlet boundary conditions are specified along
the bottom of the domain and on the left-hand portion of the top of the domain.
Homogeneous Neumann boundary conditions are imposed elsewhere. The parame-
ters TOP and BOTTOM in USRCMD can be used to reset the Dirichlet boundary
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conditions on the top and bottom of the domain. The parameter DU can be used
to adjust the size of § in regions 2-5; in particular, the magnitude of 8 in these five
regions is proportional to DU.

Our original purpose in constructing this example was to test the sensitivity of
various upwinding techniques [0] to poor element geometries. Since the goal of TRI-
GEN is to produce elements with good geometries, the USRCMD for this problem
includes a procedure for systematically degrading the quality of the triangulation by
introducing new elements with obtuse angles. If OBTUSE = 1 in USRCMD, then
each triangle in the current mesh is divided into three new triangles by connecting
its barycenter to its vertices. An example is shown in Figure 7.4. Repeated appli-
cation of this procedure will produce triangulations with interior angles arbitrarily
close to .

7.7 Test Problem OB.

Test problem OB solves the a simple obstacle problem, with coefficient functions
defined by

ou\> ou\? 9
x y

s = (AX(IX7)* + AY (IY)* — CU) sin(IXnz) sin(IY my),
u = BDLW + CFLW sin(IXLnx) sin(IYLmy),

u = BDUP + CFUP sin(IXUrx) sin(IYUry),
g1 =0.

The domain 2 is the unit square with homogeneous Dirichlet boundary condi-
tions. The input data structure is a triangulation consisting of eight right trian-
gles, shown in Figure 7.1. The parameters AX, AY, CU, BDLW, BDUP, CFLW,
CFUP and the integers IX, IY, IXL, IYL, IXU, IYU can all be set by the user
in USRCMD. The exact solution to this problem in the absence of the obstacle
is u = sin(IX7z)sin(IY7y). This problem is mainly designed to test the cases
IPROB = +2 in PLTMG.



118 PLTMG USERS' GUIDE 10.0

7.8 Test Problem MNSURF.

Test problem MNSURF solves the a simple minimal surface problem with an ob-
stacle. The coefficient functions are given by

S (2 (2
pr= ox Jy

1 in Ql
u = —1 in QQ
4 in Q]
u=1.5
g1 = 07
g2 =

The domain 2 is the unit square with a mixture of homogeneous Dirichlet and
Neumann boundary conditions. The domain is given as a skeleton, and is shown
in Figure 7.5. The region §2; is the inner square with side 1/2, and € is the outer
region. The region € is the small band separating 2; and s, consisting of four
narrow trapezoids. In each of the four trapezoids, u is a linear polynomial in z
or y that interpolates between —1 and 1, insuring continuity of u. The parameter
THETA, which can be set in USRCMD, controls the width of the band. The upper
bound w is chosen such that it does not affect the solution. As with test problem
OB, this problem is mainly designed to test the cases IPROB = £2 in PLTMG.

rinima surfacs sattery dert burger

Figure 7.5. The domains for test problems MNSURF, BATTERY,
IDENT, and BURGER (left to right).

7.9 Test Problem BURGER.

Test problem BURGER solves the nonlinear convection dominated flow
—eAu + uy + uu, = 0.

The small parameter € > 0 and can be set in USRCMD. If € = 0, this is the one
dimensional Burger’s equation with y playing the role of time. The domain 2 is
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the quarter circle shown in Figure 7.5, and is specified as a skeleton. Homogeneous
Neumann boundary conditions are applied along the circular arc, while Dirichlet
boundary conditions are specified on the left side (x = 0) and the bottom (y = 0)
as

1 0<z<1/4
g2=13/2—-2z 1/4<x<3/4.
0 3/4<xz <2

This combination of boundary conditions gives rise to a solution similar to the
so-called “X shock” of Burger’s equation.

