A Krylov method for solving symmetric systems arising in optimization

Tove Odland Joint work with: Anders Forsgren

Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

SCOD14, San Diego, May 23

- 4 同 6 4 日 6 4 日 6

Symmetric system of linear equations

Consider

$$Hx + c = 0$$
,

for $x \in \mathbb{R}^n$. Assume $H = H^T \in \mathbb{R}^{n \times n}$ and $c \neq 0$.

Motivation: KKT systems arising in optimization, $H = H^T$, in general indefinite

General idea: Generate linearly independent vectors $\{q_k\}$ based on H and c.

・ 同 ト ・ ヨ ト ・ ヨ ト

Krylov subspaces

Consider

$$\mathcal{K}_0(c, H) = \{0\},$$

 $\mathcal{K}_k(c, H) = span\{c, Hc, H^2c, \dots, H^{k-1}c\}, \quad k = 1, 2, \dots.$

With $q_0 = c$, then one sequence of l.i. vectors may be generated as

$$q_k \in \mathcal{K}_{k+1}(c, H) \cap \mathcal{K}_k(c, H)^{\perp}, k = 1, \ldots, r,$$

such that $q_k \neq 0$ for k < r and $q_r = 0$. (*r* is the minimum index *k* for which $q_k \in \mathcal{K}_{k+1}(c, H) \cap \mathcal{K}_k(c, H)^{\perp} = \{0\}$)

(4月) イヨト イヨト

Krylov subspaces

Consider

$$\mathcal{K}_0(c, H) = \{0\},$$

 $\mathcal{K}_k(c, H) = span\{c, Hc, H^2c, \dots, H^{k-1}c\}, \quad k = 1, 2, \dots.$

With $q_0 = c$, then one sequence of l.i. vectors may be generated as

$$q_k \in \mathcal{K}_{k+1}(c,H) \cap \mathcal{K}_k(c,H)^{\perp}, k = 1, \ldots, r,$$

such that $q_k \neq 0$ for k < r and $q_r = 0$. (r is the minimum index k for which $q_k \in \mathcal{K}_{k+1}(c, H) \cap \mathcal{K}_k(c, H)^{\perp} = \{0\}$)

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Krylov vectors

The Krylov vectors $\{q_0, q_1, \ldots, q_{r-1}\}$, with $q_0 = c$

- form an orthogonal, hence linearly independent, basis of *K*_r(*c*, *H*)
- are each uniquely determined up to a nonzero scaling

may be expressed as,

$$q_k = \sum_{j=0}^k \delta_k^{(j)} H^j c, \quad k = 1, \dots, r$$

where $\{\delta_k^{(j)}\}_{j=0}^k$ are uniquely determined up to a common non-zero scaling.

Not sufficient to just have q_k and it is not convenient to have a representation using all $\{\delta_k^{(j)}\}!$

Krylov vectors

The Krylov vectors $\{q_0, q_1, \dots, q_{r-1}\}$, with $q_0 = c$

- form an orthogonal, hence linearly independent, basis of *K_r(c, H)*
- are each uniquely determined up to a nonzero scaling
- may be expressed as,

$$q_k = \sum_{j=0}^k \delta_k^{(j)} \mathcal{H}^j c, \quad k = 1, \dots, r$$

where $\{\delta_k^{(j)}\}_{j=0}^k$ are uniquely determined up to a common non-zero scaling.

Not sufficient to just have q_k and it is not convenient to have a representation using all $\{\delta_k^{(j)}\}!$

Krylov vectors

The Krylov vectors $\{q_0, q_1, \dots, q_{r-1}\}$, with $q_0 = c$

- form an orthogonal, hence linearly independent, basis of *K_r(c, H)*
- are each uniquely determined up to a nonzero scaling
- may be expressed as,

$$q_k = \sum_{j=0}^k \delta_k^{(j)} \mathcal{H}^j c, \quad k = 1, \dots, r$$

where $\{\delta_k^{(j)}\}_{j=0}^k$ are uniquely determined up to a common non-zero scaling.

