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Background

Symmetric system of linear equations

Consider
Hx + c = 0,

for x ∈ Rn. Assume H = HT ∈ Rn×n and c 6= 0.

Motivation: KKT systems arising in optimization, H = HT , in
general indefinite

General idea: Generate linearly independent vectors {qk} based on
H and c.
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Background

Krylov subspaces

Consider
K0(c,H) = {0},

Kk(c ,H) = span{c ,Hc ,H2c , . . . ,Hk−1c}, k = 1, 2, . . . .

With q0 = c , then one sequence of l.i. vectors may be generated as

qk ∈ Kk+1(c ,H) ∩ Kk(c ,H)⊥, k = 1, . . . , r ,

such that qk 6= 0 for k < r and qr = 0. (r is the minimum index k
for which qk ∈ Kk+1(c,H) ∩ Kk(c ,H)⊥ = {0})
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Background

Krylov vectors

The Krylov vectors {q0, q1, . . . , qr−1}, with q0 = c

form an orthogonal, hence linearly independent, basis of
Kr (c ,H)

are each uniquely determined up to a nonzero scaling

may be expressed as,

qk =
k∑

j=0

δ
(j)
k H jc , k = 1, . . . , r

where {δ(j)k }
k
j=0 are uniquely determined up to a common

non-zero scaling.

Not sufficient to just have qk and it is not convenient to have a

representation using all {δ(j)k }!
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A Krylov method

Triples

Let

qk = H
( k∑
j=1

δ
(j)
k H j−1c︸ ︷︷ ︸

=: yk ∈ Kk (c,H)

)
+ δ

(0)
k︸︷︷︸

=: δk

c = Hyk + δkc

Each Krylov vector qk may be associated with a triple (qk , yk , δk).
Possible to continue the recursion, and let

yk = Hy
(1)
k + δ

(1)
k c, with

y
(1)
k =

k∑
j=2

δ
(j)
k H j−2c ∈ Kk−1(c ,H), k = 2, . . . , r .
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A Krylov method

How to generate the Krylov vectors?

Given q0 = c , let

qk+1 ← αk

(
− Hqk +

qTk Hqk

qTk qk
qk +

qTk−1Hqk

qTk−1qk−1
qk−1

)
,

where αk , k = 0, . . . , r are free and non-zero.
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A Krylov method

How to generate the triples?

Given y0 = 0 and δ0 = 1, let

yk+1 ← αk

(
− qk +

qTk Hqk
qTk qk

yk +
qTk−1Hqk

qTk−1qk−1
yk−1

)
,

δk+1 ← αk

(qTk Hqk
qTk qk

δk +
qTk−1Hqk

qTk−1qk−1
δk−1

)
,

where αk , k = 0, . . . , r are free and non-zero.
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A Krylov method

Remarks on the recursions for the triples

Given (q0, y0, δ0) = (c , 0, 1), generate the triples (qk , yk , δk),
k = 1, . . . , r , for which qk = Hyk + δkc

One matrix-vector multiplication, Hqk , for each k

It holds that yk 6= 0, k = 1, . . . , r .

Note that {αk} is explicitly undecided

What happens for k = r , i.e. (qr , yr , δr ) = (0, yr , δr )?
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A Krylov method

Convergence result

Recall: qk = Hyk + δkc , for all k . For k = r it holds that qr = 0,
hence

0 = qr = Hyr + δrc

Theorem

Let (qk , yk , δk), k = 0, . . . , r , be given the recursions then,

(1) If δr 6= 0, then Hxr + c = 0 for xr = (1/δr )yr , so that
c ∈ R(H) and xr solves Hx + c = 0.

(2) If δr = 0, then Hyr = 0, cT yr 6= 0 so that c 6∈ R(H) and
Hx + c = 0 has no solution.
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A Krylov method

A Krylov algorithm

Generate triples (qk , yk , δk) until qr = 0. Then examine if δr 6= 0 or
δr = 0.

Choice of αk non-zero is arbitrary. Our choice: αk such that
||yk+1|| = ||c ||, (yk+1 6= 0,∀k ≥ 0)
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A Krylov method

Example

Let

c =
(

3 2 1 0 −1 −2 −3
)T
, H = diag(c),

Then Hx + c = 0 is compatible, with optimal solution

x∗ =
(
−1 −1 −1 0 −1 −1 −1

)T
.

