We have
\[\hat{M} \cdot \hat{M} = (\hat{M} - i \hat{\pi}_z) (\hat{M} + i \hat{\pi}_z) = \hat{M}^2 + \hat{\pi}_z^2 + i [\hat{M}_z, \hat{M}_z] = \hat{M}^2 - \hat{\pi}_z^2 - \hbar \hat{\pi}_z. \]
(7.10.37)

If the operator \(\hat{M} \cdot \hat{M} \) acts on \(|\lambda, m_{\text{max}}\rangle \), it follows by using (7.10.31) that
\[(\hat{M}^2 - \hat{\pi}_z^2 - h \hat{\pi}_z) |\lambda, m_{\text{max}}\rangle = \hat{M} \cdot \hat{M} \cdot |\lambda, m_{\text{max}}\rangle = 0. \]
(7.10.38)

Therefore, by (7.10.26) and (7.10.27),
\[(\lambda - m_{\text{max}}^2 - m_{\text{min}}^2) |\lambda, m_{\text{max}}\rangle = 0 \]
or
\[\lambda = m_{\text{max}}^2 + m_{\text{max}}. \]
(7.10.39)

Similarly,
\[\hat{M} \cdot \hat{M} = \hat{M}^2 - \hat{\pi}_z^2 + h \hat{\pi}_z. \]
(7.10.40)

If this operator acts on \(|\lambda, m_{\text{max}}\rangle \), and (7.10.34) is used, we obtain
\[\lambda - m_{\text{min}}^2 + m_{\text{min}} = 0. \]
(7.10.41)

If we equate the two results for \(\lambda \) from (7.10.39) and (7.10.41), it turns out that
\[(m_{\text{max}} + m_{\text{min}})(m_{\text{min}} - m_{\text{max}} - 1) = 0. \]
(7.10.42)

Thus
\[m_{\text{max}} = -m_{\text{min}}. \]
(7.10.43)

Therefore the admissible values of \(m \) lie symmetrically about the origin. Since the extreme values differ by an integer, it follows that
\[m_{\text{max}} - m_{\text{min}} = 2l. \]
(7.10.44)

where
\[l = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots. \]
(7.10.45)

These results combined with (7.10.43) show that
\[-l \leq m \leq l \]
(2l + 1 values).

Finally, it follows from (7.10.39) and (7.10.44) that
\[\lambda = (l+1), \quad l = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots. \]
(7.10.47)

This is a definite proof for integer and half-integer eigenvalues for the angular momentum. Particles with integral spin are called the Bosons, those with half-integral spins are known as Fermions.

The two different kinds of angular momentum operators can be combined to define the total angular momentum
\[\hat{J} = \hat{L} + \hat{\pi}_z \]
(7.10.48)

with the components \(\hat{J}_x = \hat{L}_x + \hat{\pi}_z, \hat{J}_y = \hat{L}_y + \hat{\pi}_z, \hat{J}_z = \hat{L}_z + \hat{\pi}_z \).

It follows from the properties of \(\hat{L} \) and \(\hat{\pi}_z \) that \(\hat{J} \) satisfies the usual commutation relations
\[[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z, \]
(7.10.49a)
\[[\hat{J}_x, \hat{J}_z] = i\hbar \hat{J}_y, \]
(7.10.49b)
\[[\hat{J}_y, \hat{J}_z] = i\hbar \hat{J}_x, \]
(7.10.49c)

and hence
\[[\hat{J}_x, \hat{J}^2] = [\hat{J}_y, \hat{J}^2] = [\hat{J}_z, \hat{J}^2] = 0, \]
(7.10.50abc)

where
\[\hat{J}^2 = \hat{J}^2_x + \hat{J}^2_y + \hat{J}^2_z. \]
(7.10.51)

It can readily be shown that
\[\hat{J}^2|l, m\rangle = (l(l+1) \hbar^2)|l, m\rangle, \]
(7.10.52)
\[\hat{J}_z|l, m\rangle = \hbar m|l, m\rangle. \]
(7.10.53)

This means that the eigenvalues of \(\hat{J}^2 \) and \(\hat{J}_z \) are \(l(l+1) \hbar^2 \) and \(\hbar m \), respectively, where \(|m| \leq l \) and the quantum numbers may be either integers or half-integers.

Finally, it follows that
\[[\hat{J}_l, \hat{L}_z] = 2\hat{M}_z[\hat{L}_z, \hat{L}_z] + 2\hat{M}_l[\hat{L}_z, \hat{L}_z] = \hbar[\hat{L}_z, \hat{L}_z], \]
(7.10.54)
\[[\hat{J}_l, \hat{M}_z] = -\hbar[\hat{L}_z, \hat{L}_z]. \]
(7.10.55)

7.11. Exercises

(a) Use the Lagrangian, \(L = \frac{1}{2}m(r^2 + \dot{\phi}^2 + \dot{z}^2) - \frac{1}{2}k(z^2 + y^2 + x^2) \) for the three-dimensional isotropic harmonic oscillator, and Lagrange’s equations of motion to show that the total energy is constant where \(k \) is the force constant.