7.10 Test Problem BATTERY.

In this test problem we solve the linear elliptic problem
—Q Uy — G2Uyy — f =0

where the piecewise constant values of the coefficients are given in Table 7.2. The

Region  ag as f side c «
1 25 25 0 left 0 0
2 7 0.8 1 top 1 3
3 50 107% 1 right 2 2
4 0.2 0.2 0| bottom 3 1
5 0.05 0.05 0

Table 7.2. Coefficient definitions.

domain 2 is shown in Figure 7.5 and is specified as a skeleton. The five subregions
are given labels in ITNODE(5,*), allowing us to conveniently define the coefficient
functions. The boundary conditions are natural boundary conditions of the form

g1 = Cc— au.

Here ¢ and « are piecewise constant functions defined using IBNDRY (6,%*), as indi-
cated in Table 7.2. The data for this problem was supplied by Leszek Demkowicz.

7.11 Test Problem CONTROL.

This problem tests the cases IPROB = £5. The differential equation (constraint)
is
—Au=\CO0+ Clu+ C2u® + C3u®) + FO+ Flu+ F2u® + F3u?

in , with Dirichlet boundary conditions

u= DBC
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on Jf). The objective function p is given by
plu, \) = / (u — ug)? + BV (u — ug)|* + v\ dz.
Q

Q is the unit square, defined as a triangulation similar to test problem SQUARE;
see Figure 7.1. The function ug and the bounds on A are given by

ug = sin(IX7x) sin(IY7y),
BDLW < XA < BDUP.

The constants BETA = 3. GAMMA = v, BDLW, BDUP, DBC, C0, C1, C2, C3,
FO, F1, F2, and F3, and the integers IX and fIY can all be reset in USRCMD.

7.12 Test Problem IDENT.

This problem tests the cases IPROB = +4. The differential equation is
—(1+AHAu+ C2u* + Clu— CO =0.

The domain (2 is specified as a skeleton, and is shown in Figure 7.5. The boundary
conditions are a combination of homogeneous Neumann and Dirichlet, except for the
vertical edge on the right where the (possibly) inhomogeneous Dirichlet boundary

condition
u=2D

is imposed. The five parameters A, C0, C1, C2, and D can be set in USRCMD,
and any can be used as the scalar parameter )\ in the optimization problem. This
is done setting the parameter IRL (also set in USRCMD) as indicated in Table 7.3.

IRL A

A
Cco
C1
C2
D

U W N =

Table 7.3. Possible settings for IRL.

The objective function p is given by
p(u,/\) — / 6—20(z2+y2)(u . 1)2 dz,
Q

which tries to make the solution u = 1 near the origin, located at the center of (2.
Upper and lower bounds for A are set using the parameters RLLWR and RLUPR
in the RP array.
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7.13 Test Problem MESSAGE.

In this test problem, a simple equation is solved on a domain consisting of a message
with up to ten lines. This test problem was designed mainly for fun, and to make
software demonstrations more interesting.

The problem to be solved is the linear partial differential equation

a; = AIX% —|—A1Y@ + A1U u,
ox oy

0y = 42X 2% 4 a0y 2 4 Ao,
ox oy
ou ou
f=-BUX ——-BUY — —CUlu—- CU0O
ox dy

with homogeneous Dirichlet boundary conditions. The parameters A1X, A1Y, A1U,
A2X, A2Y, A2U, BUX, BUY, CUO, and CUI can all be set in USRCMD. String
parameters LINEQ, LINE1, ... ;, LINE9 can be set in USRCMD to a user specified
message. Upper case and lower case letters, numbers, and several symbols found on
a standard keyboard are available. Two possible domains are shown in Figure 7.6.

All domains are defined by skeletons, so TRIGEN must be called to generate a
triangulation.

Hellos World

Figure 7.6. Sample domains for test problem MESSAGE.

7.14 Test Problem USMAP.

In this test problem, a simple equation is solved on one of 51 domains; 50 are
outlines of individual states in the United States, and the last is an outline of the
continental U. S. As with test problem MESSAGE, this test problem was designed
mainly for fun.

The problem to be solved is the linear partial differential equation

a = A1x 2% a1y 2 4 arv,
Or y
ay = 42X 2% 4 a0y 2% 4 Ao,
or y
ou ou
f=-BUXZ _Buy 2 — cutu- cuo

or y
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with homogeneous Dirichlet boundary conditions. The parameters A1X, A1Y, A1U,
A2X, A2Y, A2U, BUX, BUY, CUO, and CUI can all be set in USRCMD.