Not sufficient to just have q_k and it is not convenient to have a representation using all $\{\delta_k^{(j)}\}!$

Triples

Let

$$q_{k} = H\left(\sum_{\substack{j=1\\ =: y_{k} \in \mathcal{K}_{k}(c, H)}}^{k} \delta_{k}^{(j)} H^{j-1}c\right) + \underbrace{\delta_{k}^{(0)}}_{=: \delta_{k}}c = Hy_{k} + \delta_{k}c$$

Each Krylov vector q_k may be associated with a triple (q_k, y_k, δ_k) . Possible to continue the recursion, and let

$$y_k = H y_k^{(1)} + \delta_k^{(1)} c, \quad \text{with}$$

$$y_k^{(1)} = \sum_{j=2}^k \delta_k^{(j)} H^{j-2} c \in \mathcal{K}_{k-1}(c, H), \quad k = 2, \dots, r.$$

(4回) (4回) (4回)

æ

Triples

Let

$$q_{k} = H\left(\sum_{\substack{j=1\\ =: y_{k} \in \mathcal{K}_{k}(c, H)}}^{k} \delta_{k}^{(j)} H^{j-1}c\right) + \underbrace{\delta_{k}^{(0)}}_{=: \delta_{k}}c = Hy_{k} + \delta_{k}c$$

Each Krylov vector q_k may be associated with a triple (q_k, y_k, δ_k) . Possible to continue the recursion, and let

$$y_k = H y_k^{(1)} + \delta_k^{(1)} c$$
, with

$$y_k^{(1)} = \sum_{j=2}^k \delta_k^{(j)} H^{j-2} c \in \mathcal{K}_{k-1}(c, H), \quad k = 2, \dots, r.$$

(4回) (4回) (4回)

æ

How to generate the Krylov vectors?

Given $q_0 = c$, let

$$q_{k+1} \leftarrow \alpha_k \big(-Hq_k + \frac{q_k^T Hq_k}{q_k^T q_k} q_k + \frac{q_{k-1}^T Hq_k}{q_{k-1}^T q_{k-1}} q_{k-1} \big),$$

where α_k , $k = 0, \ldots, r$ are free and non-zero.

(4月) (4日) (4日)

э

How to generate the triples?

Given
$$y_0 = 0$$
 and $\delta_0 = 1$, let

$$y_{k+1} \leftarrow \alpha_k \Big(-q_k + \frac{q_k^T Hq_k}{q_k^T q_k} y_k + \frac{q_{k-1}^T Hq_k}{q_{k-1}^T q_{k-1}} y_{k-1} \Big),$$

$$\delta_{k+1} \leftarrow \alpha_k \Big(\frac{q_k^T Hq_k}{q_k^T q_k} \delta_k + \frac{q_{k-1}^T Hq_k}{q_{k-1}^T q_{k-1}} \delta_{k-1} \Big),$$

where α_k , $k = 0, \ldots, r$ are free and non-zero.

Remarks on the recursions for the triples

- Given $(q_0, y_0, \delta_0) = (c, 0, 1)$, generate the triples (q_k, y_k, δ_k) , $k = 1, \dots, r$, for which $q_k = Hy_k + \delta_k c$
- One matrix-vector multiplication, Hq_k , for each k
- It holds that $y_k \neq 0$, $k = 1, \ldots, r$.
- Note that $\{\alpha_k\}$ is explicitly undecided
- What happens for k = r, i.e. $(q_r, y_r, \delta_r) = (0, y_r, \delta_r)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Convergence result

Recall: $q_k = Hy_k + \delta_k c$, for all k. For k = r it holds that $q_r = 0$, hence

$$0 = q_r = H y_r + \delta_r c$$

I heorem

Let (q_k, y_k, δ_k) , k = 0, ..., r, be given the recursions then, (1) If $\delta_r \neq 0$, then $Hx_r + c = 0$ for $x_r = (1/\delta_r)y_r$, so that $c \in \mathcal{R}(H)$ and x_r solves Hx + c = 0. (2) If $\delta_r = 0$, then $Hy_r = 0$, $c^T y_r \neq 0$ so that $c \notin \mathcal{R}(H)$ and $Hx_r + c = 0$ has no colution

イロト イヨト イヨト イヨト

Convergence result

Recall: $q_k = Hy_k + \delta_k c$, for all k. For k = r it holds that $q_r = 0$, hence

$$0 = q_r = H y_r + \delta_r c$$

Theorem

Let (q_k, y_k, δ_k) , k = 0, ..., r, be given the recursions then,

(1) If $\delta_r \neq 0$, then $Hx_r + c = 0$ for $x_r = (1/\delta_r)y_r$, so that $c \in \mathcal{R}(H)$ and x_r solves Hx + c = 0.

