1. Which of the following are subspaces of \mathbb{R}^∞? Explain why or why not.
 (a) All sequences that include infinitely many zeroes.
 (b) All sequences (x_1, x_2, \cdots) with $x_j = 0$ from some point onward. (The j might vary from sequence to sequence.)
 (c) All arithmetic progressions: $x_{j+1} - x_j$ is the same for all j.
 (d) All geometric progressions $(x_1, kx_1, k^2x_1, \cdots)$ allowing all k and x_1.

2. Explanation question similar to 2.1.5 in the book: (part c from the book is good too, but you don’t have to do it. Notice that my question requires more explanation than the problem from the book.)
 (a) Suppose addition in \mathbb{R}^2 adds an extra 1 to each component, so that $(3, 1) + (5, 0)$ is $(9, 2)$ instead of $(8, 1)$. If scalar multiplication is unchanged, which rules of a vector space are broken? Explain why they are broken with sentences and an example.
 (b) Explain why the set of all positive real numbers, with $x + y$ and cx redefined to equal the usual xy and x^c, is a vector space. You don’t need to explicitly check each of the 8 properties, but do explain why ”linear combinations” stay in the space. Also, explain: What is the “zero vector”? For an vector x, what is the “additive inverse”, $-x$?

3. Prove that the LDU decomposition is unique. (Hint: Assuming you have two decompositions, derive the equation $L_1^{-1}L_2D_2 = D_1U_1U_2^{-1}$. What does this tell you?)