(b) Show that the Lagrangian for the oscillator in spherical polar coordinates \((r, \theta, \phi) \) is
\[L = T - V = \frac{1}{2}m(r^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2) - \frac{1}{2}kr^2, \]
where \(k = \frac{4}{3}m\omega^2 \).

Hence write down the Lagrange equations of motion.
(2) Consider a single particle of mass m moving in a plane under a conservative force with potential $V(r)$, where r is distance from the origin of coordinates. With r and θ as generalized coordinates describing the motion of the particle, show that the corresponding momenta are

$$p_r = \frac{\partial L}{\partial \dot{r}} = m\dot{r}, \quad p_\theta = \frac{\partial L}{\partial \dot{\theta}} = mr^2 \ddot{\theta},$$

where $L = T - V = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) - V(r)$. Hence show that

$$H = \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2} + V(r), \quad mr^2 \dot{\theta} = \text{constant}, \quad m(r - r\dot{\theta}) = \frac{\partial V}{\partial r}.$$

Give an interpretation of each of the above results.

(3) If A is a complex dynamical function of q and p, A^* is its complex conjugate, and if the Poisson bracket \{A, A^*\} = i, compute \{A, A^*\}, \{A^*, A^*\}, \{A^*, A A^*\}, and \{A^*, AA^*\}.

(4) Find the Hamiltonian and Hamilton’s equations of motion for

(i) The simple harmonic oscillator, $T = \frac{1}{2} m \dot{x}^2$ and $V = \frac{1}{2} k x^2$

(ii) The planetary motions, $T = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2)$, and $V = mu / (2a - 1/r)$.

In this case, derive the differential equations for the central orbit.

(5) Establish the following results for the Poisson brackets:

(i) \{A, B\} = \{B, A\},

(ii) \{(A + B), C\} = \{A, C\} + \{B, C\},

(iii) \{AB, C\} = \{A, C\} B + A\{B, C\},

(iv) \{A, \alpha\} = 0,

(v) \{A, \{B, C\}\} + \{B, \{C, A\}\} + \{C, \{A, B\}\} = 0 (Jacobi’s Identity),

where A, B, C are canonical functions and α is a scalar.

(6) Show that

(i) \{\hat{A}, \hat{B}\} = -\{\hat{B}, \hat{A}\},

(ii) \{\hat{A} + \hat{B}, \hat{C}\} = \{\hat{A}, \hat{C}\} + \{\hat{B}, \hat{C}\},

(iii) \{\hat{A}, \hat{B} + \hat{C}\} = \{\hat{A}, \hat{B}\} + \{\hat{A}, \hat{C}\},

(iv) \{\hat{A}\hat{B}, \hat{C}\} = \{\hat{A}, \hat{C}\} \hat{B} + \hat{A}\{\hat{B}, \hat{C}\},

(v) \{\hat{A}, \hat{B}\hat{C}\} = \{\hat{A}, \hat{B}\} \hat{C} + \hat{B}\{\hat{A}, \hat{C}\},

(vi) \{\hat{A}, \{\hat{B}, \hat{C}\}\} + \{\hat{B}, \{\hat{C}, \hat{A}\}\} + \{\hat{C}, \{\hat{A}, \hat{B}\}\} = 0 (Jacobi’s Identity),

(vii) \{\hat{A}^2, \hat{B}\} = A\{\hat{A}, \hat{B}\} + \{\hat{A}, \hat{B}\} A,$

(viii) \{\hat{A}, \alpha\} = 0, \alpha \text{ is a scalar.}

(7) For the three dimensional position and momentum operators of a particle, prove that

$$[\hat{r}_i, \hat{p}_j] = i\hbar \delta_{ij},$$

where the suffixes i, j take the values 1, 2, 3 for the x, y, z components of \hat{r} and \hat{p}, respectively.