(2) If $\delta_r = 0$, then $Hy_r = 0$, $c^T y_r \neq 0$ so that $c \notin \mathcal{R}(H)$ and Hx + c = 0 has no solution.

イロト イポト イヨト イヨト

Convergence result

Recall: $q_k = Hy_k + \delta_k c$, for all k. For k = r it holds that $q_r = 0$, hence

$$0 = q_r = H y_r + \delta_r c$$

Theorem

Let (q_k, y_k, δ_k) , k = 0, ..., r, be given the recursions then,

(

(1) If
$$\delta_r \neq 0$$
, then $Hx_r + c = 0$ for $x_r = (1/\delta_r)y_r$, so that $c \in \mathcal{R}(H)$ and x_r solves $Hx + c = 0$.

(2) If
$$\delta_r = 0$$
, then $Hy_r = 0$, $c^T y_r \neq 0$ so that $c \notin \mathcal{R}(H)$ and $Hx + c = 0$ has no solution.

・ロン ・回と ・ヨン ・ヨン

æ

A Krylov algorithm

Generate triples (q_k, y_k, δ_k) until $q_r = 0$. Then examine if $\delta_r \neq 0$ or $\delta_r = 0$.

Choice of α_k non-zero is arbitrary. Our choice: α_k such that $||y_{k+1}|| = ||c||$, $(y_{k+1} \neq 0, \forall k \ge 0)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Let

$$c = \begin{pmatrix} 3 & 2 & 1 & 0 & -1 & -2 & -3 \end{pmatrix}^T$$
, $H = diag(c)$,

Then Hx + c = 0 is compatible, with optimal solution $x^* = \begin{pmatrix} -1 & -1 & -1 & 0 & -1 & -1 \end{pmatrix}^T$.

Note that H is indefinite.

・ 回 と ・ ヨ と ・ ヨ と

æ

Krylov algorithm on example problem

			Toyo Odland	A Krylov m	sthad for coluing	cummotric custom	-
d = 1.	.0000	0	-2.6458	0	2.3123	0 ◆ ₹ ≣ ▶ ∢ ≣ ▶	-2.1602 ≣ ∽৭ে
	0	3.0000	3.4017	0.9015	-2.2241	0.0815	2.1602
	0	2.0000	1.5119	-2.7456	-2.8419	-0.7336	2.1602
	0	1.0000	0.3780	-2.3768	-0.9885	3.6681	2.1602
	0	0	0	0	0	0	0
	0	-1.0000	0.3780	2.3768	-0.9885	-3.6681	2.1602
	0	-2.0000	1.5119	2.7456	-2.8419	0.7336	2.1602
у =	0	-3.0000	3.4017	-0.9015	-2.2241	-0.0815	2.1602
-3.	.0000	-9.0000	-2.2678	-2.7046	-0.2648	-0.2445	-0.0000
-2.	.0000	-4.0000	2.2678	5.4912	1.0591	1.4673	0
-1.	.0000	-1.0000	2.2678	2.3768	-1.3239	-3.6681	0
	0	0	0	0	0	0	0
1.	.0000	-1.0000	-2.2678	2.3768	1.3239	-3.6681	0
2.	.0000	-4.0000	-2.2678	5.4912	-1.0591	1.4673	0
q = 3.	.0000	-9.0000	2.2678	-2.7046	0.2648	-0.2445	0.0000

Some results on $\{\delta_k\}$

If
$$q_k \neq 0$$
 and $\delta_k = 0$, then
• $\delta_{k+1} \neq 0$
• $\delta_{k-1}\delta_{k+1} < 0$
If $H \succeq 0$, then
• $\delta_k \neq 0$, for all $k < r$
• if $\delta_k > 0$ and $\delta_{k+1} \neq 0$, then $\delta_{k+1} > 0$ iff $\alpha_k > 0$
With $\delta_0 = 1$ and $\alpha_k > 0$ it holds that
• for $H \succeq 0$, $\delta_k > 0$, for all $k < r$ and $\delta_r \ge 0$