All domains are specified as skeletons, derived from PostScript and PDF files
from the National Digital Map Library at the University of Virginia. The parameter
ISTATE, 1 < ISTATE < 51, specifies the domain. The parameter ICTY takes on
values 0 and 1; if ICTY = 1, county lines (state lines in the case of the U. S. map)
are included as part of the skeleton. If CNTY = 0, the skeleton consists of just
the outline of the state or country. Several domains (e. g. Michigan, Hawaii) are
not connected. Many have small islands® that can be excluded from the skeleton
by setting the parameter ISLE = 0. If ISLE = 1, all small islands are included as
part of the skeleton. Several domains are shown in Figure 7.7. Since all domains
are defined by skeletons, TRIGEN must be called to generate a triangulation.

b |

Figure 7.7. Sample domains for test problem USMAP. ICNTY = 1 and
ISLE = 0 for all domains.

6The definition of small is problem dependent and depends on the judgment of the author.
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BGCLR, see Table 2.8

definition, 99
BHFILE, see Table 2.8

definition, 108
BLUE

definition, 106
BMNRMO, see Table 2.7
BNORM

definition, 61
BNORMO, see Table 2.7
BRATIO, see Table 2.7
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definition, 99
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AIXY, 22
A2XY, 22
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GDATA, 104
GDXY, 25
GNXY, 25
GPHPLT, 84
INPLT, 81
MTXPLT, 89
PIiXY, 22
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PFRAME, 105
PLINE, 105
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TIMER, 104
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USRCMD, 102
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calling sequence, 11
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definition, 78, 83
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coeflicient functions, 22
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ATEST2, 100
ATEST3, 100
ATEST4, 100
ATESTS5, 100
ATEST6, 100
VALO, 24
VALIL, 25
VAL2, 26
VALS3, 27
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skeleton, 13
triangulation, 9

DELTA, see Table 2.7
definition, 61
DIAM, see Table 2.7
DNEW, see Table 2.7
DRDRL, see Table 2.7
definition, 58
DTOL, see Table 2.7
definition, 52