(8) By direct evaluation for canonically conjugate variables q and p, show that

(i) $[p^i, p^j] = 2\hbar \delta^{ij}$

(ii) $[p^i, q^j] = -2i\hbar \delta^{ij}$

(iii) $[\hat{p}_x, \hat{p}_y] = 2\hbar \delta xy$

(iv) $[\hat{p}_x, \hat{p}_z] = -2i\hbar \delta xz$

(9) If A and B are any two operators which both commute with their commutator $[\hat{A}, \hat{B}]$ prove that

$$[\hat{A}, \hat{B}^*] = n\hat{B}^{*\dagger} [\hat{A}, \hat{B}],$$

$$[\hat{A}^*, \hat{B}] = n\hat{A}^{*\dagger} [\hat{A}, \hat{B}].$$

(10) Establish the following commutator relations:

$[\hat{L}_x, \hat{L}_z] = [\hat{L}_z, \hat{L}_y] = [\hat{L}_y, \hat{L}_x] = 0.$

(11) Show that

$[\hat{\mathcal{L}}_x, \hat{\mathcal{L}}_z] = \hbar \hat{\mathcal{L}}_x,$

$[\hat{\mathcal{L}}_y, \hat{\mathcal{L}}_z] = -\hbar \hat{\mathcal{L}}_y,$

$[\hat{\mathcal{L}}_z, \hat{\mathcal{L}}_x] = \hbar \hat{\mathcal{L}}_z.$

$[\hat{L}_z, \hat{L}_x] = \hbar \hat{L}_z,$

$[\hat{L}_y, \hat{L}_x] = \hbar \hat{L}_y.$

$[\hat{L}_x, \hat{L}_y] = 0.$

(12) Prove that

$$\hat{J}^2 = \hat{L}_x^2 + \hat{L}_y^2 + 2\hat{L}_z \cdot \hat{\mathcal{M}} = \hat{L}_x^2 + \hat{L}_y^2 + 2\hat{L}_z \cdot \hat{\mathcal{M}},$$

$$2\hat{L} \cdot \hat{\mathcal{M}} = \hat{J}^2 - \hat{L}_z^2 - \hat{\mathcal{M}}^2.$$
(13) Show that the probability for a position measurement on the state $\Psi(x, t)$ to yield a value somewhere between x_1 and x_2 is

$$P(x_1, x_2, t) = \int_{x_1}^{x_2} |\Psi(x, t)|^2 \, dx.$$

Using the Schrödinger equations, derive the result

$$\frac{d}{dt} P(x_1, x_2, t) = J(x_1, t) - J(x_2, t),$$

where

$$J(x, t) = \frac{i\hbar}{2m} \left[\Psi \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial \Psi}{\partial x} \right].$$

(14) Use the inner product

$$\langle \phi, \psi \rangle = \int_{-\infty}^{\infty} \bar{\phi} \psi \, dx,$$

and the property $\langle \phi, \psi \rangle \to (0, 0)$ as $|x| \to \infty$, to show that the position operator $\hat{x} = x$, the momentum operator $\hat{p} = -i\hbar \frac{\partial}{\partial x}$, and the energy operator $\hat{H} = \hat{p}^2/2m + V(x)$ are Hermitian operators.

(15) Establish the following commutation relations for the orbital angular momentum operators:

$$[\hat{L}_x, \hat{\theta}] = 0,$$
$$[\hat{L}_y, \hat{\phi}] = i\hbar \hat{\theta},$$
$$[\hat{L}_z, \hat{\phi}] = -i\hbar \hat{\phi},$$
$$[\hat{L}_x, \hat{\hat{p}}] = 0,$$
$$[\hat{L}_y, \hat{\hat{p}}] = i\hbar \hat{p}_y,$$
$$[\hat{L}_z, \hat{\hat{p}}] = -i\hbar \hat{p}_z.$$

(16) Prove the Heisenberg uncertainty relation for the harmonic oscillator

$$\Delta x \Delta p \geq \frac{1}{2} \hbar.$$

(17) If \hat{A} and \hat{B} are constants of motion, show that the commutator $[\hat{A}, \hat{B}]$ is also a constant of motion.

(18) Show that, for the linear harmonic oscillator,

$$[\hat{H}, \hat{A}] = (\hbar \omega) \hat{A},$$
$$[\hat{H}, \hat{A}^*] = (\hbar \omega) \hat{A}^*,$$

where

$$\hat{A} = \hat{x} / \sqrt{\hbar \omega} \quad \text{and} \quad \hat{A}^* = \hat{a}^* / \sqrt{\hbar \omega}.$$

(19) For the three dimensional anisotropic Planck's oscillator, the Hamiltonian is given by

$$H = \frac{1}{2m} \hat{p}_1^2 + \frac{1}{2} m \omega_1^2 \hat{x}_1^2,$$

so that total Hamiltonian $H = H_1 + H_2 + H_3$ and the total energy $E = E_1 + E_2 + E_3$, where E_1, E_2, E_3 are energies of each of the independent degrees of freedom. Show that

$$E = (n_1 + \frac{3}{2}) \hbar \omega_1 + (n_2 + \frac{3}{2}) \hbar \omega_2 + (n_3 + \frac{3}{2}) \hbar \omega_3.$$

In the case of an isotropic oscillator, $\omega_1 = \omega_2 = \omega_3 = \omega$, derive the result

$$E_N = (N + \frac{3}{2}) \hbar \omega, \quad N = n_1 + n_2 + n_3 = 0, 1, 2, 3, \ldots$$

(20) Prove the compatibility theorem which states that any one of the following conditions implies the other two:

(i) \hat{A} and \hat{B} are compatible,
(ii) \hat{A} and \hat{B} possess a common eigenbasis,
(iii) \hat{A} and \hat{B} commute,

where A and B are two observables with corresponding operators \hat{A} and \hat{B}.