イロン イヨン イヨン イヨン

æ

Some results on $\{\delta_k\}$

If $q_k \neq 0$ and $\delta_k = 0$, then $\begin{aligned} & \delta_{k+1} \neq 0 \\ & \delta_{k-1}\delta_{k+1} < 0 \end{aligned}$ If $H \succeq 0$, then $\begin{aligned} & \delta_k \neq 0, \text{ for all } k < r \\ & \text{ if } \delta_k > 0 \text{ and } \delta_{k+1} \neq 0, \text{ then } \delta_{k+1} > 0 \text{ iff } \alpha_k > 0 \end{aligned}$ With $\delta_0 = 1$ and $\alpha_k > 0$ it holds that $\end{aligned}$ $\begin{aligned} & \text{ for } H \succeq 0, \delta_k > 0, \text{ for all } k < r \text{ and } \delta_r \ge 0 \end{aligned}$

イロト イポト イヨト イヨト

Some results on $\{\delta_k\}$

If
$$q_k \neq 0$$
 and $\delta_k = 0$, then
• $\delta_{k+1} \neq 0$
• $\delta_{k-1}\delta_{k+1} < 0$
If $H \succeq 0$, then
• $\delta_k \neq 0$, for all $k < r$
• if $\delta_k > 0$ and $\delta_{k+1} \neq 0$, then $\delta_{k+1} > 0$ iff $\alpha_k > 0$
With $\delta_0 = 1$ and $\alpha_k > 0$ it holds that
• for $H \succeq 0$, $\delta_k > 0$, for all $k < r$ and $\delta_r \ge 0$

イロン イヨン イヨン イヨン

æ

Connection to the method of conjugate gradients

Obtain CG as a special case of the Krylov method for exactly the choice of α_k such that (q_k, y_k, δ_k) may be denoted by $(g_k, x_k, 1)$. (This particular α_k is the same as the steplength when CG is derived a linesearch method for minimizing over expanding subpaces) Note:

- For $H \succeq 0$ and Hx + c = 0 compatible, it will be ok since $\delta_k \neq 0$ for all k
- For $H \succeq 0$ and Hx + c = 0 incompatible, CG will fail in the last iteration, only then will $\delta_r = 0$

This choice of scaling will fail for $\delta_k = 0$.

イロト イポト イヨト イヨト

Connection to the method of conjugate gradients

Obtain CG as a special case of the Krylov method for exactly the choice of α_k such that (q_k, y_k, δ_k) may be denoted by $(g_k, x_k, 1)$. (This particular α_k is the same as the steplength when CG is derived a linesearch method for minimizing over expanding subpaces)

Note:

- For $H \succeq 0$ and Hx + c = 0 compatible, it will be ok since $\delta_k \neq 0$ for all k
- For $H \succeq 0$ and Hx + c = 0 incompatible, CG will fail in the last iteration, only then will $\delta_r = 0$

This choice of scaling will fail for $\delta_k = 0$.

イロン イヨン イヨン イヨン

Connection to the method of conjugate gradients

Obtain CG as a special case of the Krylov method for exactly the choice of α_k such that (q_k, y_k, δ_k) may be denoted by $(g_k, x_k, 1)$. (This particular α_k is the same as the steplength when CG is derived a linesearch method for minimizing over expanding subpaces) Note:

- For $H \succeq 0$ and Hx + c = 0 compatible, it will be ok since $\delta_k \neq 0$ for all k
- For $H \succeq 0$ and Hx + c = 0 incompatible, CG will fail in the last iteration, only then will $\delta_r = 0$

This choice of scaling will fail for $\delta_k = 0$.

イロト イポト イヨト イヨト

Extension of the Krylov method

- The Krylov method gives a certificate incompatibility if Hx + c = 0 is not compatible
- Next extend the Krylov method, using the triples (q_k, y_k, δ_k), to obtain, in each step, a minimum-residual solution x^{MR}_k and in the final step get the minimum-residual solution of minimum Euclidean norm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Minimum residual solution

Let x_k^{MR} be defined as a solution to

 $\min_{x\in\mathcal{K}_k(c,H)}||Hx+c||_2^2$

and the corresponding residual $g_k^{MR} = H x_k^{MR} + c$.