eigenvalue problem, 62

element quality, 30

ENORM1, see Table 2.7
definition, 34

ENORM?2, see Table 2.7
definition, 34

EPS, see Table 2.7

FDEVCE, see Table 2.6
FTITLE, see Table 2.8
definition, 74

FXY
calling sequence, 22

GDATA

calling sequence, 104
GDEVCE, see Table 2.6
GDXY

calling sequence, 25
GNXY

calling sequence, 25
GPHPLT

calling sequence, 84

continuation path, 88

error estimates, 88

multigraph convergence histories,

86

Newton convergence history, 84

timing statistics, 86
GRADE, see Table 2.7

definition, 31
GREEN

definition, 105
GTITLE, see Table 2.8

definition, 84

HMAX, see Table 2.7
definition, 31
HMIN
definition, 40
HMIN, see Table 2.7

TADAPT, see Tables 2.6 and 3.1
definition, 29

IBASE, see Table 2.6

IBNDRY, see also Table 2.1
definition, 12, 14

ICONT, see Table 2.6
definition, 74

ICRSN, see Tables 2.6 and 5.2
definition, 80
in parallel graphics, 74

IEE, see Table 2.6

IERRSW, see Tables 2.6 and 3.2
definition, 33

IEVALS, see Table 2.6
definition, 52
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IFIRST, see Tables 2.6 and 2.5 IUSRSW, see Table 2.6
definition, 17 definition, 102
IFLAG, see Tables 2.6 and 2.9 IUU, see Table 2.6
definition, 18 definition, 17
IFUN, see Tables 2.6 and 5.1 1Z, see Table 2.6
definition, 74
IGRSW, see Tables 2.6 and 5.5 j command
definition, 84 definition, 102
IMTXSW, see Tables 2.6 and 5.6 JA
INPLSW, see Tables 2.6 and 5.3 definition, 17, 28
definition, 82, 83 JDEVCE, see Table 2.6
INPLT JHIST, see Table 2.6
calling sequence, 81 journal file
skeleton plots, 83 definition, 102
triangle plots, 82 JPATH, see Table 2.6
IOMSG, see Table 2.8 JRFILE, see Table 2.8
IORD, see Table 2.6 definition, 102
IP, see Table 2.6 JSTAT, see Table 2.6
definition, 17 JTFILE, see Table 2.8
IPATH, see Table 2.6 JTIME, see Table 2.6
IPROB, see Tables 2.6 and 4.1 JWFILE, see Table 2.8
definition, 49 PLTMG output, 61
IREFN, see Table 2.6
definition, 39 KA, see Table 2.6
IRGN, see Table 2.6
ISCALE, see Tables 2.6 and 5.2 LENA, see Table 2.6
definition, 79 definition, 28
ISING, see Table 2.6 LENJA, see Table 2.6
definition, 13 definition, 28
ISPD, see Tables 2.6 and 2.14 LENW, see Table 2.6
definition, 52 definition, 17
ITASK, see Tables 2.6 and 4.2 requirements for PLTMG, 101
definition, 49, 58 LEVEL, see Table 2.6
ITDOF, see Table 2.6 LINES, see Tables 2.6 and 5.2
ITITLE, see Table 2.8 definition, 80
definition, 81 LIPATH, see Table 2.6
ITNODE, see also Table 2.1 LOGO, see Table 2.8
definition for skeleton, 15 definition, 99
definition for triangulation, 11 LVL, see Table 2.6
ITNUM, see Table 2.6
definition, 52 MAXA, see Table 2.6
ITRGT, see Table 2.6 definition, 17, 101
definition, 80 MAXB, see Table 2.6
in parallel graphics, 74 definition, 101
U MAXC, see Table 2.6

definition, 101 definition, 101
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MAXD, see Table 2.6

MAXJA, see Table 2.6
definition, 17, 101

MAXPTH, see Table 2.6

MAXT, see Table 2.6
definition, 101

MAXV, see Table 2.6
definition, 101

MDEVCE, see Table 2.6

MFLAG, see Table 2.6

MODE, see Tables 2.6 and 6.1
definition, 93

MPI
collecting global mesh, 47
creating IPATH, 416
domain decomposition, 52
file names, 100
interface, 109
load balancing, 44
parallel graphics, 74, 88

MPISW, see Table 2.6
definition, 100

MTITLE, see Table 2.8
definition, 89

MTXPLT
calling sequence, 89

MX, see Table 2.6
definition, 89

MXCG, see Table 2.6
definition, 52

MXCOLR, see Table 2.6
definition, 73, 83

MXNWTT, see Table 2.6
definition, 51

MY, see Table 2.6
definition, 89

MZ, see Table 2.6
definition, 89

NBB, see Table 2.6
NBF, see Table 2.6
definition, 9, 13
NBG, see Table 2.6
NBI, see Table 2.6
NCF, see Table 2.6
definition, 9, 14

NCOLOR
definition, 105
NCON, see Table 2.6
definition, 77, 78
NDD, see Table 2.6
NDF, see Table 2.6
NDQG, see Table 2.6
NDI, see Table 2.6
NDL, see Table 2.6
definition, 33
NEF, see Table 2.6
NEVP, see Table 2.6
definition, 69
NEWNBEF, see Table 2.6
NEWNDEF, see Table 2.6
NEWNTF, see Table 2.6
NEWNVEF, see Table 2.6
NGF, see Table 2.6
NGRAPH, see Table 2.6
definition, 98
NPROC, see Table 2.6
definition, 44, 99
NRGN, see Table 2.6
definition, 39
NTF, see Table 2.6
definition, 9, 13
NTG, see Table 2.6
NUMBRS, see Tables 2.6 and 5.2
definition, 80, 83
NVDD, see Table 2.6
NVF, see Table 2.6
definition, 9, 14
NVG, see Table 2.6
NVI, see Table 2.6
NVTRGT, see Table 2.6
definition, 34
NVV, see Table 2.6
NX, see Table 2.6
definition, 77, 78
NY, see Table 2.6
definition, 77, 78
NZ, see Table 2.6
definition, 77, 78