Note that H is indefinite.
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A Krylov method

Krylov algorithm on example problem

q = 3.0000 -9.0000 2.2678 -2.7046 0.2648 -0.2445 0.0000

2.0000 -4.0000 -2.2678 5.4912 -1.0591 1.4673 0

1.0000 -1.0000 -2.2678 2.3768 1.3239 -3.6681 0

0 0 0 0 0 0 0

-1.0000 -1.0000 2.2678 2.3768 -1.3239 -3.6681 0

-2.0000 -4.0000 2.2678 5.4912 1.0591 1.4673 0

-3.0000 -9.0000 -2.2678 -2.7046 -0.2648 -0.2445 -0.0000

y = 0 -3.0000 3.4017 -0.9015 -2.2241 -0.0815 2.1602

0 -2.0000 1.5119 2.7456 -2.8419 0.7336 2.1602

0 -1.0000 0.3780 2.3768 -0.9885 -3.6681 2.1602

0 0 0 0 0 0 0

0 1.0000 0.3780 -2.3768 -0.9885 3.6681 2.1602

0 2.0000 1.5119 -2.7456 -2.8419 -0.7336 2.1602

0 3.0000 3.4017 0.9015 -2.2241 0.0815 2.1602

d = 1.0000 0 -2.6458 0 2.3123 0 -2.1602
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A Krylov method

Some results on {δk}

If qk 6= 0 and δk = 0, then

δk+1 6= 0

δk−1δk+1 < 0

If H � 0, then

δk 6= 0, for all k < r

if δk > 0 and δk+1 6= 0, then δk+1 > 0 iff αk > 0

With δ0 = 1 and αk > 0 it holds that

for H � 0, δk > 0, for all k < r and δr ≥ 0
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A Krylov method

Connection to the method of conjugate gradients

Obtain CG as a special case of the Krylov method for exactly the
choice of αk such that (qk , yk , δk) may be denoted by (gk , xk , 1).
(This particular αk is the same as the steplength when CG is
derived a linesearch method for minimizing over expanding
subpaces)
Note:

For H � 0 and Hx + c = 0 compatible, it will be ok since δk 6= 0 for
all k

For H � 0 and Hx + c = 0 incompatible, CG will fail in the last
iteration, only then will δr = 0

This choice of scaling will fail for δk = 0.
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An extended Krylov method

Extension of the Krylov method

The Krylov method gives a certificate incompatibility if
Hx + c = 0 is not compatible

Next extend the Krylov method, using the triples (qk , yk , δk),
to obtain, in each step, a minimum-residual solution xMR

k and
in the final step get the minimum-residual solution of
minimum Euclidean norm.
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An extended Krylov method

Minimum residual solution

Let xMR
k be defined as a solution to

minx∈Kk (c,H)||Hx + c ||22

and the corresponding residual gMR
k = HxMR

k + c.
The vectors xMR

k are are uniquely defined for k = 0, . . . , r − 1,
and for k = r if c ∈ R(H). For the case k = r and c 6∈ R(H) there
is one degree of freedom for xMR

r .
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An extended Krylov method

Theorem

Given the triples (qk , yk , δk) then xMR
k is a solution to

minx∈Kk (c,H)||Hx + c ||22

if and only if xMR
k =

∑k
i=0 γiyi for some γi , i = 0, . . . , k, that are

optimal to
min 1

2

∑k
i=0 γ

2
i q

T
i qi

s.t.
∑k

i=0 γiδi = 1.

An arbitrary g ∈ Kk+1(c ,H)

g =
k∑

i=0

γiqi =
k∑

i=0

γi (Hyi + δic) = H(
k∑

i=0

γiyi ) + (
k∑

i=0

γiδi )c
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An extended Krylov method

Theorem cont.

In particular, xMR
k takes the following form:

(a) For k < r , it holds that

xMR
k =

1∑k
j=0

δ2j
qTj qj

k∑
i=0

δi

qTi qi
yi ,

and gMR
k = HxMR

k + c 6= 0.

(b) For k = r and δr 6= 0,

xMR
r = (1/δr )yr

and gMR
r = HxMR

r + c = 0.
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An extended Krylov method

Theorem cont.

(c) For k = r and δr = 0, it holds that xMR
r = xMR

r−1 + γryr , where
γr is an arbitrary scalar, and gMR

r = HxMR
r + c = gMR

r−1 6= 0. In
addition, xMR

r−1 and xMR
r solve minx∈Rn ||Hx + c ||22. The

particular choice

γr = −
yTr xMR

r−1
yTr yr

Makes xMR
r an optimal solution to minx∈Rn ||Hx + c ||22 of

minimum Euclidean norm.

Tove Odland A Krylov method for solving symmetric systems



A Krylov method for solving symmetric systems

An extended Krylov method

Theorem cont.

(c) For k = r and δr = 0, it holds that xMR
r = xMR

r−1 + γryr , where
γr is an arbitrary scalar, and gMR

r = HxMR
r + c = gMR

r−1 6= 0. In
addition, xMR

r−1 and xMR
r solve minx∈Rn ||Hx + c ||22. The

particular choice

γr = −
yTr xMR

r−1
yTr yr

Makes xMR
r an optimal solution to minx∈Rn ||Hx + c ||22 of

minimum Euclidean norm.