The vectors x_k^{MR} are are uniquely defined for k = 0, ..., r - 1, and for k = r if $c \in \mathcal{R}(H)$. For the case k = r and $c \notin \mathcal{R}(H)$ there is one degree of freedom for x_r^{MR} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Minimum residual solution

Let x_k^{MR} be defined as a solution to

$$\min_{x\in\mathcal{K}_k(c,H)}||Hx+c||_2^2$$

and the corresponding residual $g_k^{MR} = Hx_k^{MR} + c$. The vectors x_k^{MR} are are uniquely defined for k = 0, ..., r - 1, and for k = r if $c \in \mathcal{R}(H)$. For the case k = r and $c \notin \mathcal{R}(H)$ there is one degree of freedom for x_r^{MR} .

向下 イヨト イヨト

Theorem

Given the triples (q_k, y_k, δ_k) then x_k^{MR} is a solution to

 $min_{x\in\mathcal{K}_k(c,H)}||Hx+c||_2^2$

if and only if $x_k^{MR} = \sum_{i=0}^k \gamma_i y_i$ for some γ_i , i = 0, ..., k, that are optimal to

$$\begin{array}{ll} \min & \frac{1}{2} \sum_{i=0}^{k} \gamma_i^2 q_i^T q_i \\ s.t. & \sum_{i=0}^{k} \gamma_i \delta_i = 1. \end{array}$$

An arbitrary $g \in \mathcal{K}_{k+1}(c, H)$

$$g = \sum_{i=0}^{k} \gamma_i q_i = \sum_{i=0}^{k} \gamma_i (Hy_i + \delta_i c) = H(\sum_{i=0}^{k} \gamma_i y_i) + (\sum_{i=0}^{k} \gamma_i \delta_i) c$$

Theorem cont.

In particular, x_k^{MR} takes the following form:

(a) For k < r, it holds that

$$x_k^{MR} = \frac{1}{\sum_{j=0}^k \frac{\delta_j^2}{q_j^T q_j}} \sum_{i=0}^k \frac{\delta_i}{q_i^T q_i} y_i,$$

and $g_k^{MR} = H x_k^{MR} + c \neq 0$. b) For k = r and $\delta_r \neq 0$,

$$x_r^{MR} = (1/\delta_r)y_r$$

and $g_r^{MR} = H x_r^{MR} + c = 0$.

イロト イポト イヨト イヨト

æ

Theorem cont.

In particular, x_k^{MR} takes the following form:

(a) For k < r, it holds that

$$x_k^{MR} = \frac{1}{\sum_{j=0}^k \frac{\delta_j^2}{q_j^T q_j}} \sum_{i=0}^k \frac{\delta_i}{q_i^T q_i} y_i,$$

and $g_k^{MR} = H x_k^{MR} + c \neq 0$. (b) For k = r and $\delta_r \neq 0$,

$$x_r^{MR} = (1/\delta_r)y_r$$

and
$$g_r^{MR} = H x_r^{MR} + c = 0$$
.

イロト イポト イヨト イヨト

Э

Theorem cont.

(c) For k = r and $\delta_r = 0$, it holds that $x_r^{MR} = x_{r-1}^{MR} + \gamma_r y_r$, where γ_r is an arbitrary scalar, and $g_r^{MR} = Hx_r^{MR} + c = g_{r-1}^{MR} \neq 0$. In addition, x_{r-1}^{MR} and x_r^{MR} solve $\min_{x \in \mathbb{R}^n} ||Hx + c||_2^2$. The particular choice

$$\gamma_r = -\frac{y_r^T x_{r-1}^{MR}}{y_r^T y_r}$$

Makes x_r^{MR} an optimal solution to $\min_{x \in \mathbb{R}^n} ||Hx + c||_2^2$ of minimum Euclidean norm.

・ロト ・回ト ・ヨト ・ヨト

Theorem cont.