w command
definition, 100
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P1XY

calling sequence, 22
P2XY

calling sequence, 24
PFILL

calling sequence, 105
PFRAME

calling sequence, 105
PLINE

calling sequence, 105
PLTEVL

calling sequence, 69
PLTMG

branch switching, 59

calling sequence, 49

discretization, 2

normalization equations, 58

PLTUTL
calling sequence, 105
PSFILE, see Table 2.8
definition, 108

QUAL, see Table 2.7
QXY
calling sequence, 26

R, see Table 2.7
r command

definition, 101
RO, see Table 2.7
RODOT, see Table 2.7
RDOT, see Table 2.7
RED

definition, 105
REG, see Table 2.7
RELERQO, see Table 2.7
RELERR, see Table 2.7
RELRES, see Table 2.7
RL, see Table 2.7
RLO, see Table 2.7
RLODOT, see Table 2.7
RLDOT, see Table 2.7
RLLWR, see Table 2.7
RLSTRT, see Table 2.7
RLTRGT, see Table 2.7

definition, 59

RLUPR, see Table 2.7
RMAG, see Table 2.7
definition, 78, 83
RMTRGT, see Table 2.7
definition, 56
RMU, see Table 2.7
RP, see Table 2.7
definition, 17
RSTRT, see Table 2.7
RTRGT, see Table 2.7
definition, 59
RU
definition, 101
RWFILE, see Table 2.8
definition, 101

SCALE, see Table 2.7
definition, 61
SCLEQN, see Table 2.7
definition, 58
SEQDOT, see Table 2.7
SGHOST, see Table 2.8
definition, 107
SHCMD, see Table 2.8
definition, 102
SIGMA, see Table 2.7
definition, 58
skeleton
definition, 13
SKLUTL
calling sequence, 16
SMAX, see Table 2.7
definition, 77, 78
SMIN, see Table 2.7
definition, 77, 78
SP, see Table 2.8
definition, 17
STEP, see Table 2.7
definition, 51
SU
definition, 101
SVAL, see Table 2.7
SVALO, see Table 2.7
symmetry
in TRIGEN, 16
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test problem

SQUARE, 112

BATTERY, 119

BURGER, 118

CIRCLE, 111

CONTROL, 119

DOMAINS, 114

IDENT, 120

JCN, 116

MESSAGE, 121

MNSURF, 118

NACA, 114

OB, 117

USMAP, 121
THETA

definition, 58
THETAL, see Table 2.7
THETAR, see Table 2.7
TIMER

calling sequence, 104
TOLA, see Table 2.7
TOLF, see Table 2.7
TOLZ, see Table 2.7
triangulation

definition, 9
TRIGEN

calling sequence, 29

element quality, 30

error estimates, 33

mesh smoothing, 37

refinement, 34, 39

skeleton algorithms, 40
triangulation algorithms, 30

unrefinement, 34
TRIPLT

calling sequence, 74

hidden lines, 81

surface plots, 74

vector plots, 78

U

definition, 69
u command

definition, 102
UNORM1, see Table 2.7
UNORM?2, see Table 2.7

USRCMD

calling sequence, 102
USRSET

calling sequence, 102
UX

definition, 69
Uy

definition, 69

VALO

common block, 24
VALI

common block, 25
VAL2

common block, 26
VAL3

common block, 27
VX, see also Table 2.1

definition, 9, 14
VY, see also Table 2.1

definition, 9, 14

w

definition, 17

size requirements, 101
w command

definition, 101

X

definition, 69
X-Windows

interface, 108
XM, see also Table 2.1

definition, 10, 14
XMAX, see Table 2.7
XMIN, see Table 2.7
XPFILE, see Table 2.8

definition, 108

Y
definition, 69
YM, see also Table 2.1
definition, 10, 14
YMAX, see Table 2.7
YMIN, see Table 2.7
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