Tove Odland A Krylov method for solving symmetric systems



A Krylov method for solving symmetric systems

An extended Krylov method

Recursions for the minimum residual method

Given (qk , yk , δk) and let δMR
0 := δ20 , yMR

0 := δ0y0, and

δMR
k =

qTk qk

qTk−1qk−1
δMR
k−1 + δ2k , yMR

k =
qTk qk

qTk−1qk−1
yMR
k−1 + δkyk ,

for k = 1, . . . , r , then

xMR
k =

1

δMR
k

yMR
k , k = 0, . . . , r − 1 and k = r if δr 6= 0,
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An extended Krylov method

Extended Krylov algorithm

Generate (qk , yk , δk) as before. Generate δMR
k and yMR

k , to obtain
xMR
k . Until qr = 0. Then examine if δr 6= 0 or δr = 0.

Recall (the compatible) example:

xMR =

0 0 -1.1108 -1.1108 -0.9953 -0.9953 -1.0000

0 0 -0.4937 -0.4937 -1.0641 -1.0641 -1.0000

0 0 -0.1234 -0.1234 -0.3593 -0.3593 -1.0000

0 0 0 0 0 0 0

0 0 -0.1234 -0.1234 -0.3593 -0.3593 -1.0000

0 0 -0.4937 -0.4937 -1.0641 -1.0641 -1.0000

0 0 -1.1108 -1.1108 -0.9953 -0.9953 -1.0000

delta =

1.0000 0 -2.6458 0 2.3123 0 -2.1602
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An extended Krylov method

An incompatible example

Let

c =
(

3 2 1 1 −1 −2 −3
)T
,

H = diag
(

5 2 1 0 −1 −2 −3
)
,

Note that H is indefinite and the system Hx + c = 0 is
incompatible.
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An extended Krylov method

q =

3.0000 -13.1379 3.5628 -0.8597 0.1063 -0.0181 0.0017 -0.0000

2.0000 -2.7586 -5.7676 3.9832 -1.3787 0.6372 -0.1470 -0.0000

1.0000 -0.3793 -3.1464 0.1039 1.8638 -2.5737 1.1021 0.0000

1.0000 0.6207 -2.8617 -1.7605 2.2573 0.5896 -1.7634 -0.0000

-1.0000 -1.6207 2.0296 2.7934 -0.6882 -2.4489 -1.4695 0.0000

-2.0000 -5.2414 1.3007 4.3735 2.1842 1.1548 0.3149 -0.0000

-3.0000 -10.8621 -3.8286 -2.6032 -0.6658 -0.2082 -0.0367 0.0000

y =

0 -3.0000 2.4296 0.8844 -1.3331 -0.3574 1.0584 -0.0000

0 -2.0000 -0.0222 3.7521 -2.9466 -0.2710 1.6899 0

0 -1.0000 -0.2847 1.8644 -0.3935 -3.1633 2.8655 0.0000

0 -1.0000 -0.5584 1.5833 0.7502 -3.7018 -0.7931 5.3852

0 1.0000 0.8320 -1.0329 -1.5691 1.8593 3.2329 0.0000

0 2.0000 2.2113 -0.4262 -3.3494 -1.1670 1.6060 0.0000

0 3.0000 4.1379 2.6283 -2.0353 -0.5202 1.7756 0.0000

delta =

1.0000 0.6207 -2.8617 -1.7605 2.2573 0.5896 -1.7634 -0.0000

xMR =

0 -0.1588 -0.6633 -0.6143 -0.5995 -0.5998 -0.6000 -0.6000

0 -0.1059 -0.0228 -0.6647 -1.0640 -1.0371 -1.0000 -1.0000

0 -0.0529 0.0585 -0.2817 -0.2148 -0.4441 -1.0000 -1.0000

0 -0.0529 0.1284 -0.1845 0.1376 -0.1481 0.1333 -0.0000

0 0.0529 -0.1983 0.0407 -0.4178 -0.2588 -1.0000 -1.0000

0 0.1059 -0.5364 -0.2994 -1.0375 -1.0794 -1.0000 -1.0000

0 0.1588 -1.0143 -1.1600 -0.9990 -0.9938 -1.0000 -1.0000
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Conclusions

Using triples (qk , yk , δk) such that qk = Hyk + δkc (uniquely
determined up to a common non-zero scaling)

A Krylov method for solving a system of linear equations
Hx + c = 0 for H = HT . Gives a solution xr = (1/δr )yr in the
compatible case or a certificate of incompatibility

An extended Krylov method with explicit recursions for yMR
k

and δMR
k to obtain the minimum-residual solution xMR

k in each
step. Gives a solution xMR

r = xr in the compatible case or the
minimum-residual solution of minimum Euclidean norm

xMR
r = xMR
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The End

Thank you for your time!

Questions?
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