(c) For k = r and $\delta_r = 0$, it holds that $x_r^{MR} = x_{r-1}^{MR} + \gamma_r y_r$, where γ_r is an arbitrary scalar, and $g_r^{MR} = Hx_r^{MR} + c = g_{r-1}^{MR} \neq 0$. In addition, x_{r-1}^{MR} and x_r^{MR} solve $min_{x \in \mathbb{R}^n} ||Hx + c||_2^2$. The particular choice

$$\gamma_r = -\frac{y_r^T x_{r-1}^{MR}}{y_r^T y_r}$$

Makes x_r^{MR} an optimal solution to $\min_{x \in \mathbb{R}^n} ||Hx + c||_2^2$ of minimum Euclidean norm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recursions for the minimum residual method

Given (q_k, y_k, δ_k) and let $\delta_0^{MR} := \delta_0^2$, $y_0^{MR} := \delta_0 y_0$, and

$$\delta_{k}^{MR} = \frac{q_{k}^{T} q_{k}}{q_{k-1}^{T} q_{k-1}} \delta_{k-1}^{MR} + \delta_{k}^{2}, \quad y_{k}^{MR} = \frac{q_{k}^{T} q_{k}}{q_{k-1}^{T} q_{k-1}} y_{k-1}^{MR} + \delta_{k} y_{k},$$

for $k = 1, \ldots, r$, then

$$x_k^{MR} = rac{1}{\delta_k^{MR}} y_k^{MR}, \quad k=0,\ldots,r-1 ext{ and } k=r ext{ if } \delta_r
eq 0,$$

(四) (日) (日)

Extended Krylov algorithm

Generate (q_k, y_k, δ_k) as before. Generate δ_k^{MR} and y_k^{MR} , to obtain x_k^{MR} . Until $q_r = 0$. Then examine if $\delta_r \neq 0$ or $\delta_r = 0$.

Recall (the compatible) example:

xMR =

1.0000 0 -2.6458 0 2.31

0 -2.1602

イロト イヨト イヨト イヨト

Extended Krylov algorithm

Generate (q_k, y_k, δ_k) as before. Generate δ_k^{MR} and y_k^{MR} , to obtain x_k^{MR} . Until $q_r = 0$. Then examine if $\delta_r \neq 0$ or $\delta_r = 0$.

Recall (the compatible) example:

xMR =

0	0	-1.1108	-1.1108	-0.9953	-0.9953	-1.0000
0	0	-0.4937	-0.4937	-1.0641	-1.0641	-1.0000
0	0	-0.1234	-0.1234	-0.3593	-0.3593	-1.0000
0	0	0	0	0	0	0
0	0	-0.1234	-0.1234	-0.3593	-0.3593	-1.0000
0	0	-0.4937	-0.4937	-1.0641	-1.0641	-1.0000
0	0	-1.1108	-1.1108	-0.9953	-0.9953	-1.0000
delta =						
1.0000	0	-2.6458	0	2.3123	0	-2.1602

・ロン ・回 と ・ ヨ と ・ ヨ と

An incompatible example

Let

$$c = (3 \ 2 \ 1 \ 1 \ -1 \ -2 \ -3)^T,$$

$$H = diag(5 \ 2 \ 1 \ 0 \ -1 \ -2 \ -3),$$

Note that *H* is indefinite and the system Hx + c = 0 is incompatible.

((日)) (日) (日)