(21) If the eigenvectors $\{\phi_n(x)\}$ form an orthonormal basis in a Hilbert space, show that any state vector $\psi(x)$ satisfies the result

$$\langle \phi, \psi \rangle = \sum_{n=1}^{\infty} \langle \phi_n, \psi \rangle.$$

(22) If $\hat{A}' = \hat{A} - \langle \hat{A} \rangle$ and $\hat{B}' = \hat{B} - \langle \hat{B} \rangle$, prove the following results:

(i) \hat{A}' and \hat{B}' are Hermitian operators,
(ii) $[\hat{A}', \hat{B}'] = [\hat{A}, \hat{B}]$,
(iii) $\langle \hat{A}' \hat{A}' \hat{A}' \hat{A} \psi \rangle = (\Delta \hat{A})^2.$

Use these results to establish the generalized uncertainty relation.

(23) Using $\langle \hat{A} \rangle = \int_{-\infty}^{\infty} \psi^* \hat{A} \psi \, dx$ prove that the expectation values of position and momentum in the state $\Psi(x, t)$ are

$$\langle \hat{x} \rangle = \int_{-\infty}^{\infty} x |\Psi(x, t)|^2 \, dx,$$
$$\langle \hat{p} \rangle = -i\hbar \int_{-\infty}^{\infty} \frac{\partial}{\partial x} |\Psi(x, t)|^2 \, dx.$$
Also show that
\[\langle \hat{x}^2 \rangle = \int_{-\infty}^{\infty} x^2 |\Psi(x, t)|^2 \, dx, \quad \langle \hat{p}^2 \rangle = \hbar^2 \int_{-\infty}^{\infty} \left| \frac{\partial}{\partial x} \Psi(x, t) \right|^2 \, dx. \]

(24) Apply the basic commutation relations [\hat{x}, \hat{p}] = i\hbar \delta_y and rules of commutator algebra to show that
\[[\hat{x}\hat{p}, \hat{H}] = \frac{i\hbar}{m} \hat{\beta}^2 + \hat{x}[\hat{\beta}, \hat{V}], \quad [\hat{p}\hat{x}, \hat{H}] = \frac{i\hbar}{m} \hat{\beta}^2 + \hat{p}[\hat{\beta}, \hat{V}], \]
\[[\hat{p}\hat{p}, \hat{H}] = \frac{i\hbar}{m} \hat{\beta}^2 + \hat{p}[\hat{\beta}, \hat{V}]. \]

Hence combine them to obtain the Heisenberg equation of motion for the operator \(r \cdot \mathbf{p} \)
\[\frac{d}{dt}(r \cdot \mathbf{p}) = \left(\frac{\mathbf{p} \cdot \nabla}{m} - (r \cdot \nabla V) \right). \]

Hence or otherwise prove the Virial Theorem for the stationary states:
\[2\langle T \rangle = (r \cdot \nabla V). \]

(25) Use the results in Exercise (9) for \(\hat{A} = \hat{x} \) and \(\hat{B} = \hat{p} \), to prove that for any Hamiltonian of the form
\[\hat{H} = \frac{\hat{p}^2}{2m} + \alpha \hat{x}^2, \]
the following relation holds:
\[[\hat{p}\hat{x}, \hat{H}] = i\hbar \left(\frac{\hat{p}^2}{m} - \alpha \hat{x}^2 \right) = i\hbar (2\hat{T} - \hat{p}\hat{V}). \]

(26) Use the Hamiltonian operator for the one dimensional simple harmonic oscillator in the form
\[\hat{H} = \frac{1}{2m} \hat{p}^2 + \frac{1}{2} m \omega^2 \hat{x}^2, \]
and then introduce the non-dimensional variables
\[\hat{\chi} = \left(\frac{m\omega}{2\hbar} \right)^{1/2} \hat{x}, \quad \hat{\mathbf{p}} = \frac{1}{(2m\hbar\omega)^{1/2}} \hat{p}. \]

(a) Show that
(i) \(\hat{X} \) and \(\hat{P} \) are Hermitian operators,
(ii) \(\hat{H} = \hbar \omega (\hat{P}^2 + \hat{X}^2) \),
(iii) \([\hat{X}, \hat{P}] = i \hbar \).