æ

q =

1							
3.0000	-13.1379	3.5628	-0.8597	0.1063	-0.0181	0.0017	-0.0000
2.0000	-2.7586	-5.7676	3.9832	-1.3787	0.6372	-0.1470	-0.0000
1.0000	-0.3793	-3.1464	0.1039	1.8638	-2.5737	1.1021	0.0000
1.0000	0.6207	-2.8617	-1.7605	2.2573	0.5896	-1.7634	-0.0000
-1.0000	-1.6207	2.0296	2.7934	-0.6882	-2.4489	-1.4695	0.0000
-2.0000	-5.2414	1.3007	4.3735	2.1842	1.1548	0.3149	-0.0000
-3.0000	-10.8621	-3.8286	-2.6032	-0.6658	-0.2082	-0.0367	0.0000
v =							
0	-3.0000	2.4296	0.8844	-1.3331	-0.3574	1.0584	-0.0000
0	-2.0000	-0.0222	3.7521	-2.9466	-0.2710	1.6899	0
0	-1.0000	-0.2847	1.8644	-0.3935	-3.1633	2.8655	0.0000
0	-1.0000	-0.5584	1.5833	0.7502	-3.7018	-0.7931	5.3852
0	1.0000	0.8320	-1.0329	-1.5691	1.8593	3.2329	0.0000
0	2.0000	2.2113	-0.4262	-3.3494	-1.1670	1.6060	0.0000
0	3.0000	4.1379	2.6283	-2.0353	-0.5202	1.7756	0.0000
delta =							
1.0000	0.6207	-2.8617	-1.7605	2.2573	0.5896	-1.7634	-0.0000
xMR =							
0	-0.1588	-0.6633	-0.6143	-0.5995	-0.5998	-0.6000	-0.6000
0	-0.1059	-0.0228	-0.6647	-1.0640	-1.0371	-1.0000	-1.0000
0	-0.0529	0.0585	-0.2817	-0.2148	-0.4441	-1.0000	-1.0000
0	-0.0529	0.1284	-0.1845	0.1376	-0.1481	0.1333	-0.0000
0	0.0529	-0.1983	0.0407	-0.4178	-0.2588	-1.0000	-1.0000
0	0.1059	-0.5364	-0.2994	-1.0375	-1.0794	-1.0000	-1.0000
0	0.1588	-1.0143	-1.1600	-0.9990	-0.9938	-1.0000	-1.0000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Using triples (q_k, y_k, δ_k) such that $q_k = Hy_k + \delta_k c$ (uniquely determined up to a common non-zero scaling)
- A Krylov method for solving a system of linear equations Hx + c = 0 for $H = H^T$. Gives a solution $x_r = (1/\delta_r)y_r$ in the compatible case or a certificate of incompatibility
- An extended Krylov method with explicit recursions for y_k^{MR} and δ_k^{MR} to obtain the minimum-residual solution x_k^{MR} in each step. Gives a solution $x_r^{MR} = x_r$ in the compatible case or the minimum-residual solution of minimum Euclidean norm

$$x_r^{MR} = x_{r-1}^{MR} - \frac{y_r^T x_{r-1}^{MR}}{y_r^T y_r} y_r$$

in the incompatible case

- 4 同 6 4 日 6 4 日 6

- Using triples (q_k, y_k, δ_k) such that $q_k = Hy_k + \delta_k c$ (uniquely determined up to a common non-zero scaling)
- A Krylov method for solving a system of linear equations *Hx* + *c* = 0 for *H* = *H*^T. Gives a solution *x_r* = (1/δ_r)*y_r* in the compatible case or a certificate of incompatibility
- An extended Krylov method with explicit recursions for y_k^{MR} and δ_k^{MR} to obtain the minimum-residual solution x_k^{MR} in each step. Gives a solution $x_r^{MR} = x_r$ in the compatible case or the minimum-residual solution of minimum Euclidean norm

$$x_r^{MR} = x_{r-1}^{MR} - \frac{y_r^T x_{r-1}^{MR}}{y_r^T y_r} y_r$$

in the incompatible case

(日本) (日本) (日本)

- Using triples (q_k, y_k, δ_k) such that $q_k = Hy_k + \delta_k c$ (uniquely determined up to a common non-zero scaling)
- A Krylov method for solving a system of linear equations *Hx* + *c* = 0 for *H* = *H*^T. Gives a solution *x_r* = (1/δ_r)*y_r* in the compatible case or a certificate of incompatibility
- An extended Krylov method with explicit recursions for y_k^{MR} and δ_k^{MR} to obtain the minimum-residual solution x_k^{MR} in each step. Gives a solution $x_r^{MR} = x_r$ in the compatible case or the minimum-residual solution of minimum Euclidean norm

$$x_r^{MR} = x_{r-1}^{MR} - \frac{y_r^T x_{r-1}^{MR}}{y_r^T y_r} y_r$$

in the incompatible case

・ 同 ト ・ ヨ ト ・ ヨ ト

└─ The End

Thank you for your time!

Questions?

Forsgren, A. and Odland, T. A general Krylov method for solving symmetric systems of linear equations Report TRITA-MAT-2014-OS-01, Department of Mathematics, KTH Royal Institute of Technology, March 2014. Submitted to SIMAX (avaliable at: http://www.math.kth.se/~odland/)

(partial support for attending SCOD14 from The Royal Swedish Academy of Sciences)

(4月) イヨト イヨト